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Abstract 

Classification, which means discrimination between examples belonging to different classes, 

is a fundamental aspect of most scientific applications. Machine Learning (ML) tools have 

proved to be very performing in this task, in the sense that they can achieve very high success 

rates. On the other hand, the “realism” and interpretability of their models are very low, 

resulting often in modest increases of knowledge and limited applicability. In this paper, a 

methodology is described, which, by applying ML tools directly to the data, allows 

formulating new scientific models that describe the actual “physics” determining the 

boundary between the classes. The proposed technique consists of a stacked approach of 

different ML tools, each one applied to a specific subtask of the scientific analysis; all 

together they combine all the major strands of machine learning, from rule based classifiers 

and Bayesian statistics to genetic programming and symbolic manipulation. To take into 

account the error bars of the measurements, an essential aspect of any scientific form of 

inference, the novel concept of the Geodesic Distance on Gaussian manifolds is adopted. The 

characteristics of the methodology have been investigated with a series of systematic 

numerical tests, for different types of classification problems. The potential of the approach 

to handle real data has been tested with various experimental databases. The obtained results 

indicate that the proposed method permits to find a good trade-off between accuracy of the 

classification and complexity of the derived mathematical equations. Moreover, the derived 

models can be tuned to reflect the actual phenomena, providing a very useful tool to bridge 

the gap between data, machine learning tools and scientific theories.  

 

 

 

 

 

 

1 Knowledge Discovery in the natural sciences with particular attention to Big Physics 

experiments 
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Nowadays the complexity of the problems, investigated in many fields of science, is 

such that it can become difficult, if not impossible, 

to describe the phenomena to be studied with 

theoretical models based on first principles. A 

typical example in physics is the case of magnetic 

confinement thermonuclear fusion, whose plasmas 

are so complex that various levels of modelling 

(particle, fluid, kinetic etc) coexist without 

providing a satisfactory description of many aspects 

of the physics [1]. On the other hand, in the last 

decades much more data has become available, due 

to the diffusion of new sensors and cheap but 

powerful computing units. For example, the Big 

Physics European experiments are affected by a 

data deluge. At CERN, the ATLAS detector can 

produce Petabytes of data per year. In its prime the 

Hubble space telescope managed to send to earth 

Gigabytes of data per day and the data warehouse of 

the Joint European Torus exceeds 350 Terabytes. 

Therefore, the inadequacies of theoretical models 

and the vast amounts of information available have 

motivated the development of data driven tools, to 

complement hypothesis driven theories. In this 

perspective, various machine learning methods have 

been developed and to a certain extent applied to 

the natural sciences. They range from Neural 

Networks and Support Vector Machines to Fuzzy 

Logic classifiers; a series of examples from the field 

of thermonuclear fusion can be found in [2,3,4]. 

Manifold learning tools, such as Self Organising 

Maps and Generative Topographic Maps, have 

provided very good results also in terms of 

describing the space in which the relevant physics takes place [5,6,7]. 

 

Figure 1: The five main steps of the 

proposed methodology to express a 

model identified by SVM in more 

traditional mathematical notation. 

Training of the SVM 
with the available data

Populating the 
hypersurface on a 

suitable grid of points

Identification of the 
hypersurface equation 

with Symbolic 
Regression via Genetic 
Programming using the 

Geodesic Distance 
metrics

Double checking of the 
obtained equation 

using the SVM 

CART for features 
selection

1
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On the other hand, to be really useful, the knowledge discovery process in the natural 

sciences has to satisfy specific criteria and requirements, which are not necessarily crucial in 

other applications. In particular, at least four properties are not only desirable but probably 

essential to the scientific process: a) accuracy of the results b) interpretability of the obtained 

models c) close relation between the derived equations and the “physics” reality of the 

phenomena under investigation d) proper treatment of the uncertainties and quantification of 

the confidence intervals. Even if the traditional data driven tools are providing quite 

impressive performance in terms of accuracy, their main problem is the mathematical 

formulation of their models. They have shown the potential to learn very efficiently from the 

provided examples but their results are expressed in such a way that does not reflect the 

physics reality behind the phenomena under study. This aspect is quite worrying and has 

hampered the penetration of many machine learning tools in scientific disciplines such as 

physics. In conclusions the main problems of traditional machine learning tools in the 

perspective of applications in the natural sciences are: a) poor “physics fidelity” i.e. excessive 

discrepancy between the mathematical form of the models and the physical reality of the 

phenomena investigated b) insufficient estimates of the uncertainties c) difficulties to 

interpret the results in terms of traditional mathematical formulations d) consequent 

impossibility to compare the obtained results with mathematical theories based on first 

principles e) lack of extrapolability of the results.  

In order to overcome these limitations, a new methodology has been developed to 

profit from the knowledge acquired by the machine learning tools, but presenting it in a more 

traditional format, in terms of manageable formulas, which better reflect the reality of the 

phenomena under study. The techniques, developed in the framework of the activities 

presented in this paper, address the basic goal of classification. This is a very important task 

in many scientific applications, both “per se” and as a preliminary step to subsequent 

investigations. The objective of the analysis, in scientific applications of classification, 

consists of deriving a mathematical formula for the boundary between the classes, describing 

the actual physics or chemistry behind the problem. The main idea informing this work 

resides therefore in combining the learning capabilities of the machine learning tools with the 

“fidelity” and interpretability of more traditional mathematical formulations, for a more 

realistic description of the boundaries between classes.  

The proposed methodology covers the entire knowledge discovery process, from the 

feature extraction to the final assessment of the quality of the derived models. A flow chart of 

the main steps of the proposed technique is provided in Figure 1.  
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The feature extraction phase is performed with a new evolution of Classification and 

Regression Trees (CART), the so called noise–based ensemble. The CART approach is 

particularly useful in this subtask due to the limited computational burden and the high level 

of interpretability of the results. It is worth pointing out that the issue of the noise and the 

errors in the measurements is taken into account starting already at this stage, by the original 

method of the noise-based ensemble, as illustrated in Section 2. 

The actual classification step is then based on Support Vector Machines (SVM), 

whose mathematical background is summarised in the Section 3, including a probabilistic 

version very important to quantify the confidence in the results. The choice of SVM is mainly 

due to their structural stability, their capability to maximize the safety margins in the 

classification. Given the high accuracy of SVM, the equation of their hypersurface in the 

original space can be considered an excellent approximation of the boundary between the 

classes. On the other hand, their mathematical representation of the boundary is extremely 

non intuitive (see Section 3). Indeed referring to complex systems of the complexity 

investigated in modern day natural sciences, the equations of the hypersurface can easily 

comprise hundreds of support vectors and therefore the equation of the hypersurface contains 

an equal number of addends. More importantly, in addition to presenting serious problems for 

human understanding, the formulation of the boundary equation has typically no relation with 

the actual dynamics of the phenomena under study. It has indeed been shown, with many 

numerical examples (see Section 7 and Appendix A), that the models provided by SVM bear 

absolutely no resemblance to the ones generating the data. A simple methodology has already 

been proposed and applied to complex problems, to recover the equation of the boundary in 

the case of linear kernels [8]. In this paper, a new technique is developed, which is fully 

general. Indeed the proposed method can be applied to SVM with any type of kernel and 

even to probabilistic versions; therefore it has a much wider range of applications than the 

more traditional techniques. This aspect is very important in many scientific fields, whose 

phenomena cannot be simply modelled by linear tools or logistic regression.  

To formulate the outputs of SVM in a way suitable for scientific investigations, 

extensive used is made of Symbolic Regression (SR) via Genetic Programming (GP); these 

tools are therefore described in Section 4. Symbolic regression is basically used to fit points 

on the hypersurface found by the SVM, which is considered the boundary between the 

classes. More formally, in this step the analysis task to be performed consists of (see also 

Section 3): 
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given a decision surface    
1

,i i i

i

D y H


x x x =0 found by the SVM;  

find an approximate equation f(x1,....xn) = 0 which is expressed in a 

mathematical form suitable to describe the actual physics of the 

phenomenon.  

 

To take into account the error bars of the measurements, the formalism of the 

Geodesic Distance on Gaussian manifolds (GD) has been adopted. Basically this has been 

inserted in the symbolic regression step: the fitness function in this phase of the method is 

calculated using the GD. The implementation of the Geodesic Distance on Gaussian 

manifolds is described in Section 5.  

The actual combination of the various tools to provide the equation of the boundary 

between two classes in a physically relevant form is described in detail in Section 6. The 

results of a systematic series of numerical tests, proving the potential of the proposed 

methodology, are the subject of Section 7 and AppendixA. Some examples of application to 

experimental databases, covering completely different scientific disciplines, are provided in 

Section 8. Discussions and lines of future developments are the subject of the last Section 9. 

Before embarking on the technical description of the develop methodology, a few 

clarification remarks are appropriate. The approach proposed in this paper is aimed at 

reconciling the prediction and knowledge discovery capability of machine learning tools with 

the need to formulate the results in such a way that they can be related to scientific theories 

and models. It is therefore worth emphasizing that the objective of the present work is not 

simply improving interpretability of machine learning tools, on which significant work has 

already been done [9,10]. The most important aspect indeed is “physics fidelity” i.e. the 

formulation of the results in mathematical terms which can be compared with basic theories 

and models of the various scientific disciplines. Therefore, the proposed method must have 

the potential to derive mathematical expressions, which reflect the underlining dynamics of 

the phenomena investigated. This means that the approach must be y flexible enough to allow 

the outputs of machine learning tools to be expressed in sufficiently complex mathematical 

forms to describe properly the problems to be studied. On the other hand, it must be possible 

to control overfitting and convergence on models of the appropriate level of complexity. The 

other essential aspect of the proposed methodology, for relevant investigations in the natural 

sciences, is the principled treatment of the measurement errors, to obtain reliable confidence 

intervals in the results. This has been achieved with the development of the concepts of 
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Information Technology and in particular the Geodesic Distance on probabilistic manifolds. 

The other important point to notice is that, as can be seen in Figure 1, the proposed 

methodology involves practically all the major fields of machine learning, from rule-based 

classifiers to Bayesian statistic, genetic programming and symbolic manipulation. Each 

technique is deployed to solve a specific aspect of the data driven theory process, to which it 

is particularly suited. This stacked, syncretic approach to knowledge discovery seems to be 

particularly promising for applications in the natural sciences, in which it is already finding 

increasing acceptance (see Section8). It is also worth mentioning that, in the framework of 

the present study, it has been possible to devise an adaptive from of training, which is very 

relevant for many scientific applications analysing time series. Indeed in the vast majority of 

applications in the natural sciences dealing with data streams, the assumption that the data are 

i.i.d. (independent and identically distributed) is far from being satisfied. Developing 

adaptive training schemes from scratch is therefore particularly relevant (See Section 8 and 

Appendix C).  

 

 

2 Noise-based ensembles of CART classifiers for feature selection  

Among the rule-based machine learning tools, the so called Classification and 

Regression Trees (CART) are the most developed and widespread. They have been widely 

implemented for constructing prediction models from data [11,12]. Such models are derived 

directly from the available databases by recursively partitioning the feature space and fitting a 

simple prediction rule at each partition. The final partitioning, once properly optimised, 

consists therefore of a series of rules that can be represented graphically by a decision tree. 

The performance of classification trees are typically quantified in terms of misclassification 

costs. The algorithms of this family exhaustively search the whole database to determine, for 

which variable, which value minimizes the total impurity of its the child nodes. To quantify 

the purity of a node, the version of CART implemented in this paper uses a generalization of 

the binomial variance called the Gini index. As a metric to split the nodes, the Gini impurity 

calculates how often a randomly chosen element from the training set would be incorrectly 

labelled, under the assumption that the labels are allocated as the distribution of labels in the 

subset. The Gini factor is typically computed by summing the probability pi of the item being 

correctly classified by the probability (1-pi) of the item being wrongly classified:  

 

GINI = Σ pi(1-pi)   (1) 
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Where the sum is extended over the number of classes.  The GINI impurity reaches its 

minimum (zero) when all cases in the node fall into a single target category. 

Decision trees are very practical and easy to interpret but present a significant 

drawback, consequence of their greedy search strategy: their sensitivity to the specific data 

used for their training. Indeed a small change in the inputs (for example even using a subset 

of the training data) can imply a major variation in the resulting decision tree and in turn 

quite different predictions. To overcome this issue and to increase the success rate of the 

results, it is typically very advantageous to adopt the approach of ensemble rule-based 

classifiers, based on the concept of weak learners. A 'weak' learner (either classifier or 

predictor) is just any machine learning tool, which generates models that perform relatively 

poorly but are computationally simple [11]. The relatively limited computational resources 

required allow training various versions of such weak learners which can then be pooled (via 

Bagging, Random Forests etc) together to create a "strong" ensemble classifier. The 

traditional versions of pooling present two main drawbacks. First, they have to reduce the 

number of training examples by subsampling. Second, and partly a consequence of the 

previous issue, they need to train a very high number of weak learners, which increase the 

computational complexity and reduce the interpretability of their results. These issues have 

motivated the development of specific methods to build ensembles for applications in the 

natural sciences. 

One of the main issues of the measurements in the experimental sciences is the often 

high levels of noise. This noise is very difficult to reduce; the sources of noise are many and 

independent. Even if these uncertainties are a potential issue, they suggest an alternative 

approach to the method of building ensembles of weak classifiers, which is an innovation 

proposed in this paper. The idea consists again of collecting ensembles but not with subsets 

of the original data; on the contrary the various training sets are obtained by the original one 

summing random noise to the measurements. The random noise is generated from Gaussian 

distributions with variance equal to the error bar of the measurements. To each realization of 

the noise corresponds a different weak learner. The number of trees can be increased until the 

accuracy begins to saturate instead of improving. This approach called Noised-based 

Ensemble can be applied directly to CART trees. The main advantage is twofold. First, the 

noise-based ensemble improves significantly the success rate of the classification at a 

modicum of additional computational expenses. Secondly, the number of trees in the 

ensemble can be typically kept to a minimum, with a significant advantage in terms of 
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interpretability. Indeed the ensemble can therefore be explored and a typical tree identified, 

allowing to analyse directly the rules and derive the required information.  

In the application described in this paper, the Noise-based Ensembles of CART trees 

are used for feature selection. They are trained to classify and then a simple inspection of the 

trees and the rules allow identifying the most significant features, to be used in the following 

steps of the methodology. An example of this approach potential in real time applications  is 

provided in Section 8.  

 

 

3 Traditional and probabilistic SVM  

 In intuitive terms, given a set of input examples, which belong to two different 

classes, SVM map the inputs into a high-dimensional space through some suitable non-linear 

mapping [13]. In this high dimensional feature space, an optimal separating hyperplane is 

constructed in order to minimize the risk of misclassification. The minimization of the error 

risk is obtained by maximizing the margins between the hyperplane and the closest points, 

the Support Vectors (SV), of each class. This is achieved by a careful selection of the 

constraints of a suitable functional to minimize. In the case of non separable problems, the 

points to classify are projected into a higher dimensional space with the help of suitable 

kernels. The minimization of the error risk and the maximization of the margins is then 

performed in this projected space.  

SVM therefore basically consist of suitable kernels, which map the inputs into higher 

dimensional spaces, where the classification becomes a linearly separable problem and can be 

solved with traditional quadratic programming methods based on Lagrange multipliers.   

In mathematical terms, given a training set of  samples 1 1( , ),..., ( , )y yx x , n

ix  , 

for a binary classification problem (i.e.  1, 1iy    ), SVM estimates the following decision 

function: 

   
1

,i i i

i

D y H


x x x   (2) 

where  ,iH x x  is a kernel function and the parameters , 1,...,i i   are the solutions 

of the following quadratic optimization with linear constraints: 

maximization of  the functional 
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   
1 , 1

1
,

2
i i j i j i j

i i j

Q y y H  
 

   x x   (3) 

subject to the constraints 

1

0, 0 , 1,...,i i i

i

C
y i 



                  (4) 

where C  is a regularization parameter [13]. 

The data points ix  associated with nonzero values of the coefficients i  are called 

support vectors, which give the name to the technique. Once the support vectors have been 

determined, the SVM boundary between the two classes can be expressed in the form 

 

   
support vectors

,i i iD y H x x x   (5) 

 D x  is the distance (with sign) from the input x  to the hyper-plane that separates 

the two classes and, hence, the hyper-plane points satisfy   0D x .  

The rule to classify a feature vector u  as class C1 or class C2 is given by: 

 

if sgn (D(u)) ≥ 0 

u ε C1 

otherwise 

u ε C2 

where sgn(t) is the sign function. 

 

At this point a clarification of the terminology is probably appropriate. SVM find a 

separating hyperplane in the transformed space. On the other hand, the hyperplane is 

expressed in terms of Support Vectors in the original space, in which the boundary is a 

hypersurface. Since typically in the natural sciences researchers are interested in equations in 

the original space, and not in the transformed one, the boundary between the two classes will 

be indicated with the term hypersurface and not hyperplane in the following. Indeed, another 

advantage of the SVM is that their results are expressed in terms of the inputs in the original 

space. The second and third real life examples described in Section 8 adopt this approach of 

the traditional SVM. On the other hand, the availability of classifiers, which can output a 

probability, would be extremely useful in most applications. Unfortunately, traditional SVM, 

as just described, provide only a distance to a hyperplane, in the form reported in equation 
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(5). Their basic version has therefore to be extended to associate a probability to the outputs 

of their classification [14,15].One possible solution consists of reformulating the SVM output 

in terms of a probability with the Bayes rule according to the formula: 

                

                  𝑃(𝑦 = 1|𝐷) =
𝑝(𝐷|𝑦=1)𝑃(𝑦=1)

∑ 𝑝(𝐷|𝑦=𝑖)𝑃(𝑦=𝑖)𝑖=−1,1
                         (6) 

 

In equation (6) D are the data and y indicates the label of one of the classes. P(y=1) is 

the prior probability and p(D|y=1) is the likelihood. Therefore, to convert the outputs of 

traditional SVM to probabilities, two quantities have to be determined: the prior probability 

and the likelihood. In many applications, the natural choice of the prior probability is the 

percentage of examples seen, up to a certain point in time in the experiments or observations, 

for the class to which the SVM labels the new example. The most challenging aspect of 

relation (6) resides in the evaluation of the likelihood. If a solid and reliable estimate of the 

likelihood is not viable for any reason, theoretical investigations and practical considerations 

have shown that one advantageous alternative consists of remapping the distance to the 

hyperplane to a probability by using a sigmoid function [14,15]: 

 

                       𝑃(𝑦 = 1|𝑑) =
1

1+𝑒𝑥𝑝(𝐴𝑑+𝐵)
                   (7) 

 

In equation (7) A and B are two fitting parameters, whereas d is the distance of the 

examples to the SVM hyperplane. Equation (7) therefore allows converting directly the 

distance to the hyperplane, provided by traditional SVM, into a probability. This conversion 

takes place after the training; the distances of the examples in the training set are used to fit 

the parameters of the sigmoid (7). The sigmoid is constrained to be centred on the 

hyperplane, because points at distance zero from it have equal probability of belonging to any 

of the two classes. To obtain the points to be fitted with symbolic regression (see next Section 

4), it is sufficient to select the most appropriate probability threshold (typically the one with 

better performance in terms of success rate).  The points at that level of probability are the 

inputs to the fitting part of the procedure. This solution of fitting a sigmoid is the one used in 

the first real life example described in Section 8 of the paper. 
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4 Symbolic Regression via Genetic Programming for physics fidelity  

As mentioned in the first Section, this paper describes a technique to present the results 

of machine learning tools in a mathematical form describing realistically the actual 

phenomena to be studied. In the case 

of classification with SVM, this task 

consists of representing the 

hypersurface separating the classes in 

a more realistic way than the sum of 

hundreds of terms as in (5) or a series 

of points at the same probability (in 

the case of probabilistic SVM). To 

this end, the main tool used is 

Symbolic regression via Genetic 

Programming. The methods 

developed on the one hand allow 

identifying the most appropriate 

mathematical expression for the 

hypersurface without “a priori” 

hypotheses. In this way therefore the 

potential of SVM is fully exploited 

and no unnecessary restrictions are 

imposed on the form of the solutions. 

On the other hand, the complexity of 

the obtained solutions can be 

controlled, allowing to find the best 

trade-off between complexity, 

success rate of classification and 

realism of the final models, 

depending on the objectives of the study.  

The method of SR via GP consists of testing various mathematical expressions to fit a 

given database. The main steps to perform such a task are reported in Figure 2. First of all, 

 

Figure2: The main steps of the proposed methodology to 

identify the best models without assumptions on their 

mathematical form. 

Training of the SVM 
with the available data

Populating the 
hypersurface on a 

suitable grid of points

Identification of the 
hypersurface equation 

with Symbolic 
Regression via Genetic 
Programming using the 

Geodesic Distance 
metrics

Double checking of the 
obtained equation 

using the SVM 

CART for features 
selection

1

2

4

3

5
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the various candidate formulas are expressed as trees, composed of functions and terminal 

nodes. A simple example of this form of knowledge representation is provided in Figure 3. 

The function nodes can be standard arithmetic operations and/or any mathematical functions, 

squashing terms as well as user-defined operators [16,17]. The function nodes included in the 

analysis performed in this paper are reported in Table I. This representation permits to steer 

the models towards physics fidelity by proper selecting the basis functions and/or the 

structure of the trees. Moreover expressing the formulas as trees allows an easy 

implementation of the next step, symbolic regression with Genetic Programming (GP). 

Genetic Programs are computational methods able to solve complex optimization problems 

[16,17]. They have been inspired by the genetic processes of living organisms. They work 

with a population of individuals, e.g mathematical expressions in our case. Each individual 

represents a possible solution, a potential boundary equation in our case. An appropriate 

fitness function (FF) is selected to measure how good an individual is with respect to the 

database. A higher probability to have descendants is assigned to those individuals with better 

FF. Therefore, the better the 

adaptation (the value of the FF) 

of an individual to a problem, 

the higher is the probability that 

its genes are passed to its 

descendants.  

In more detail, the first 

step of the method is the 

generation of the initial 

population of formulas for the 

boundary between two classes; 

then the algorithm assess the quality of each element of the population by evaluating its 

performance with the metric expressed by the FF. In the following step, as with most 

evolutionary algorithms, genetic operators (Reproduction, Crossover and Mutation) are 

applied to individuals that are probabilistically selected on the basis of the FF, in order to 

generate the new population. This means that better individuals are more likely to have more 

children than inferior individuals. When a stable and acceptable solution, in terms of 

complexity, is found or some other stopping condition is met (e.g., a maximum number of 

generations or acceptable error limits are reached), the algorithm provides the solution with 

best performance in terms of the FF.  

 

Figure 3: An example of syntax tree structure for the function 

2R + (S/R
2
). The function operator nodes (green) and the 

variable or constant nodes (red) are reported.  
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The fitness function is a crucial element of the genetic programming approach and it can 

be implemented in many ways. To derive the results presented in this paper, the AIC criterion 

(Akaike Information Criterion) has been adopted [18] for the FF. The classic form of the AIC 

indicator is: 

 

        (8) 

 

In equation (8), RMSE is the Root Mean Square Error between the data and the model 

predictions,  is the number of nodes used for the model and  the number of examples 

provided, i.e. the number of entries in the database (DB). The FF parameterized above allows 

considering the goodness of the models, thanks to the RMSE, and at the same time their 

complexity is penalised by the dependence on the number of nodes. The AIC, as the other 

indicators used in this work, are to be minimised: the lower the FF the better the model.  

To assess the quality of the final models, the well-known criteria of BIC (Bayesian 

Information Criterion) and Kullback-Leibler (KLD) divergence have been used. The BIC 

criterion is defined as [18]: 

 

                         (9)   

 

where  are the residuals,  their variance and the others symbols 

are defined in analogy with the AIC expression. Again the better the model, the lower its 

BIC. A more sophisticated form of both the AIC and BIC indicators, to take into account the 

error bars of the measurements using the formalism of the GD, is introduced in the next 

TableI: Types of function nodes included in the symbolic regression used to derive the 

results presented in this paper, xi and xj are the generic independent variables.  

Function class List 

Arithmetic c (constants),+,-,*,/ 

Exponential exp(xi),log(xi),power(xi, xj), power(xi,c) 

Squashing logistic(xi),step(xi),sign(xi),gauss(xi),tanh(xi), erf(xi),erfc(xi) 

Trigonometric sine, cosine, hyperbolic sine, hyperbolic cosine 
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section. It is worth mentioning that the two indicators, as expressed by equation (8) and (9) or 

in their more sophisticated version, can be used interchangeably; one in the fitness function 

and one to check the final results.  

The aim of the KLD is to quantify the difference between the computed probability 

distribution functions, in other words to quantify the information lost when  is 

used to approximate  [18]. The KLD is defined as: 

 

   (10) 

 

Where the symbols are defined as above. The Kullback Leibler Divergence assumes 

positive values and is zero only when the two probability distribution functions (pdfs), p and 

q, are exactly the same. In our application p is the pdf of the data, considered the reference, 

and q the pdf of the model estimates. Therefore the smaller the KLD is, the better the model 

approximates the data, i.e. the less information is lost by representing the data with the 

model. A detailed overview of SR via GP for scientific applications is provided in [19]. 

 

 

5 Geodesic distance on Gaussian manifolds to include the effects of the error bars  

In this section the geodesic distance on probabilistic manifolds is introduced in 

subsection 5.1. The use of the geodesic distance in the SR is then detailed in subsection 5.2.  

 

5.1 Geodesic Distance  

As seen in the previous section, the goal of SR via GP is to extract the most appropriate 

formulas to describe the available data. To achieve this, typically a quantity somehow 

proportional to the sum-of-squares of the distances between the data and the model 

predictions is used in the FF (the RMSE in equation 8 and the variance in equation 9). In this 

way, SR is implicitly adopting the Euclidean distance to calculate the (dis)similarity between 

data points and predictions. However the Euclidean distance has a precise geometrical 

meaning but implicitly requires considering all data as single infinitely precise values. This 

assumption can be appropriate in other applications but it is obviously not the case in the 

natural sciences, since all the measurements typically present an error bar. An alternative idea 
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is to use a new distance between data, which would take into account the measurement 

uncertainties. The additional information provided by this distance renders the final results 

more robust.  

The idea, behind the approach proposed in this paper, consists of considering the 

measurements not as points, but as Gaussian distributions. This is a valid assumption in many 

scientific applications, because the measurements are affected by a wide range of noise 

sources, which from a statistical point of view can be considered random variables.  Since the 

various noises are also typically independent and additive, they can be expected to lead to 

measurements with a global Gaussian distribution around the most probable value, the actual 

value of the measured quantity. Each measurement can therefore be modelled as a probability 

density function (pdf) of the Gaussian type, determined by its mean μ and its standard 

deviation σ: 

 

                                                   (11) 

 

Modelling measurements not as punctual values, but as Gaussian distributions, 

requires defining a distance between Gaussians. The most appropriate definition of distance 

between Gaussian distributions is the geodesic distance (GD), on the probabilistic manifold 

containing the data, which can be calculated using the Fischer-Rao metric [20]. For two 

univariate Gaussian distributions  and , parameterised by their 

means and standard deviations , the geodesic distance GD is given by: 

 

   (12) 

 

The meaning of GD can be appreciated by inspecting Figure 4, which reports the 

distance between two couples of Gaussian distributions. The distance between the means of 

the members of the two couples is the same. On the other hand, the Gaussian pdfs of one 

couple have a standard deviation an order of magnitude higher the other. The distance 

between the pdfs with higher standard deviation is therefore significantly lower than the one 

of the more concentrated pdfs, which is intuitively and conceptually correct since they 

overlap much more.  This property of the GD increases the robustness of the results and 
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reduces the risk of overfitting, as verified with a series of numerical tests (see also next 

subsection).  

5.2 Use of Geodesic Distance in Symbolic regression  

To take into account the measurement errors in a statistically sound way the last step 

required consists of inserting the GD into the SR. To this end, a good solution has been 

obtained by replacing the RMSE and variance with the GD in the AIC and BIC criteria, 

according to the following formulas: 

 

                                                                                      (13) 

 

BIC= n ln(∑i GDi) + k ln(n)     (14) 

 

where the symbols have the same meaning as in formulas (8) and (9) and the index i 

runs over the entries of the database. It is worth pointing out that this idea of inserting the GD 

in the FF of the SR is another original development presented in this paper.  

Since in the genetic programme, implementing symbolic regression, the GD is to be 

calculated as the distance between the experimental values and the estimates of the model, 

the Gaussian parameters  and  must be properly chosen. The typical assumption is to take 

the measured value as the , assuming that the average value is the most likely measurement. 

kGDAIC
i i 2

 
Figure 4. Examples to illustrate how the GD determines the distance between two 

Gaussians. The two couples of pdf in the figure have the same mean but different . The 

geodesic distance between the two with higher  is much smaller. GD indicates the geodesic 

distance and <> the Euclidean distance.  
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For the standard deviation, a reasonable assumption is to adopt the value of the error bars in 

the experimental points.  

With regard to the use of the GD in the AIC and BIC criteria, it should be emphasized 

that the GD is a statistically sound way to calculate the minimum distance between Gaussian 

pdfs. In practice, it has been tested on hundreds of thousands of models that the SR using GD 

is practically never outperformed by the SR using the RMSE or the variance. Moreover, the 

GD is more robust against outliers. It is indeed a well know statistical fact that the RMSE and 

variance are not a very robust indicators and are particularly vulnerable to outliers. As an 

example of these tests, the following equations have been used to generate synthetic data:  

 

𝑓1 = cos(𝑥1 ∙ 𝑥2)+ sin𝑥1
0.5 

𝑓2 = cos (
𝑥1
𝑥2
)+ 2𝑥3 ∙ {1 [1 + 𝑒𝑥𝑝(−0.8 ∙ 𝑥2)]⁄ } 

𝑓4 = 𝑥1
0.8 +

{1 [1 + 𝑒𝑥𝑝(−0.6 ∙ 𝑥2)]⁄ }

𝑥3
 

𝑓5 = 𝑥1 ∙ 𝑥2 ∙ 𝑒𝑥𝑝(−𝑥3)+ 2𝑥3 

The range of variations of the independent variables, for the examples reported in the 

following, is: 

𝑥1 = 0.015…3.9 

𝑥2 = 0.044…1.97 

𝑥3 = 0.268…2.178 

 

Two different types of noise have been implemented: Gaussian noise of zero mean 

and standard deviation equal to a fixed percentage of the mean value of the functions and a 

noise with outliers. The distribution of the outliers has been modelled with a second Gaussian 

with a mean different from zero. The weight of this second Gaussian modelling the outliers 

can be selected. In general, for various databases and a number of outliers ranging up to 50% 

of the entries, SR with the GD outperforms systematically the version using the RMSE. SR 

with GD manages always to approximate the generating functions not worse than the version 

with RMSE and it provides better results in about 50%of the cases.  
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6 Combining SVM and Symbolic Regression for Boundary Equations 

This Section describes in detail the combination of SVM technology with SR via GP 

to obtain the equations of the boundary between classes in a form appropriate for scientific 

investigations. Subsection 5.1 introduces the proposed way to find points on the hypersurface 

identified by the SVM. Subsection 5.2 describes the use of symbolic regression for the 

derivation of the actual formula of the boundary between the classes.  

 

6.1How to find points on the SVM hypersurface 

In order to interpret the results produced by the SVM, the first step consists of 

determining a sufficient number of points on the hypersurface separating the two classes. 

These points can be then given as inputs to the SR to obtain a more manageable equation for 

the hypersurface. In the case of probabilistic SVM, obtaining the points on the boundary is 

technically very simple. The main decision to be taken is the choice of the most appropriate 

value for the probability threshold to separate the classes; this can be achieved on the basis of 

the success rate and the objectives of the classification. Obtaining the hypersurface points in 

the case of a traditional SVM is a bit more involved and requires a specific procedure 

described in the next part of this subsection.  A mesh is built first, with resolution equal or 

better than the error bars of the measurements used as inputs to the SVM. The limits of the 

domain is defined by the ranges of variables; therefore, if the problem presents n dimensions 

and m grid points are generated for each dimension, the grid will consist of m
n
 grid points. 

 

Figure 5: SVM hypersurface points for synthetic, linearly separable data set. For illustrative purposes the 

distance between the points and the hypersurface has been exaggerated. The blue squares and the green 

circles represent the points identified as belonging to the hypersurface separating the two classes.  
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Obviously, more grid points and a better refined mesh lead to more accurate results; 

therefore, the total number of grid points can be set based on computational limitations. On 

the other hand, there are at least two criteria for selecting the number of intervals for different 

directions more efficiently. The first one consists of allocating more intervals along the 

direction of stronger curvature. The second, and more useful strategy, consists of allocating a 

higher number of intervals in the direction of the dependent variable, to make sure that the 

points selected for the hyper-surface are close enough to the real hyper-plane. 

After building the grid, the algorithm starts selecting the SVs on the positive side of 

the hypersurface and moves towards the SVs on the other side, one point on the mesh at the 

time. At each step, the distance to the hypersurface is computed using the already trained 

SVM. If the distance remains positive, the process is repeated since the new point remains on 

the same side of the hypersurface. When the distance of a new point changes sign, the two 

points with different signs are considered points on the hypersurface. This assumption is 

more than reasonable because, by construction of the mesh, these points, for which the 

distance changes sign, are within a distance from the hypersurface equal or smaller than the 

error bar of the features (typically measurements). Therefore, for all practical purposes in the 

natural sciences, the points found as previously described are sufficiently close to the 

hypersurface to be considered on it. This way to obtain SVM hypersurface points for 

synthetic data is shown pictorially in Figure 5. The support vectors on either side of the 

hypersurface are given a different colour and the line connecting the two sides of the 

hypersurface is drawn.  

It is good practice to repeat the process also starting from the other side of the 

hypersurface, in order to avoid possible bias in the selection of the points on the 

hypersurface. An adequate number of points is typically a multiple of the support vectors. 

One order of magnitudes more points than SVs is a safe choice; attention can also be usefully 

paid to the fact that the density of the points reflects the density of the SVs in the feature 

space. In any case, it is easy to increase the number of points up to the number necessary. The 

main limitation here is mainly computational time not any principle difficulty.  

 

6.2 Deriving the equation of the hypersurface with symbolic regression 

Once it has been verified that sufficient points close to the hypersurface have been 

found, the equation of the hypersurface itself can be estimated using SR via GP. Indeed the 

points identified with the procedure described in the previous subsection are on the boundary 
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between the two classes. Therefore the equation of that surface is the equation of the 

boundary between the two classes.  

An efficient way of retrieving the equation of the hypersurface from the points 

consists of regressing them with SR, using the quantity with a largest dynamic range as the 

independent variable. The quality of the obtained equation can be assessed first with the 

statistical indicators described in Section 4. Moreover, an additional and more conclusive test 

can be performed, exploiting again the trained SVM. In this case, it is indeed possible to 

generate a series of points from the candidate formula and insert them in the SVM. If the 

distance from these points and the hypersurface is sufficiently close to zero, it can be 

confirmed that indeed the equation is a good representation of the boundary between the two 

classes. As a criterion of closeness to the boundary, typically the value of the error bars of the 

measurements can be taken: if the points generated by the equation are at a distance from the 

hypersurface smaller than the error bars, for all practical purposes the obtained equation can 

be considered a sufficient approximation of the boundary between the two classes.   

To take into account the error bars of the measurements, symbolic regression is run 

with the FF including the geodesic distance, according to equations (13) and (14). 

 

 

 

7 Numerical tests of SR via GP for boundary equations 

The procedure described in the previous section has been subjected to a systematic 

series of numerical tests. The results have always been positive and the proposed technique 

has always allowed recovering the original equations describing the boundary between the 

two classes. In the following, the detailed procedures for these numerical tests are described 

and only some results presented. More numerical tests are fully documented in Appendix A. 

For clarity’s sake, mainly low dimensional cases are described in the following, but it has 

been verified that the approach is equally valid for high dimensional cases (up to 8 or 9 

independent variables), provided of course sufficient computational resources are available.  

In the next subsection the overall procedure to generate synthetic data is reviewed. 

Subsection 7.2 presents some results relevant to scientific applications and Subsection 7.3 

provides some information about  the computational requirements to implement  the proposed 

techniques.  
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7.1 Overall procedure for producing synthetic data 

The main technique to produce synthetic data and to test the methodology  consists of 

the following 6 steps:  

1- Definition of an initial function for the boundary 

2- Generating  samples of the two classes from the function 

3- Training the SVM for classification 

4- Building an appropriate mesh on the domain 

5- Determining a sufficient number of points on the hyper-surface identified 

by the SVM 

6- Deploying symbolic regression to identify the equation of the hypersurface 

from the points previously obtained 

 

In the following more details about this procedure are provided with the discussion 

particularised for the case of binary classification and traditional SVM. 

In the first step, an initial function as a combination of arithmetic, trigonometric, and 

exponential operators of independent variables xi is defined. In general, this function can be 

written as follows: 

y = f ( x1 , x2 … )  a1 < x1 < b1 a2 < x2 < b2    etc 

 

In the second step, an adequate number of random points in the valid range of the 

variables are generated. Then, a positive offset and some random values are added to the y for 

half of the data to produce the first class; a negative offset and some random values are added 

to y for the other half to produce the second class. The equations for producing the two 

classes can be summarized as follow: 

 

y1 = y + noise of standard deviation  + offset  

y2 = y + noise of standard deviation  - offset 

 

where y1 and y2 are the values for the first and second class, respectively. 

 

In the third step, an SVM with "Gaussian Radial Basis Function kernel" is trained. 

The method used to find the separating hyperplane is "Sequential Minimal Optimization". 

Depending on the level of random noise, different success rates can be obtained. For the 
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numerical tests presented in the following, the success rate in the classification of the SVM is 

always very close to 100%.  

 

Table II: General GP parameters for the calculation of the boundary equations 

GP Parameters Value(s) 

Population size 500 

Selection method Ranking and Tournament 

Fitness function A.I.C. 

Constant range Integers between -10 and 10 

Maximum depth of trees 5 

Genetic operators 

(Probability) 

Crossover (45 %) 

Mutation (45 %) 

Reproduction (10 %) 

 

In the fourth step, a mesh on the domain has to be built in order to identify points 

sufficiently close to the hypersurface.  

The fifth step consists of the identification of the points sufficiently close to the 

hypersurface, with the algorithm described in Section 6.  

In the sixth step, the selected hypersurface points are used as inputs to the symbolic 

regression code, to find the appropriate formula for describing the hypersurface. The settings 

adopted to run the GP implementing the SR are reported in Table II. 

In Appendix A, various examples are provided to illustrate the applicability and 

capability of the presented methodology for systems of increasing dimensionality and 

complexity. In next Subsection 7.2, a case at relatively high dimensionality and level of noise 

is discussed in detail, to illustrate the potential and main aspects of the procedure in 

conditions relevant to real life applications.  

 

7.2 Effect of noise and high dimensional data  

As mentioned, there is no conceptual difficulty in applying the proposed methodology 

to higher dimensional problems. Of course, the computational resources required increase 

exponentially with the number of independent variables (the so called curse of 

dimensionality). Also the quality of the measurements must be adequate. But these are 

problems related to the available computational power and/or the quality of the data; in no 
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way they affect the applicability of the proposed technique. Indeed it has been verified with a 

series of systematic tests that, with adequate level of computer time, problems in higher 

dimensions can be solved. As an example, a quite demanding example is reported in the 

following, for an equation involving 7 variables. The equation used to generate the data is: 

 

y =  x1  x2  + sin(x3) + cos(x4) -  x5 / x6 

 

It is worth mentioning that in many applications in physic and chemistry one has to 

deal with problem of a dimensionality not higher than 7. A total of 4000 points, 2000 per 

class, have been generated starting from the previous equation; more details about the 

synthetic data are provided in Table III. After generating the grid, training the SVM and 

finding the hyper-surface points, SR via GP Genetic has been applied and the following 

expression for the hyper-surface has been found: 

 

 y = 0.9 ( x1  x2  + sin(x3) + cos(x4)  -  x5 / x6  ) 

 

The equation identified by the method is practically the original one. The slightly 

different multiplicative factor in front is not to be ascribed to a weakness of the method but to 

the dataset provided as input, since the accuracies of both the SVM and the mathematical 

equation obtained are equal to 100%. Again, this example proves that, provided the surface of 

the boundary between the cases is sufficiently regular, the dimensionality is not an 

insurmountable issue provided enough computational power is available. 

 

Table III: The function used to generate the data and the range of variables.  

Steps: Values: 

Initial Function y =  x1  x2  + sin(x3) + cos(x4) -  x5 / x6 

Ranges of Variables 

0 < x1 < 2      &     1.5 < x2 < 3 

-2 < x3 < 4     &     0 < x4 < 6 

4 < x5 < 12     &     1 < x6 < 4 

Number of Nodes for Each Class 2000 

 

The numerical examples presented previously and in Appendix A include cases where 

the success rate of the SVM classification is close to 100%. This is an interesting situation 
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from a scientific point of view; the SVM has learned almost perfectly the boundaries between 

the classes and therefore the main issue remaining consists of formulating the equations of 

these boundaries in a mathematical form appropriate for understanding the phenomena. If the 

data are such that the success rate of classification of the SVM is lower, the proposed method 

works well anyway, since its objective is the reformulation of the boundary equation found 

by the SVM. The success rate required for the SVM and the interpretation of the results is an 

issue, which depends on the application and the objective of the analysis, but does not impact 

on the validity of the developed technique. It is worth also emphasising that the task of SR in 

this context is not to improve the success rate of the SVM classification. The real goal 

consists of representing the equations of the boundary between the classes in more realistic 

and interpretable mathematical formulations, so that they can be used by the scientists for 

actual understanding (for example for comparison with theories and first principle models). 

To achieve this, a reasonable degradation in the success rate of classification is tolerable and 

typically not a major issue. In any case, with an appropriate implementation of the proposed 

method, typically the performance of SVM can be preserved by the final equations obtained 

with symbolic regression. 

It is worth also mentioning that, in all the cases tested (see also Appendix A), even if 

the final models of the boundaries obtained by the SVM allow classifying with almost 100% 

accuracy, they have nothing to do with the equations generating the data. Indeed, whatever 

the actual formula generating the data, the model of the SVM is always of the form of 

equation (5). Therefore in many scientific applications, whose objective consist of 

understanding the physics or chemistry behind the boundaries and not simply achieving high 

classification rates, the SVM are not of much use except when combined with SR, as 

proposed in this work. 

 

7.3 Computational requirements 

As an indication about the computational resources required for the application of the 

proposed technique, the run time for the example of 5 variables has been calculated. Using a 

computer with 8 cores and 24 gigabyte of RAM (an Intel Xeon E5520, 2.27 GHz, 2 

processors), with Windows 64 bit operating system, finding the hyper-surface points takes 3 

hours and the SR calculation 48 hours. The number of points on the grid is 16
4
 * 51; 16 for 

the four independent variables and 51 for the dependent one. Therefore the calculation of the 

grid is not a major issue since the step requiring by far most of the computational resources is 

the SR. On the other hand, it should be mentioned that the codes used to obtain these results 
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had not been parallelized. In this respect, the run time to train the SVM is not a major issue, 

since it is typically of the order of minutes and therefore negligible compared to the other 

steps of the procedure. Therefore, since both the building of the grid and the Genetic 

Programs can be easily parallelized, reduction of the computational resources of orders of 

magnitude could be easily achievable.  

 

 

8 Real world examples   

To show the potential of the proposed methodology to attack real life 

problems, in this section its application to some experimental databases is reported. They 

have been collected in the framework of various disciplines. The first example is a 

typical case of a major issue in Big Physics experiments, namely Magnetic Confinement 

Nuclear Fusion (MCNF); the determination of the boundary between the safe and 

disruptive regions of the operational space. For this case all the various aspects of the 

proposed method are described, for the case of probabilistic SVM. Since the signals 

analysed are time series, particularl emphasis has also been given to the fact that this 

problem illustrates the potential of the approach for cases which do not satisfy the i.i.d. 

hypothesis. The other two consist of important examples of remote sensing in the field of 

atmospheric physics and for brevity sake only the main aspects of the technique are 

covered. The term remote sensing indicates the set of techniques aimed at obtaining 

information about objects without being in contact with them. These techniques can be 

used to monitor various aspects of the atmosphere and also the effects of human 

activities on the environment. One example is a case of imagery applied to the 

assessment of the health of vegetation. The other involves the analysis of laser 

backscattering signals for the detection of forests fires. For these two examples of 

application to remote sensing, the traditional SVM method has been implemented. The 

excellent results obtained in these real life applications prove the value and the flexibility 

of the proposed methodology. 
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8.1 The identification of the boundary between disruptive and safe regions of the operational 

space in Tokamaks. 

In the last years, 

collapses and their causes 

have become not only a 

major field of research but 

have also captured the 

attention of the mainstream 

media. From market 

crashes to earthquakes and 

structural failures in civil 

engineering, increasing 

attention is devoted to 

surprising and typically 

unexpected abrupt changes 

in systems, leading to 

catastrophic consequences. 

The statistical investigation 

of these phenomena, 

particularly for robust 

prediction, requires the 

development of new 

mathematical tools [21]. 

The systematic use of 

machine learning methods 

for this purpose is 

continuously increasing.  

In Tokamaks, 

disruptions remain the most 

serious cause of collapse. Disruptions are sudden losses of confinement, leading to the abrupt 

quenching of the plasma with potential major risks for the structural integrity of the devices 

[1]. Since the potential hazard posed by disruptions increases with dimensions, the percent of 

disruptions allowed in the next generation of devices is quite limited. But disruptions are also 

a serious issue for the present largest devices. For example, they are one of the main 

 
 

Figure 6. Top: plot of the safe and disruptive regions of the 

operational space in JET with the ILW. The colour code 

represents the posterior probability of the classifier. The 

black circles are all the non-disruptive shots (10 random 

time slices for each shot). The red squares are the data of 

the disruptive shots at the time slice when the predictor 

triggers the alarm. The blue crosses are the false alarms. 

Bottom: zoom of the most relevant boundary region. 



27 

 

impediments to systematic high current operation in JET [1], particularly now that the new 

combination of materials, Be in the main chamber and W in the divertor, renders the first wall 

less forgiving than in the past.  

Given their potential impact on the integrity of the devices, disruptions are a subject 

of extensive research at present. Various methods of mitigation are being investigated, 

particularly massive gas injection and shatter pellets [22]. The main objective of these 

techniques consists of limiting the energy conducted directly to the wall by converting the 

highest percentage of it into radiation. On the other hand, these conversion methods have not 

only to be effective but also are required not to pose themselves other hazards to the 

machines, such as excessive increases of the eddy currents due to very fast current quenches. 

To reduce the strain on the devices also avoidance tactics are being considered, to undertake 

remedial actions and prevent the occurrence of disruptions. This is particularly important in 

the perspective of the final reactor, since already in the demonstrative fusion reactor 

unmitigated disruptions will have to be almost completely avoided and the number of 

mitigated ones minimised [23]. 

Of course, reliable prediction tools are a prerequisite to any mitigation or avoidance 

strategy. Unfortunately, the theoretical understanding of the causes of disruptions is not 

sufficient to guarantee reliable predictions. As a consequence, existing first principle models 

are not effective in predicting disruptions on a routine basis. Therefore, in the last decades, a 

lot of efforts have been devoted to developing empirical models, capable of launching an 

alarm when a disruption is approaching. Various generations of predictors based on machine 

learning tools have also been applied to JET data in the last decades. Many alternatives have 

been explored, ranging from Neural Networks to Self Organizing Maps and fuzzy decision 

trees [5-8]. Unfortunately all these different solutions are practically black boxes, who can 

help in practice but have not so far contribute much to the understanding of the physics 

behind disruptions As a results still today the major prediction tool deployed on JET is the 

Locked Mode Predictor based on a Threshold criterion (LMPT), which triggers mitigation 

actions when the signal of the locked mode amplitude reaches a certain threshold. This 

solution results in so called “ephemeral predictors”, i.e. systems which age very quickly and 

require frequent adjustments to remain effective. Indeed, in the case of LMPT, the threshold 

has to be adjusted quite frequently and certainly more than once per experimental campaign, 

not always at an optimal level [24].  



28 

 

To show the potential of the method proposed in this paper to find the boundary 

between the safe and disruptive regions of the operational space, a large database of JET, 

including thousands of experiments of the largest device in the world, has been analysed (see 

Appendix B). A systematic analysis with the CART approach has shown that, among the 

global quantities available in real time on JET, the locked mode and internal inductance 

signals are among the most relevant for disruption prediction. This confirms various manual 

studies performed in the past that have shown the importance of these two quantities in 

predicting the occurrence of disruptions not only on JET but also on other devices. Therefore, 

also for continuity with the past treatments, they are the two features adopted in this pilot 

study. The posterior probabilities have then been calculated as indicated in Section 3. The 

adaptive training, described in detail in Appendix C, has been performed for a whole range of 

threshold probabilities. It turns out that the probability value, which provides the best 

performance in terms of success rate, is 60%. Therefore the model trained with this threshold 

is the one whose results have been reported in the paper. It is worth mentioning that for an 

interval of 10% around this 60% value, the models give all almost exactly the same results. 

So the choice of the threshold is not too critical for the purpose of the present paper, the 

identification of a manageable formula to describe the boundary between safe and disruptive 

regions of the operational space. The results of the systematic tests performed to determine 

the most appropriate threshold probability are reported in Appendix D.  

The curve level plots of the posterior probability obtained are reported in Figure 6. The 

curve in light blue represents the equation derived with SR via GP (see later). The safe and 

disruptive regions are well separated in the plane of the locked mode and internal inductance. 

The clear separation is confirmed by the results in terms of success rate and false alarms 

Table IV. The results reported in the row Training refer to the ones obtained by the adaptive 

training. The ones in the row  called Test have been obtained by reapplying the final model obtained 

at the end of the last campaign back to the entire set of data. The terms Tardy alarms, Missed 

alarms and Early alarms are defined in Appendix D. 

Model Succes Rate Tardy Early Missed False 
Missed + 

Tardy  

TRAINING 
96.2 % 

(180/186) 

2.7 % 

(5/186) 

0.5 % 

(1/186) 

0.5 % 

(1/186) 

3.9 % 

(40/1016) 

3.2 % 

(6/186) 

TEST 
97.9 % 

(183/187) 

2.1 % 

(4/187) 

 0 % 

(0/187) 

 0 % 

(0/187) 

2.8 % 

(29/1020) 

2.1 % 

(4/187) 
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reported in Table IV, from which it is easy to appreciate the extremely good performance of 

the probabilistic SVM.  

The methodology, described in the Section on Symbolic Regression, has then been 

applied to the model obtained at the end of the adaptive training. The following model has 

been retained as a good compromise between complexity and accuracy: 

 

𝑦(𝑥) = 𝑎0exp⁡(𝑎1𝑥
𝑎2)  (15) 

 

where y is the locked mode expressed in 10
-4

 Tesla, x the internal inductance and the 

coefficients assume the values:  

 

𝑎0 = ⁡5.4128 ± 0.0031; 

     ⁡⁡𝑎1 = −0.11614 ± 0.00085;               (16) 

⁡⁡𝑎2 = ⁡2.21 ± 0.011; 

 

 

The performance of the previous equation, in terms of the usual figures of merit 

adopted to qualify predictors, reproduce very well the one of the original model as can be 

appreciated from Table V.  

 

Comparing Tables IV 

with Table V, it is 

possible to see how the 

obtained equation 

reproduces almost exactly 

the performance of the 

original model derived by 

training the probabilistic 

SVM. In graphical terms, 

equation (15) is shown in light blue in Figure 6; from the plots of this figure, it easy to 

appreciate how the analytical formula obtained with the proposed methodology follows 

almost exactly the 60 % curve level of the probabilistic SVM. Therefore, reformulating the 

equation of the boundary, in a more interpretable way than the output of the SVM, does not 

Table V: The figures of merit obtained using equation (15). The terms 

Tardy alarms, Missed alarms and Early alarms are defined in 

Appendix D. 

 

Probability 

Thershold 

Success 

rate  
Tardy Early Missed False 

60 
97.9 % 

(183/187) 

2.1 % 

(4/187) 

0 % 

(0/187) 

0 % 

(0/187) 

2.8 % 

(29/1020) 
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imply any significant loss of information in this case. In addition to the good performance, it 

must be appreciated how equation (15) represents a major simplification compared to the sum 

of tens of Gaussians centred on the support vectors, the model of the original SVM training. 

From the point of view of the physics interpretation, equation (15) shows how the critical 

amplitude of the locked mode depends on the internal inductance and therefore on the current 

profile. In particular, more peaked profile can tolerate a higher level of the locked mode 

before disrupting. This evidence complements other treatments, such as the one proposed in 

[25], where it is argued that the amplitude of the locked mode is the important quantity to 

interpret the boundary between the safe and disruptive regions of the operational space . The 

results obtained with the proposed approach , independently from the details of the physics 

involved, have also important practical implications because it is clear from equation (15), 

and the experimental evidence of Figure 6, that a simple threshold in the locked mode, the 

criterion traditionally used on JET and other devices to launch alarms, is not a the best choice 

to maximize the performance of predictors.  

 

8.2 Botany: “wilt” database 

For applying our algorithm to real-world remote sensing problems, we selected 

first a database related to botany named “wilt”. This database was prepared by Brian 

Johnson from the Institute of Global Environmental strategies in Japan in 2013 and 

contains the results of a remote sensing study about detecting diseased trees with 

Qickbird imagery [26]. The data set consists of image segments, generated by 

segmenting the pansharpened pictures. The segments contain spectral information from 

the Quickbird multispectral image bands and texture information from the panchromatic 

(Pan) image band. In the following, the entries of this database are listed: 

Class: 'w' (diseased trees), 'n' (all other land cover)  

GLCM_Pan: GLCM mean texture (Pan band)  

Mean_G: Mean green value  

Mean_R: Mean red value  

Mean_NIR: Mean NIR value  

SD_Pan: Standard deviation (Pan band)  

This database contains 4339 samples: 74 of them related to diseased trees and the rest 

related to all other land cover. The new proposed methodology has been applied to this 
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database for finding the classification hyper-surface between the two mentioned classes. The 

entries have been classified first with the SVM (with the RBF kernel). The subsequent 

application of our technique to traditional SVM, grid plus SR, has allowed finding the 

following equation: 

 

Mean_G = 22.39 * Mean_R ^ 0.4705           (17) 

 

Train Accuracy: 99.4%    Test Accuracy: 99.5 %    

 

Since it presents a success of 99%, practically the same as the SVM, the derived 

equation (17) indicates that the important attributes for classifying this database are the Mean 

green values and the Mean red values. Figure 7 reports the entries of the database projected 

on the plane of these two variables, together with the hyper-surface obtained with equation 

(17). 

 

Figure 7: Distribution of data in the “wilt” database. The red points are diseased trees and the blue points 

indicate all other types of land cover. The black line indicates the equation obtained for the hyper-

surface. 

 

It is also worth mentioning that, to obtain the same success rate, the SVM has to utilise 

1299 support vectors. Therefore the application of the proposed methodology results in a 

simplification of orders of magnitude in the complexity of the equation, without any 

significant loss in terms of classification accuracy. Moreover, the obtained formula is 
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susceptible of comparison with models and theoretical considerations, whereas the SVM 

model is practically intractable from this point of view.  

 

8.3 Remote sensing of the environment: detection of widespread smoke with LIDAR 

One of these remote sensing techniques, which is gaining increasing importance, is LIDAR 

an acronym of Light Detection And Ranging. Lidar originated in the early 1960s, shortly 

after the invention of the laser, and combines laser-focused imaging with radar's ability to 

calculate distances by measuring the time for a signal to return. Its first deployment was in 

meteorology and now it is popularly used as a technology to make high-resolution maps, with 

applications in geomatics, archaeology, geography, geology, geomorphology, seismology, 

forestry, remote sensing, atmospheric physics, laser altimetry and contour mapping. 

Wild fires have become a very serious problem in various parts of the world. The 

LIDAR technique has been successfully applied to the detection of the smoke plume emitted 

by wild fires, allowing the reliable survey of large areas [27- 32]. Recently, mobile compact 

systems have been successfully deployed in various environments. Up to now, the attention 

has been devoted to early detection of quite concentrated smoke plumes, characterising the 

first stage of fires, as soon as possible. The main operational approach consists of 

continuously monitoring the area to be surveyed with a suitable laser and, when a significant 

peak in the backscattered signal is detected, an alarm is triggered. In these applications, the 

backscattered signal presents strong peaks, which are detected with various techniques. In 

other applications, it would be interesting also to detect the non concentrated, widespread 

smoke, which can be the consequence of strong wind dispersion or non concentrated sources 

[33]. In this case, the signature of the presence of the smoke is not a strong peak in the 

detected power but an overall increase of large regions of the curve. Typical examples of 

backscattered signals for the alternatives of no smoke, strong smoke plume and widespread 

smoke are shown in Figure 8.  

https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Geomatics
https://en.wikipedia.org/wiki/Archaeology
https://en.wikipedia.org/wiki/Geography
https://en.wikipedia.org/wiki/Geology
https://en.wikipedia.org/wiki/Geomorphology
https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Forestry
https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Atmospheric_physics
https://en.wikipedia.org/wiki/Contour_map
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Figure 8 – Examples of LIDAR back scattered signals: a) Clear atmosphere (blue line) b) strong smoke 

plume (green line) c) widespread smoke (red line).  

 

Starting from the typical Lidar equation [27], it has been decided to fit the 

backscattered signal intensity with a mathematical expression of the form: 

 

 RK
R

K
P 22

1 2exp    (18) 

 

where K1 and K2 are constants and R is the range. The data of Figure 8 have been 

fitted with this formula. The results of the non –linear fit are:   

- In case of widespread smoke: 

 

𝑃 =
2.648 ∙ 10−1

𝑅2
∙ exp⁡(−1.259 ∙ 10−3 ∙ 𝑅) 

 (19) 

 

- Clear atmosphere: 

𝑃 =
1.734 ∙ 10−1

𝑅2
∙ exp⁡(−1.171 ∙ 10−3 ∙ 𝑅) 

 (20) 
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The results of the fit, equations (19) and (20), indicate quite clearly that the parameter 

K2 are very similar for both the case of widespread smoke and clear atmosphere. On the other 

hand, there is a clear difference, of the order of 25% in the constants K1. This is expected 

since K1 includes the effect of the coefficient , which indeed quantifies the backscattering 

properties of the atmosphere [27, 30]. 

Since the attempt to identify the presence of widespread smoke is a quite pioneering 

application of the LIDAR technique, it is important not only to be able to discriminate 

between the two situations but also to provide models for the interpretation of the physics. In 

particular, the identification of the boundary in the space of the parameters K1 and K2 for the 

two cases is considered an essential piece of information for comparison with theories. The 

proposed methodology has therefore been applied to a quite substantial database:  

 

Total number of data = 521 

number of non-smoke data = 312 

number of widespread smoke data = 209 

 

number of train data (~80%) = 431 

number of test data (~20%) = 90 

 

For the SVM, a radial basis functions kernel has been used. The best equation found 

is:  

K1 = 0.1083 * sin ( 15.61 * K2 ^ 2 ) + 0.1083 * cos ( 1.5941 * K2 ^ 0.264 )          (21) 

 

             Train Accuracy: 89.33 %          Test Accuracy: 91.11 % 

 

The equation of the boundary between clear atmosphere and widespread smoke, in the 

space of the parameters K1 and K2, is shown in Figure 9. 
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Figure 9 – Equation (21), describing the boundary between the boundary between the cases of clear 

atmosphere and widespread smoke, in the space of the parameters K1 and K2. 

 

To understand the importance of the results obtained, it should also be considered that 

the model of the SVM consists of 154 support vectors. Therefore the level of simplification 

obtained with equation (21) is substantial. Moreover, also in this case the formalism of the 

SVM provides an equation of the boundary between the two classes which has no relation 

with the relevant physics. 

 

 

9 Conclusions 

An original methodology has been devised to obtain the equation of the boundary 

between two classes, using an array of machine learning tools, including almost all the main 

machine learning techniques available. With the proposed approach, the power of machine 

learning tools is combined with the realism, physics fidelity and interpretability of equations 

expressed in the usual formalism of typical scientific theories. In particular, the noise-based 

ensemble of CART trees has proved essential in identifying the most important features to 

include in the analysis in an efficient way, taking into account the problem of the noise from 

the first step of the treatment.  The choice of SVM ensures that their structural stability, their 
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capability to maximize the safety margins in the classification, is fully retained in the final 

result. On the other hand, symbolic regression via genetic programming allows achieving 

very good physics fidelity and finding a good trade-off between accuracy of the classification 

and complexity of the final equations of the boundary. Therefore the models obtained with 

the proposed methodology are able to better support fundamental scientific activities such as 

testing of mathematical theories, evaluation of confidence intervals, scaling, extrapolations 

and experimental design. It is also worth mentioning that “a priori” information can be 

exploited in order to steer the solutions towards mathematical expressions, which reflect the 

actual dynamics of the phenomena under study. This can be achieved for example by 

selecting properly the basis functions or by constraining the structure of the trees.  

Given the fact that the objectives of the approach are realism and interpretability, a 

reasonable reduction of the classification performance is not a major issue and can be 

tolerated. It is also true that symbolic regression via genetic programming can reproduce the 

accuracy of the classification by the SVM, provided a sufficiently high number of nodes is 

allowed in the final solution. Indeed, in all the tested numerical cases, no reduction of the 

classification performance has been found provided the necessary complexity of the SR tress 

has been implemented.  

It is also worth emphasizing one more time that the proposed procedure is fully 

coherent in the treatment of the error bars of the measurements, a very important aspect in the 

perspective of the application of the developed tools in scientific domains. Indeed from the 

the noise-based ensemble and the choice of the  in the RBS kernel of the SVM, to the use of 

the GD as the fitness function of the SR, the effect of the uncertainties in the measurements 

can be fully taken into account in all the steps of the procedure. Even the non-linear fitting, 

typically required after the mathematical form of the equations has been obtained with SR, 

can be performed using the GD. 

Another important aspect of the methodology is the adaptive training of the SVM. In 

may applications in the natural sciences the i.i.d. hypothesis is far from being satisfied and 

therefore traditional training approaches are conceptually unsatisfactory. The consequence of 

the violation of the i.i.d. assumption is typically the ephemeral character of the models.    

With the approach proposed in the paper, this problem is completely remedied and the 

evolution of the equations describing the boundary between the classes can be followed in 

detail.  
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The numerical tests shown have proved the effectiveness of the proposed technique to 

identify the real equation of the boundary between classes even in relatively high dimensions, 

provided the shape of the boundary is a sufficiently regular surface. Again, this seems to be 

fully adequate since, in the majority of the scientific applications, the boundaries between the 

various classes are quite regular functions. This has been confirmed by the application of the 

technique to experimental databases of different scientific disciplines.  

On the other hand, the method is susceptible of various improvements. First of all, the 

technique should be extended to other machine learning tools such a neural networks (the 

only major thread of machine learning not included in the present version of the 

methodology). More fundamentally, the approach is now limited to identifying the 

mathematical expressions of boundaries which can be expressed as functions. It is a topic of 

future investigations to apply the method to the investigation of more complex boundaries 

(for example multiply connected hypersurfaces). Moreover, the task of regression, and not 

only classification, should also be tackled [34]. Also applications to various aspects of 

tomography inversion are envisaged [35, 36]. Another important theoretical aspect is the 

extension of the approach to cases affected by different statistics of the noise (and not only 

the usual Gaussian). In this respect, advances in information geometry, with the formulation 

of geodesic distances valid for other noise statistics, are considered the right direction of 

future work. From the computational point of view, the heaviest step of the proposed 

methodology is SR via GP. It is clear that this part of the method is highly parallelizable; 

therefore much progress is expected in the reduction of running time by parallel 

implementation of SR via GP.  
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Appendix A Numerical Tests for SR via GP to obtain realistic boundary equations 

The procedure described in Section 6 has been subjected to a systematic series of 

numerical tests. A significant set of these tests is reported in this Appendix.   

  

A.1 Examples for two independent variables 

 

Example 1 

As a first test, a purely arithmetic function has been tested.  The function and ranges 

of the variables are: 

y = x1 + x2 - x1 × x2  -1 < x1 < 1 1 < x2 < 2 

 

After carrying out the six-step procedure described in Section 6, the following 

expression has been obtained:   

y = 1.011 ( x1 + x2 - x1 × x2 ) 

 

SR via GP converges on a final expression that is in excellent agreement with the 

initial function describing the boundary between the two classes. This is particularly true 

since such a good approximation has been obtained without the non-linear fitting, normally 

the last step of the SR method. 

 

Example 2 

As a second test, a more complex function comprising exponential, arithmetic, and 

power operators has been assumed for the boundary between the two classes. The function 

and ranges of the variables are: 

 

y = exp ( ( x1 × x2 ) 
0.5

 )  0 < x1 < 1 1 < x2 < 3 

 

After carrying out the six-step procedure in Section 6, the following expression has 

been obtained:   

y = 0.974 exp ( ( x1 × x2 ) 
0.5

 ) 

 

Again SR via GP converges on a final expression that is in excellent agreement with 

the initial function describing the boundary between the two classes, even without making 

recourse to the non-linear fitting step.  
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Example 3 

As the third test, a more complex function comprising trigonometric and arithmetic 

operators has been defined and 4% classification noise was added to the database. The 

function and ranges for the variables are: 

 

y= sin(x1) + x2         -3 < x1 <3      -2 < x2 <2 

 

After carrying out the six-step procedure in Section 6, the following expression has 

been obtained: 

 

y= 0.985 ( sin(x1) + x2 ) 

 

Again SR via GP converges on a final expression that is in excellent agreement with 

the initial function describing the boundary between the two classes, even without making 

recourse to the non-linear fitting step. Figure A1 presents the results of this example in 

pictorial form. 

 

 

Figure A1: Points and surfaces of example 3 with two independent variables. Green rectangles are points 

generated from the initial function, Cyan points are the points belonging to the first class, Magenta points 

are the points belonging to the second class, and the Yellow surface identifies the hyper-surface obtained 

with the SR via GP. 



43 

 

 

A.2 Examples for three independent variables 

Some examples considering equations with three independent variables are reported 

in this section.  

 

Example 1 

As a first test, a function comprising only arithmetic operators has been defined. The 

function and ranges for the variables are: 

 

Initial Defined Function:         y = x1 - x2 + x3 

 

Range of Variables:         1 < x1 < 2 3 < x2 < 5 0 < x3 < 1 

  

 

The final function obtained from the hypersurface points is:  

 

y = 1.002 ( x1 - x2 + x3 ) 

 

 

 

Example 2 

As a second test, a function comprising trigonometric and arithmetic operators has 

been defined. The function and ranges for the variables are: 

 

 Initial Defined Function:        y = x1 + sin ( x2 × x3 ) 

 

 Range of Variables:               1 < x1 < 2 3 < x2 < 5 0 < x3 < 1 

  

 

The final function obtained from the hypersurface points is:  

 

y= 0.98 ( x1 + sin ( x2 × x3 ) ) 

 

Again these results confirm the great potential of the approach. Almost exactly the 

original function can be obtained already at the stage of SR. With additional rounding off of 

the results or application of non linear fitting, exactly the original functions can easily be 

recovered.  
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A.3 Example for four independent variables 

In this subsection, we describe the results of the application of the SVM-GP 

methodology to a more complex and noisy database. A five-dimensional synthetic database 

has been generated with the characteristics described in Table AI. 

 

Table AI Settings for testing SVM-GP on a five-dimensional synthetic database 

  

Steps: Values: 

Initial Function y = sin( x1 + x2 ) - 0.5 x3 x4 

Ranges of Variables 
-1.5 < x1 < 1.5     &     -2 < x2 < 2 

0 < x3 < 2     &     2 < x4 < 4 

Number of Nodes for Each Class 2000 

Thickness of the data's bulk 3 

Offset 10% of y domain 

Classification Noise ~ 4% 

 

The procedure for finding the best sigma for the SVM has been applied and the best 

sigma for the classification is equal to 0.6. The final accuracies of classification for the train 

and test data are presented in Table AII. 

 

Table AII: The success rates of the SVM for the train and test data on the 

classification of the synthetic database with the best sigma that equals to 0.6 

Database Type: Classification Accuracy in Percent: 

Train Data 96.1337 

Test data 96.0422 

 

After generating the grid and finding the hyper-surface points, SR via GP has been 

applied and the following expression for the hyper-surface has been obtained: 

 

y = 0.9334 sin (0.9190 ( x1 + x2 ) ) - 0.5010 x3 x4 

 

The obtained equation is in good agreement with the initial function. The quality of 

this estimate can be confirmed by comparing the success rate of the SVM and of the equation 



45 

 

found by SR via GP. The classification success rate of the equation found with SR is reported 

in Table AIII (to be compared with the results reported in Table AII).  

 

 

Table AIII : The success rates obtained for the train and test data for the 

classification of the synthetic database with the expression obtained via SR 

Database Type: Classification Accuracy in Percent: 

Train Data 96.1060 

Test data 96.3061 

 

The comparison of the accuracies obtained via SVM and with our proposed technique 

allows concluding that the SVM-GP approach has excellent performance, even for more 

complex databases and in higher dimensions, in interpreting the SVM hyper-plane as a hyper-

surface equation.  
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Appendix B Database of JET with a metallic wall 

All experiments in JET campaigns C29 to C31 have been considered. After proper 

cleaning and validation of the DB, overall 187 disruptive and 1020 non disruptive shots are 

included, unless differently specified. JET database with the ILW has been used to implement 

the methodology described in this paper. In building the database, the intentional disruptions 

have been excluded from the training. Only time slices, whose plasma current exceeds 750 

kA, have been considered but no other general selection has been implemented. All the 

signals have been resampled at 1kH frequency. Alarms, which are launched 10 ms or less 

from the beginning of the current quench, are considered tardy, since 10 ms is the minimum 

time required on JET to undertake mitigation action. Alarms triggered more than 2.5 s before 

the beginning of the current quench are considered early. 
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Appendix C Adaptive training 

The theory of most if not all machine learning tools is based on the so called i.i.d. 

assumption; the examples are meant to be independent and identically distributed. In practice 

this means that the pdf generating the data is the same and the examples are drawn 

independently from it. This assumption is clearly violated in most situations and experiments 

in the natural sciences. Certainly JET experiments are very different from one another and 

evolve in an historical way. To overcome this problem, an adaptive training from scratch has 

been devised. The predictors needs at least one disruptive and one non disruptive case to 

build the first model. In the campaigns analysed, the first disruption occurred after a while 

and therefore the first model was obtained after the first disruption. For the disruptive 

discharge, 12 ms before the beginning of the current quench have been divided in 4 intervals 

of 3 ms each and the averages of these three intervals have been used as input to the training. 

The 10 discharges prior to the first non disruptive have been used as examples for the safe 

case. For each of these discharges, a random interval of 40 ms, with plasma current above 

750 kA, has been divided in four 10 ms ranges and the averages over those subintervals have 

been used as inputs for the training. 

The model derived as previously described has been used for the following discharges 

until the first misclassification. When the previous model misses a disruption or causes a 

false alarm, the shot not properly classified is included in the training set. In this way a new 

model is determined, which is deployed to analyse the following discharges until the next 

error, which provides an example for a new retraining. For every retraining, if the previous 

error is a missed alarm, again the same information about this shot is included in the training 

set (12 ms before the beginning of the current quench are divided in 4 intervals of 3 ms each 

and the averages of these three intervals are the additional features). If the error requiring the 

retraining is a false alarm, an interval of 40 ms before the alarm is divided in four 10 ms 

ranges and the averages over those subintervals are the new features. In the case of the false 

alarms a longer interval has proved better for the predictor to recognise that the discharge is 

in a safe region of the operational space.  

It is worth pointing out that the adopted procedure for the training of the probabilistic SVM is 

very efficient. Only the most relevant information is retained in the training set. Therefore, 

the computational requirements of the SVM training are kept to a minimum. The version of 

the adaptive training adopted in this paper has been devised to maximize the success rate of 

the classification, in order to generate the best mathematical models. A version compatible 

with real time applications has already been developed. 
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Appendix D Performance of the probabilistic SVM described in Section 8.1 for various 

choices of the triggering window: database of JET with the ILW.  

  

 

 

 

 

 

Table D1. Main figures of merit of the probabilistic SVM quality using the posterior 

probability to decide whether to trigger an alarm. This adaptive predicators have been 

implemented retraining after one time slice detected as disruptive.  

 

Soglia 

post 

prob 

DISR 

Succes 

Rate 

Missed False Early Tardy Mean 

[ms] 

Std 

[ms] 

20 96.77 2.69 4.72 0.54 2.15 336 345 

30 96.77 2.69 4.72 0.54 2.15 336 345 

40 96.77 2.69 4.53 0.54 2.15 335 345 

50 96.77 3.23 3.74 0.00 2.69 326 334 

60 96.77 2.69 3.84 0.54 2.15 334 345 

70 96.77 3.23 3.35 0.00 2.15 330 342 

80 94.09 5.38 2.07 0.54 4.30 321 344 

 
 

Table D2. Main figures of merit of the probabilistic SVM quality using the posterior 

probability to decide whether to trigger an alarm. This adaptive predicators have been 

implemented retraining after two consecutive time slices detect a disruption.  

 

Soglia 

post 

prob 

DISR 

Succes 

Rate 

Missed False Early Tardy Mean 

[ms] 

Std 

[ms] 

20 96.77 2.69 5.12 0.54 2.15 335 345 

30 96.77 2.69 4.53 0.00 2.15 335 345 

40 96.24 3.23 3.44 0.54 2.69 331 344 

50 96.24 3.23 3.25 0.54 2.15 330 341 

60 96.24 3.76 3.65 0.00 3.23 333 344 

70 94.62 4.84 2.66 0.54 3.76 324 343 

80 93.55 6.45 1.77 0.00 5.38 317 342 
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Table D3. Main figures of merit of the probabilistic SVM quality using the posterior 

probability to decide whether to trigger an alarm. This adaptive predicators have been 

implemented retraining after three consecutive time slices detect a disruption.  

 

Soglia 

post 

prob 

DISR 

Succes 

Rate 

Missed False Early Tardy Mean 

[ms] 

Std 

[ms] 

20 95.70 3.76 4.43 0.54 3.23 332 344 

30 94.09 5.91 3.25 0.00 4.84 323 340 

40 94.09 5.38 2.95 0.54 4.30 325 342 

50 94.62 5.38 2.27 0.00 4.30 324 340 

60 92.47 6.99 2.07 0.54 6.45 309 334 

70 92.47 7.53 1.87 0.00 6.45 319 341 

80 93.01 6.99 1.18 0.00 4.84 321 342 

 
 


