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Abstract 

The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any 

Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated 

tomographic inversion methods. On JET, the coverage of the bolometric diagnostic, due to the availability of basically 

only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new 

approach, based on the maximum likelihood, has therefore been developed and implemented, to alleviate one of the major 

weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the 

results. The method has been validated by numerically simulations with phantoms, to assess the quality of the results and 

to optimise the configuration of the parameters, for the main types of emissivity encountered experimentally. The typical 

levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The 

systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total 

radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization 

has also been performed.  

  

Keywords: Tokamaks, power balances, uncertainty assessment, reconstruction artefacts, bolometry, tomography, 

radiation emission, maximum likelihood. 

 

 

1. Total Radiated power ad Bolometry 

In Tokamaks, the total radiation emission is a very 

important quantity to measure [1]. This is particularly 

true in metallic machines, whose performance can be 

strongly affected by the transport of heavy impurities 

and the consequent   radiation patterns. The diagnostic 

typically used to measure the emitted radiation is 

bolometry. On JET, given the layout of the diagnostic 

reported in Figure 1, the tomographic inversion of the 

bolometric signals is a very ill-posed problem. The 

system comprises two cameras with horizontal and 

vertical views across the cross-section of the plasma. 24 

chords are available for each view [2]. Their geometry 

allows an increased spatial resolution in the divertor 

region. The availability of only two views (projections 

in tomographic language) leads to a quite limited data 

set tomographic problem. Therefore, to determine both 

the total radiated power and the local emissivity, quite 

sophisticated tomographic inversion methods are 

required. Special algorithms, specific to the machine and 

to its constraints and allowing effective tomography 

from the available limited data, are needed. In the course 

of the years, various tomographic methods have been 

tested [3-5]. Tomographic reconstruction is currently 

performed with the method originally developed by 

Ingesson [3]. It is based on a grid of pyramid local basis 

functions that are used for the discretization of the 

tomographic problem. The algorithm searches for a 

solution, which is constant on flux surface and gently 

varying in the radial direction. Recently a new approach, 
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based on deep neural networks, trained on an ensemble 

of measurements and reconstructions obtained using the 

method described in [3], has been proposed [4]. In case 

of a successful training, able to robustly generalize the 

knowledge in the training data, the method has the 

potential of providing fast reconstructions, allowing the 

processing of a large amount of data. The idea of using 

neural networks for the determination of radiated power 

in JET has been proposed for the first time in [5]. In this 

approach, besides the bolometric data, elongation and 

triangularity were used as input to the neural network, 

since these provide useful complementary information. 

The method is also applicable in real-time without any 

major difficulty. However, the problem of estimating 

the errors associated with the reconstructed emissivity 

profile is still open. Accurate modelling of the projection 

noise propagation is important for both qualitative 

interpretation and quantitative analysis of the 

reconstructed images. The Monte Carlo approaches do 

not represent a solution because repeated measurements 

with multiple noise realizations cannot be achieved 

experimentally. Therefore, analytic solutions, 

applicable on a routine basis, would be very 

advantageous. Unfortunately, the class of methods 

successfully applied in JET are highly non-linear 

algorithms, many of them relying on iterative 

reconstruction schemes, which can accommodate 

implicit or explicit models of the image formation 

process. The non-linearities of these algorithms render 

much more difficult the full description of the final 

image and error statistics.  

In the present paper, we propose to apply to bolometry 

a reconstruction method based on the statistical 

Maximum Likelihood (ML) principle, which has been 

successfully used for gamma and neutron tomography 

in JET [6-7]. The complementary implementation of the 

recently developed methodology for the numerical 

evaluation of the reconstruction uncertainties [8] allows 

estimating the error bars, when deriving the total 

radiated power and the power profiles from bolometry. 

Indeed, among the tomographic approaches, which can 

be considered good candidate for JET bolometric 

tomography, the ML technique can take advantage of 

this existing methodological background and 

experience, particularly to address the issue of 

estimating the uncertainties in the final reconstructions. 

To this end, the same approach has also already been 

used on JET for the gamma and neutron topographies, 

which, on the other hand, have completely different 

diagnostic layouts and emissivity shapes and therefore 

constitute different mathematical problems.  

 

 

Over the last two decades, different new approaches 

dedicated to reconstruction uncertainty estimation have 

emerged. In the early nineties, Barrett et al derived 

approximate formulae for the ensemble mean and 

covariance of the ML expectation maximization 

reconstruction [9]. This approach has been extended to 

one-step-late [10] and later to block iterative algorithms 

[11-12]. Qi [13] proposed a unified noise analysis for the 

iterative reconstruction algorithms based on the gradient 

ascent update formulas. An alternative approach has 

been promoted by Fessler [14], who proposed a method, 

which can analyze the mean and variance of 

reconstructed images at the fixed point of the objective 

function. The properties of noise and different noise 

metrics have been studied for various kinds of 

tomography setups (see e.g. Refs. 15-17). The 

refinements of the tomographic inversion based on the 

Maximum Likelihood, presented in this paper, profit 

from these recent developments in the reconstruction 

techniques (see next sections).   

The present paper is organized as follows: the next 

section is a review of the ML tomographic method, 

particularised for the case of JET bolometric diagnostic. 

Section 3 is devoted to the procedure for deriving the 

statistical properties of the reconstructed emission, to 

quantify the uncertainties in the inversion. The overall 

quality of the method has been assessed with phantoms, 

as described in Section 4 for experimental cases of 

emissivity. The results obtained applying the ML 

tomographic technique to JET experimental data are 

reported in Section 5.  Conclusions and the potential 

additional applications of the methodology are drawn in 

the last section of the paper. 

 

Figure 1 – Schematic view of JET bolometric 

diagnostic layout. 
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2 The Maximum Likelihood Tomographic Method 

From a mathematical point of view, the tomographic 

reconstruction of 2-D emission from projections can be 

formulated as: 

 

𝑔𝑚̅̅ ̅̅ = ∑ 𝐻𝑚𝑛𝑓𝑛̅,     𝑚 = 1, … , 𝑁𝑑
𝑁𝑝

𝑛=1   (1) 

where:  

- 𝑔𝑚̅̅ ̅̅  is the mean number of photons detected in the 

projection bin 𝑚: 

 

𝑔 = 𝑔̅ + 𝑛𝑔  (2) 

 

where 𝑔 and 𝑛𝑔  are the experimental measurement 

and  the accompanying zero-mean noise, 

respectively. 

- 𝑓𝑛̅ denotes the expected emissivity distribution 

over all noisy realizations of the mean data  𝑔𝑚̅̅ ̅̅  

𝑓 = 𝑓̅ + 𝑛𝑓         (3) 

 where 𝑛𝑓 is the zero mean image noise vector. 

- 𝑁𝑝 is the total number of pixels and 𝑁𝑑  is the 

total number of detectors.  

The measurements are integrals over the emissivity 

distribution taken along physically well defined lines of 

sight. The projection matrix element 𝐻𝑚𝑛  represents the 

probability of detecting in detector 𝑚  emission from 

pixel 𝑛.  The tomographic equation can be re-written in 

matrix form:  

𝑔 = 𝐻𝑓 + 𝑛𝑔       (4) 

The emission is considered a Poisson process and 

therefore  𝑔𝑚 is a sample from a Poisson distribution, 

whose expected value is 𝑔̅. Consequently, the 

probability of obtaining the measurement 𝑔 = {𝑔𝑚|𝑚 =

1, … , 𝑁𝑑} from the emissivity 𝑓 = {𝑓𝑛|𝑛 = 1, … , 𝑁𝑝} is 

given by the likelihood function: 

𝐿(𝑔/𝑓) = ∏
1

𝑔𝑘!
(𝑔̅)𝑔𝑘 × 𝑒𝑥𝑝(𝑔̅)𝑚   (5) 

The ML estimate is obtained by maximizing the above 

expression: 

𝑓𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝐿(𝑔|𝑓)    (6) 

An iterative solution has been proposed by Lange and 

Carson [18]: 

𝑓𝑛
(𝑘+1)

=
𝑓𝑛

(𝑘)

𝑠𝑛
∑ (𝑔𝑚/ ∑ 𝐻𝑚𝑗𝑗 𝑓𝑗

(𝑘)
)𝑚 𝐻𝑚𝑛    (7) 

where 𝑘 is indexing the iterations and 𝑠𝑛 = ∑ 𝐻𝑚𝑛𝑚  is 

the probability that a photon originating in pixel 𝑛 will 

be recorded in a projection bin. 

JET bolometric tomography is a highly undetermined 

inversion. This, combined with the complicated shapes 

of the radiation emission, results in a very ill-posed 

mathematical problem. To obtain realistic and robust 

solutions, it is therefore indispensable to introduce 

additional a priori information, in order to compensate 

for the lack of experimental information. A common 

approach in JET implementations consists of imposing 

smoothness on the solutions of the tomographic problem 

[4]. The ML method developed for the bolometric 

diagnostic incorporates a regularizing procedure that 

assumes smoothness along the magnetic surfaces, given 

by the plasma equilibrium.  

 

Figure 2 – Two different smoothing procedures are used 

for the closed (red curves) and open (blue curves) 

magnetic surfaces. 

 

For the closed magnetic surfaces (Fig. 2 – red curves), 

the smoothing is implemented as a 1-D average filtering, 

using a sliding window, which moves along the 

magnetic contour lines [6-7]: 

𝑓𝑖
𝑠𝑚𝑜𝑜𝑡ℎ

𝑖
=

1

2∙𝑤𝑎𝑣𝑒
∑ 𝑓𝑗

𝑤𝑎𝑣𝑒
𝑗=−𝑤𝑎𝑣𝑒

[−𝑤𝑎𝑣𝑒,𝑤𝑎𝑣𝑒]∈𝐿𝑝

 (8) 

 

where 𝑓𝑟𝑒𝑔 is the image after applying the smoothing 

regularizing procedure, 𝑤𝑎𝑣𝑒  is equal to half of the 

width of the filtering window and 𝐿𝑝 designates the 𝑝-th 

close magnetic contour line. For the open magnetic 

surfaces (Fig. 2 – blue curves), we have implemented a 

smoothing spline procedure, which is based on the 

minimisation of the expression: 

𝑝 ∑ (𝑓𝑖
𝑠𝑚𝑜𝑜𝑡ℎ − 𝑓𝑖)

2
+ (1 − 𝑝) ∫(𝑓𝑖

′′)2𝑑𝑥𝑖  (9) 
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where 𝑓′′ is the second derivative of 𝑓 and 𝑝 ∈ (0,1) is 

an adjustable parameter; for 𝑝 =0 the minimization of 

(9) produces a least-squares straight-line fit to the data, 

while for p = 1 produces a cubic spline interpolant. 

 

3. Noise propagation in Maximum Likelihood 

Reconstructions 

In the present work, the derivation of approximate 

formulae for the mean and covariance of the 

reconstructions is based on the general formalism 

developed in [13]. A preconditioned gradient ascent 

algorithm for solving (6) is given by the relation: 

 

𝑓𝑘+1 = 𝑓𝑘 + 𝛼𝐶𝑘(𝑓𝑘)[∇𝑥𝐿(𝑔|𝑓)]
𝑓=𝑓𝑘 (10) 

 

where 𝛼 > 0 is a fixed step size and 𝐶𝑘(𝑓𝑘) is the 

preconditioner. 

As we are interested in the noise accompanying the 

reconstructed image at each iteration 𝑘, it is convenient 

to re-write (2)-(3) in the form: 

 

𝑔𝑘 = 𝑔̅𝑘 + 𝑛  (11) 

 

𝑓𝑘 = 𝑓̅𝑘 + 𝜀𝑘  (12) 

 

The first approximation, needed for the derivation of a 

formula for updating 𝜀(𝑘) at each iteration, is the 

assumption that the noise in the reconstruction is small 

compared to the mean value of the reconstruction. This 

approximation, first introduced in [9] and widely used 

in other approaches, allow the first-order Taylor 

expansion: 

 

∇𝑥 𝐿(𝑔|𝑓𝑘) ≈ ∇𝑥  𝐿(𝑔̅|𝑓̅𝑘) + ∇𝑥𝑥  𝐿(𝑔̅|𝑓̅𝑘)𝑛 +

∇𝑥𝑥𝐿(𝑔̅|𝑓̅𝑘)𝜀𝑘   (13) 

 

𝐶𝑘(𝑓𝑘) ≈ 𝐶𝑘(𝑓̅𝑘) + 𝐶𝑘(𝜀𝑘, 𝑓̅𝑘)    (14) 

 

Substituting (13)-(14) in (10), neglecting the second 

order noise terms and equating random terms to random 

terms and non-random ones to non-random ones, the 

following equations can be obtained (please see [13] for 

the details of these calculations): 

 

𝑓𝑘+1 ≈ 𝑓𝑘 + 𝛼𝐶𝑘(𝑓̅𝑘)∇𝑥𝐿(𝑔̅|𝑓̅𝑘)       (15) 

 

𝜀𝑘+1 ≈ [𝐼 − 𝐴𝑘]𝑉𝑘 + 𝐵𝑘  (16) 

 

where: 

 

𝐴𝑘 = − 𝛼𝐶𝑘(𝑓̅𝑘)∇𝑥𝐿(𝑔̅|𝑓̅𝑘) − 𝛼𝑀[∇𝑥𝐿(𝑔̅|𝑓̅𝑘), 𝑓̅𝑘] 

(17) 

𝐵𝑘 =  𝛼𝐶𝑘(𝑓̅𝑘)∇𝑥𝑦 𝐿(𝑔̅|𝑓̅𝑘) (18) 

 

and where the (j,l) element of 𝑀[𝑦; 𝑓] is 

∑ 𝑦𝑚𝜕𝐶𝑗,𝑚
𝑘

𝑚 (𝑓)𝜕𝑓𝑙.  

Eq. (15) gives a explicit multiplicative update equation 

for retrieving the reconstructed image 𝑓𝑘, at each 

iteration from the noise-free data, while Eq. (16) 

provides a rule for finding the uncertainty 

accompanying the current reconstruction estimate.   

With regard to the correlation properties of the 

uncertainties, using the notation: 

𝑉𝑘+1 = [𝐼 − 𝐴𝑘]𝑉𝑘 + 𝐵𝑘  (19) 

and starting from (16), it can be proved that the 

covariance of the reconstructed image 𝐶𝑜𝑣(𝑓) can be 

expressed in terms of the covariance of the projection 

data 𝐶𝑜𝑣(𝑔): 

 

𝐶𝑜𝑣(𝑓) = 𝑉𝑘𝐶𝑜𝑣(𝑔)[𝑉𝑘]𝑇 (20) 

 

These formulas can be made explicit for the case of the 

ML method. First, taking into account that the log 

likelihood function of the independent Poisson 

distributions, one obtains: 

 

 𝐿(𝑔|𝑓) = ∑ (𝑔𝑖𝑙𝑜𝑔(𝑔̅̅ ̅
𝑖) − 𝑔̅𝑖 − 𝑙𝑜𝑔(𝑔̅̅ ̅

𝑖!))𝑖  (21) 

 

The following explicit expressions can therefore be 

derived: 

∇𝑥𝐿(𝑔|𝑓) = 𝐻𝑇𝑑𝑖𝑎𝑔[𝐻𝑓]−1𝑔 − 𝑠     (22) 

∇𝑥𝑥𝐿(𝑔|𝑓) = −𝐻𝑇𝑑𝑖𝑎𝑔[𝐻𝑓]−2𝑑𝑖𝑎𝑔[𝑔]𝐻 (23) 

∇𝑥𝑦𝐿(𝑔|𝑓) = −𝐻𝑇𝑑𝑖𝑎𝑔[𝐻𝑓]−1 (24) 

where 𝑠 = 𝑃𝑇1 is a vector with all element equal to 1. 

Taking into account also that for the ML algorithm the 

preconditioner is given by the relation: 

𝛼𝐶𝑘(𝑓𝑘) = 𝑑𝑖𝑎𝑔[𝑓𝑘]𝑑𝑖𝑎𝑔[𝑠−1]    (25) 

relations (17) and (18) become: 

𝐴𝑘 = 𝑑𝑖𝑎𝑔[𝑓̅𝑘] 𝑑𝑖𝑎𝑔[𝑠−1]𝐻𝑇  𝑑𝑖𝑎𝑔[𝐻𝑓]−2𝑑𝑖𝑎𝑔 [𝑔̅ −

𝑑𝑖𝑎𝑔[𝑓̅𝑘+1]𝑑𝑖𝑎𝑔[𝑓̅𝑘]
−1

] + 𝐼      (26) 



_______________________________________________________________________________ 
Corresponding author email: emmanuele.peluso@uniroma2.it 

 

𝐴𝑘 = 𝑑𝑖𝑎𝑔[𝑓̅𝑘] 𝑑𝑖𝑎𝑔[𝑠−1]𝐻𝑇  𝑑𝑖𝑎𝑔[𝐻𝑓]−1   (27) 

 

At this point, a second approximation can be introduced. 

It assumes a fast-enough convergence of the ML 

algorithm, which means that the projection of the current 

estimate is close to the noise-free projection. This 

approximation, used in [9] and [13], helps to simplify 

the expression of 𝐴𝑘: 

 

𝐴𝑘 = 𝑑𝑖𝑎𝑔[𝑓̅𝑘] 𝑑𝑖𝑎𝑔[𝑠−1]𝐻𝑇  𝑑𝑖𝑎𝑔[𝐻𝑓]−1𝐻    (28) 

 

Summarizing, the image covariance can be calculated 

using Eq. 20, which relates the data noise to image 

uncertainties. The operator 𝑉 is calculated at each 

iteration using the relations (19) , (26) and (28). 

The variances associated to each pixel can be 

represented as images, which allow correlating them 

with the reconstructed images.  

   

4. Analysis of phantoms for the optimization of the 

ML parameters 

To properly assess the quality and uncertainties of the 

proposed tomographic inversion method, a systematic 

analysis with phantom emissions has been performed. 

The approach consists of performing the reconstructions 

with a series of known synthetic emissivity distributions 

and of evaluating the differences between the 

reconstructed 2D emissivity and the original one. To 

optimise the reconstructions, it is vital to properly select 

the smoothing factors. In particular, for the ML method, 

smoothness is introduced by means of the techniques 

described at the end of Section 2 (Eq. 8 and 9). 

Over/under-smoothing may lead to erroneous 

reconstruction of certain features. This problem can be 

overcome by scanning the smoothing parameters and 

selecting the ones, which minimize the differences 

between the two images (phantom and reconstruction). 

To this end, a systematic series of tomographic 

reconstructions have been performed for a 

comprehensive set of simulated emissivity distributions 

with shapes characteristic of JET bolometry. Two main 

cases, covering the most important types of emissivity 

for JET with the ILW, are shown in Figures 3 and 4. The 

emissivity of Figure 3 simulates a typical case in JET, 

with a strong emission of radiation in the divertor and 

around the X-point. The emission shown in Figure 4 is 

meant to represent what happens just after gas puffing 

from a radial gas emission valve. The noised final 

profiles reported in Fig 3,4 have been computed adding 

first a normally generated random value of the 5% on 

the projections of the original phantoms. To better 

simulate the experimental situations the phantoms have 

also been generated over a background emission of an 

amplitude equal to 5% of the maximum value of the 

phantom themselves.  

From the plots of figures 3 and 4, it is evident that 

the phantoms are well reconstructed. In particular, the 

experimental measurements, the projections, are almost 

perfectly reproduced. The total emitted power is also 

estimated with great accuracy. The discrepancy between 

the phantoms and the reconstructions is also typically 

within the uncertainties provided by the ML algorithm. 

 

 

Figure 3 –Top left: phantom emissivity. Top right: 

reconstruction of the synthetic emissivity with the 

Maximum Likelihood code. Bottom left: synthetic and 

reconstructed projections. Bottom right: PRAD versus the 

 coordinate with the estimate of the uncertainties in the 

emitted power as calculated by the analytic method 

described in Section 3.The uncertainties plotted are an 

average over 12 realisations of the noise. 
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Figure 4 –Top left: phantom emissivity. Top right: 

reconstruction of the synthetic emissivity with the 

Maximum Likelihood code. Bottom left: synthetic and 

reconstructed projections. Bottom right: PRAD versus the 

 coordinate with the estimate of the uncertainties in the 

emitted power as calculated by the analytic method 

described in Section 3. The uncertainties plotted are an 

average over 12 realisations of the noise. 

 

 

5. Comparison with other inversion methods 

 

Figure 5– Shot number 84887 Top Left: reconstruction 

obtained with the method of the Maximum likelihood. 

Right: reconstruction obtained with TOMO5. Bottom: 

uncertainties estimation of the reconstruction from the 

ML method 

   

An example of comparison between the reconstruction 

method proposed in this paper and the one typically use 

on JET, TOMO5, is provided for a time slice of 

discharge 84887 in Figure 5. The left hand side figure is 

the reconstruction obtained with the Maximum 

Likelihood and the other on the right with the traditional 

program TOMO5 implementing Ingesson’s method [3].  

In terms of macroscopic quantities, the difference 

between the two reconstructions is minimal. This can be 

appreciated inspection of Figure 6, which reports the 

evolution of the radiated power and the radiated fraction 

for the same discharge 84887. The differences between 

the two reconstructions never cause a discrepancy in the 

total radiated power exceeding 10%.  

 

Figure 6– Shot number 84887. Time evolution of the 

total radiated power and the radiated fraction. The 

uncertainties plotted are an average over 12 

realisations of the noise 

 

6. Conclusions 

The reconstruction technique based on the ML principle 

has been used to develop a methodology for the 

numerical evaluation of the statistical properties of the 

uncertainties in the tomographic remonstrations of JET 

bolometric measurements. The method is built on 

previous development techniques already deployed to 

perform tomographic inversions of the gamma ray and 

neutron emissions.  The numerical tests with 

representative phantoms show that the method is able to 

provide good reconstructions in terms of shapes and 

resolution. In addition, the evaluation of the uncertainties 

is proved correct by a systematic analysis of the 

phantoms. Scanning the smoothing factors has allowed 

optimising this parameter for the various classes of 

emissivity detected in practice in JET plasmas. The 

excellent quality of the results is confirmed by the 

comparison with the method currently used routinely in 

JET.  
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As already discussed, the main advantage of the ML 

method is the possibility to evaluate the uncertainties 

accompanying the reconstruction and the calculated 

radiated power. This feature, together with the approach 

of the phantoms, permits to optimise the reconstructions 

parameters for the various experimental conditions. 

Moreover, the approach of combing an analytic estimate 

of the uncertainties with the phantoms provides a robust 

and principled method to address many experimental 

issues related to the diagnostic, such as the effect of the 

noise, of missing chords or the impact of the geometry 

on potential artefacts. 
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