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Abstract

The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any
Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated
tomographic inversion methods. On JET, the coverage of the bolometric diagnostic, due to the availability of basically
only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new
approach, based on the maximum likelihood, has therefore been developed and implemented, to alleviate one of the major
weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the
results. The method has been validated by numerically simulations with phantoms, to assess the quality of the results and
to optimise the configuration of the parameters, for the main types of emissivity encountered experimentally. The typical
levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The
systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total
radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization
has also been performed.

Keywords: Tokamaks, power balances, uncertainty assessment, reconstruction artefacts, bolometry, tomography,
radiation emission, maximum likelihood.

1. Total Radiated power ad Bolometry in tomographic language) leads to a quite limited data
set tomographic problem. Therefore, to determine both
the total radiated power and the local emissivity, quite
sophisticated tomographic inversion methods are
required. Special algorithms, specific to the machine and
to its constraints and allowing effective tomography
from the available limited data, are needed. In the course
of the years, various tomographic methods have been
tested [3-5]. Tomographic reconstruction is currently
performed with the method originally developed by
Ingesson [3]. It is based on a grid of pyramid local basis
functions that are used for the discretization of the
tomographic problem. The algorithm searches for a
solution, which is constant on flux surface and gently
varying in the radial direction. Recently a new approach,

In Tokamaks, the total radiation emission is a very
important quantity to measure [1]. This is particularly
true in metallic machines, whose performance can be
strongly affected by the transport of heavy impurities
and the consequent radiation patterns. The diagnostic
typically used to measure the emitted radiation is
bolometry. On JET, given the layout of the diagnostic
reported in Figure 1, the tomographic inversion of the
bolometric signals is a very ill-posed problem. The
system comprises two cameras with horizontal and
vertical views across the cross-section of the plasma. 24
chords are available for each view [2]. Their geometry
allows an increased spatial resolution in the divertor
region. The availability of only two views (projections
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based on deep neural networks, trained on an ensemble
of measurements and reconstructions obtained using the
method described in [3], has been proposed [4]. In case
of a successful training, able to robustly generalize the
knowledge in the training data, the method has the
potential of providing fast reconstructions, allowing the
processing of a large amount of data. The idea of using
neural networks for the determination of radiated power
in JET has been proposed for the first time in [5]. In this
approach, besides the bolometric data, elongation and
triangularity were used as input to the neural network,
since these provide useful complementary information.
The method is also applicable in real-time without any
major difficulty. However, the problem of estimating
the errors associated with the reconstructed emissivity
profile is still open. Accurate modelling of the projection
noise propagation is important for both qualitative
interpretation and quantitative analysis of the
reconstructed images. The Monte Carlo approaches do
not represent a solution because repeated measurements
with multiple noise realizations cannot be achieved
experimentally.  Therefore, analytic  solutions,
applicable on a routine basis, would be very
advantageous. Unfortunately, the class of methods
successfully applied in JET are highly non-linear
algorithms, many of them relying on iterative
reconstruction schemes, which can accommodate
implicit or explicit models of the image formation
process. The non-linearities of these algorithms render
much more difficult the full description of the final
image and error statistics.

In the present paper, we propose to apply to bolometry
a reconstruction method based on the statistical
Maximum Likelihood (ML) principle, which has been
successfully used for gamma and neutron tomography
in JET [6-7]. The complementary implementation of the
recently developed methodology for the numerical
evaluation of the reconstruction uncertainties [8] allows
estimating the error bars, when deriving the total
radiated power and the power profiles from bolometry.
Indeed, among the tomographic approaches, which can
be considered good candidate for JET bolometric
tomography, the ML technique can take advantage of
this existing methodological background and
experience, particularly to address the issue of
estimating the uncertainties in the final reconstructions.
To this end, the same approach has also already been
used on JET for the gamma and neutron topographies,
which, on the other hand, have completely different
diagnostic layouts and emissivity shapes and therefore
constitute different mathematical problems.
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Figure 1 — Schematic view of JET bolometric
diagnostic layout.

Over the last two decades, different new approaches
dedicated to reconstruction uncertainty estimation have
emerged. In the early nineties, Barrett et al derived
approximate formulae for the ensemble mean and
covariance of the ML expectation maximization
reconstruction [9]. This approach has been extended to
one-step-late [10] and later to block iterative algorithms
[11-12]. Qi [13] proposed a unified noise analysis for the
iterative reconstruction algorithms based on the gradient
ascent update formulas. An alternative approach has
been promoted by Fessler [14], who proposed a method,
which can analyze the mean and variance of
reconstructed images at the fixed point of the objective
function. The properties of noise and different noise
metrics have been studied for various Kkinds of
tomography setups (see e.g. Refs. 15-17). The
refinements of the tomographic inversion based on the
Maximum Likelihood, presented in this paper, profit
from these recent developments in the reconstruction
techniques (see next sections).

The present paper is organized as follows: the next
section is a review of the ML tomographic method,
particularised for the case of JET bolometric diagnostic.
Section 3 is devoted to the procedure for deriving the
statistical properties of the reconstructed emission, to
quantify the uncertainties in the inversion. The overall
quality of the method has been assessed with phantoms,
as described in Section 4 for experimental cases of
emissivity. The results obtained applying the ML
tomographic technique to JET experimental data are
reported in Section 5. Conclusions and the potential
additional applications of the methodology are drawn in
the last section of the paper.



2 The Maximum Likelihood Tomographic Method

From a mathematical point of view, the tomographic
reconstruction of 2-D emission from projections can be
formulated as:

N N. =
Im = anl Hmnfn: m= 1v ---de (1)
where:

- gm is the mean number of photons detected in the
projection bin m:

g=g—+ng (2)

where g and n, are the experimental measurement
and the accompanying zero-mean noise,
respectively.

- f, denotes the expected emissivity distribution
over all noisy realizations of the mean data g,

f=f+ ny (3)
where n is the zero mean image noise vector.

- N, is the total number of pixels and N, is the
total number of detectors.

The measurements are integrals over the emissivity
distribution taken along physically well defined lines of
sight. The projection matrix element H,,,, represents the
probability of detecting in detector m emission from
pixel n. The tomographic equation can be re-written in
matrix form:

g =Hf +n, (4)

The emission is considered a Poisson process and
therefore g, is a sample from a Poisson distribution,
whose expected value is g. Consequently, the
probability of obtaining the measurement g = {g,,|m =
1, ..., Ny} from the emissivity f = {f,|n =1, ...,N,} is
given by the likelihood function:

L(g/f) = (@)% X exp(g) (5)

The ML estimate is obtained by maximizing the above
expression:

fur = argmaxyL(g|f) (6)

An iterative solution has been proposed by Lange and
Carson [18]:

(k)
fn(k+1) = f:_an(gm/Zj Hmj f}(k)) Hy (7)
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where k is indexing the iterations and s, = X.,, Hpn 1S
the probability that a photon originating in pixel n will
be recorded in a projection bin.

JET bolometric tomography is a highly undetermined
inversion. This, combined with the complicated shapes
of the radiation emission, results in a very ill-posed
mathematical problem. To obtain realistic and robust
solutions, it is therefore indispensable to introduce
additional a priori information, in order to compensate
for the lack of experimental information. A common
approach in JET implementations consists of imposing
smoothness on the solutions of the tomographic problem
[4]. The ML method developed for the bolometric
diagnostic incorporates a regularizing procedure that
assumes smoothness along the magnetic surfaces, given
by the plasma equilibrium.

Figure 2 — Two different smoothing procedures are used
for the closed (red curves) and open (blue curves)
magnetic surfaces.

For the closed magnetic surfaces (Fig. 2 — red curves),
the smoothing is implemented as a 1-D average filtering,
using a sliding window, which moves along the
magnetic contour lines [6-7]:

smooth _ 1 Wave :
fi i z_wavez J=—Wgaype f} (8)

[-Wave,WavelELp

where f7¢9 is the image after applying the smoothing
regularizing procedure, wy,, is equal to half of the
width of the filtering window and L,, designates the p-th
close magnetic contour line. For the open magnetic
surfaces (Fig. 2 — blue curves), we have implemented a
smoothing spline procedure, which is based on the
minimisation of the expression:

pXi(femooth — 1) + (1 —p) [(f)2dx  (9)



where " is the second derivative of f and p € (0,1) is
an adjustable parameter; for p =0 the minimization of
(9) produces a least-squares straight-line fit to the data,
while for p = 1 produces a cubic spline interpolant.

3. Noise propagation in Maximum Likelihood
Reconstructions

In the present work, the derivation of approximate
formulae for the mean and covariance of the
reconstructions is based on the general formalism
developed in [13]. A preconditioned gradient ascent
algorithm for solving (6) is given by the relation:

fE41 = fX 4 aC*(FOLLGIN]_pe (1)

where a > 0 is a fixed step size and C¥(f¥) is the
preconditioner.

As we are interested in the noise accompanying the
reconstructed image at each iteration k, it is convenient
to re-write (2)-(3) in the form:

gh=g"+n (11)
fl=fk 4 gk (12)

The first approximation, needed for the derivation of a
formula for updating €®) at each iteration, is the
assumption that the noise in the reconstruction is small
compared to the mean value of the reconstruction. This
approximation, first introduced in [9] and widely used
in other approaches, allow the first-order Taylor
expansion:

Vi L(gIf*) = Vi L(G|F") + Vix L(g]f*)n +

VL (g]f*)e (13)

CE(f¥) = CH(F*) + CK(e% F%)  (19)

Substituting (13)-(14) in (10), neglecting the second
order noise terms and equating random terms to random
terms and non-random ones to non-random ones, the

following equations can be obtained (please see [13] for
the details of these calculations):

¥~ 4+ ack(FY) v L(g]f*)  (15)
ek+l ~ [I — AK]VE + BX (16)

where:
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A5 = — aCH(FOYV,L(g|7) — a[v,L(g]7*), 7]
17)

B* = aC*(f*)V,, L(g|f*) (18)

and where the (j,I) element of M[y;f] is
Zm ymacjl,{m (f)afl

Eqg. (15) gives a explicit multiplicative update equation
for retrieving the reconstructed image f*, at each
iteration from the noise-free data, while Eq. (16)
provides a rule for finding the uncertainty
accompanying the current reconstruction estimate.
With regard to the correlation properties of the
uncertainties, using the notation:

Vi =[] — A¥]vk + B* (19)

and starting from (16), it can be proved that the
covariance of the reconstructed image Cov(f) can be
expressed in terms of the covariance of the projection
data Cov(g):

Cov(f) = V¥Cov(g)[V¥]" (20)

These formulas can be made explicit for the case of the
ML method. First, taking into account that the log
likelihood function of the independent Poisson
distributions, one obtains:

L(glf) = Xi(gilog(g:y — g: — log(g:h) (21)

The following explicit expressions can therefore be
derived:

ViL(glf) = H'diag[Hf] g —s (22
ViL(glf) = —H"diag[Hf] *diaglg]H (23)
ViyL(glf) = —H"diag[Hf]™"  (24)

where s = PT1 is a vector with all element equal to 1.

Taking into account also that for the ML algorithm the
preconditioner is given by the relation:

aC*(f*) = diag[f*]diag[s™]  (25)
relations (17) and (18) become:
A¥ = diag[f*] diag[s~']1H" diag[Hf]2diag [g‘ -

diag[f_"“]diag[fk]_l] +1 (26)



A¥ = diag[f*] diag[s~*1H diag[Hf]™* (27)

At this point, a second approximation can be introduced.
It assumes a fast-enough convergence of the ML
algorithm, which means that the projection of the current
estimate is close to the noise-free projection. This
approximation, used in [9] and [13], helps to simplify
the expression of A*:

Ak = diag[f¥] diag[s~*]HT diag[Hf]™*H (28)

Summarizing, the image covariance can be calculated
using Eq. 20, which relates the data noise to image
uncertainties. The operator V is calculated at each
iteration using the relations (19) , (26) and (28).

The variances associated to each pixel can be
represented as images, which allow correlating them
with the reconstructed images.

4. Analysis of phantoms for the optimization of the
ML parameters

To properly assess the quality and uncertainties of the
proposed tomographic inversion method, a systematic
analysis with phantom emissions has been performed.
The approach consists of performing the reconstructions
with a series of known synthetic emissivity distributions
and of evaluating the differences between the
reconstructed 2D emissivity and the original one. To
optimise the reconstructions, it is vital to properly select
the smoothing factors. In particular, for the ML method,
smoothness is introduced by means of the techniques
described at the end of Section 2 (Eg. 8 and 9).
Over/under-smoothing may lead to erroneous
reconstruction of certain features. This problem can be
overcome by scanning the smoothing parameters and
selecting the ones, which minimize the differences
between the two images (phantom and reconstruction).
To this end, a systematic series of tomographic
reconstructions have been performed for a
comprehensive set of simulated emissivity distributions
with shapes characteristic of JET bolometry. Two main
cases, covering the most important types of emissivity
for JET with the ILW, are shown in Figures 3 and 4. The
emissivity of Figure 3 simulates a typical case in JET,
with a strong emission of radiation in the divertor and
around the X-point. The emission shown in Figure 4 is
meant to represent what happens just after gas puffing
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from a radial gas emission valve. The noised final
profiles reported in Fig 3,4 have been computed adding
first a normally generated random value of the 5% on
the projections of the original phantoms. To better
simulate the experimental situations the phantoms have
also been generated over a background emission of an
amplitude equal to 5% of the maximum value of the
phantom themselves.

From the plots of figures 3 and 4, it is evident that
the phantoms are well reconstructed. In particular, the
experimental measurements, the projections, are almost
perfectly reproduced. The total emitted power is also
estimated with great accuracy. The discrepancy between
the phantoms and the reconstructions is also typically
within the uncertainties provided by the ML algorithm.

Pure Phantom

177
17 227 284 342 399
R[m] R{m)

1.7 227 284 342 399

Figure 3 —Top left: phantom emissivity. Top right:
reconstruction of the synthetic emissivity with the
Maximum Likelihood code. Bottom left: synthetic and
reconstructed projections. Bottom right: Prap versus the
w coordinate with the estimate of the uncertainties in the
emitted power as calculated by the analytic method
described in Section 3.The uncertainties plotted are an
average over 12 realisations of the noise.

Pure Phantom ML

o -1.77 -
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Figure 4 —Top left: phantom emissivity. Top right:
reconstruction of the synthetic emissivity with the
Maximum Likelihood code. Bottom left: synthetic and
reconstructed projections. Bottom right: Prap versus the
w coordinate with the estimate of the uncertainties in the
emitted power as calculated by the analytic method
described in Section 3. The uncertainties plotted are an
average over 12 realisations of the noise.

5. Comparison with other inversion methods

TOMOS

2000

1500

0

RIm]

Figure 5— Shot number 84887 Top Left: reconstruction
obtained with the method of the Maximum likelihood.
Right: reconstruction obtained with TOMO5. Bottom:
uncertainties estimation of the reconstruction from the
ML method

An example of comparison between the reconstruction
method proposed in this paper and the one typically use
on JET, TOMOS5, is provided for a time slice of
discharge 84887 in Figure 5. The left hand side figure is
the reconstruction obtained with the Maximum
Likelihood and the other on the right with the traditional
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program TOMOS implementing Ingesson’s method [3].
In terms of macroscopic quantities, the difference
between the two reconstructions is minimal. This can be
appreciated inspection of Figure 6, which reports the
evolution of the radiated power and the radiated fraction
for the same discharge 84887. The differences between
the two reconstructions never cause a discrepancy in the
total radiated power exceeding 10%.

84887
30 T T

. P\HFUI[MW]
25| o PIEIMW)

Prad
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gzo s .8 400
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P eoeeoe®e®o o000, e o g0 9 %

0.9 -

P oePinput
°
=

e
3

06 L L L L L L L
54.8 54.85 549 54.95 65 66.06 5561 66.16 56.2

t[s]

Figure 6— Shot number 84887. Time evolution of the
total radiated power and the radiated fraction. The
uncertainties plotted are an average over 12
realisations of the noise

6. Conclusions

The reconstruction technique based on the ML principle
has been used to develop a methodology for the
numerical evaluation of the statistical properties of the
uncertainties in the tomographic remonstrations of JET
bolometric measurements. The method is built on
previous development techniques already deployed to
perform tomographic inversions of the gamma ray and
neutron emissions. The numerical tests with
representative phantoms show that the method is able to
provide good reconstructions in terms of shapes and
resolution. In addition, the evaluation of the uncertainties
is proved correct by a systematic analysis of the
phantoms. Scanning the smoothing factors has allowed
optimising this parameter for the various classes of
emissivity detected in practice in JET plasmas. The
excellent quality of the results is confirmed by the
comparison with the method currently used routinely in
JET.



As already discussed, the main advantage of the ML
method is the possibility to evaluate the uncertainties
accompanying the reconstruction and the calculated
radiated power. This feature, together with the approach
of the phantoms, permits to optimise the reconstructions
parameters for the various experimental conditions.
Moreover, the approach of combing an analytic estimate
of the uncertainties with the phantoms provides a robust
and principled method to address many experimental
issues related to the diagnostic, such as the effect of the
noise, of missing chords or the impact of the geometry
on potential artefacts.
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