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Abstract 

In the last years, it has become apparent that detecting disruptions with sufficient anticipation 

time is an essential but not exclusive task of predictors. It is also important that the prediction 

is accompanied by appropriate qualifications on its reliability and it is formulated in 

mathematical terms appropriate for the task at hand (mitigation, avoidance, classification etc.). 

In this paper, a wide series of rule-based predictors, of the Classification and Regression Trees 

(CART) family, have been compared to assess their relative merits. An original refinement of 

the training, called noise-based ensembles, has allowed not only to obtain significantly better 

performance but also to increase the interpretably of the results. The final predictors can indeed 

be represented by a tree or a series of specific and clear rules. Such performance has been 

proved by analysing large databases of shots at JET with both the carbon wall and the ITER 

Like Wall. In terms of performance, the developed tools are therefore very competitive with 

other machine learning techniques, with the specificity of formulating the final models in terms 

of trees and simple rules.  
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1 Rule-based Machine learning for disruption prediction in Tokamaks  

Since they can compromise the integrity of large Tokamaks, particularly in the 

parameter range of the next generation of devices, disruptions have been intensively studied in 

the last decades [1,2]. These studies range from mitigation techniques, such as massive gas 

injection, to prediction and avoidance strategies. Of course, reliable forecasting tools are an 

essential ingredient in the implementation of any mitigation or avoidance intervention. 

Unfortunately, the theoretical understanding of disruption causes is not sufficient to program 

reliable simulation models for forecasting. Consequently, in the last decades, many efforts have 

been devoted to deriving empirical models from experiments, to identify the boundary between 

the safe and disruptive regions of the operational space. Among these empirical models, the 

most performing are based on machine learning tools. On JET two generations of machine 

learning predictors, APODIS and SPAD [3-7], have been implemented in the real time 

network. These classifiers, and the others tested offline, are based on various machine learning 

techniques, ranging from the distance based ones (SVM and Neural Networks), to clustering 

and fuzzy logic [8-10]. A family of techniques not significantly explored are the rule based 

ones, which are the subject of this paper.   

In the field of computer science, the term rule-based machine learning (RBML) 

indicates the machine learning methods that extract “rules” to solve a problem directly from 

the data available. The defining aspect of rule-based machine learners, in their application to 

data mining, is their capability to identify a set of relational rules that best represent the relevant 

knowledge in the data, for the solution of the problem at hand. This is in contrast to traditional 

rule-based systems, which are hand-crafted and therefore simply encode already available, 

prior human knowledge. Expressing the data driven knowledge as rules is a significant 

advantage for both the interpretation and the implementation of the results, as will become 

clear in the next sections. The methods implemented and refined to perform the studies 

described in the rest of the paper are based on the Classification And Regression Tree (CART) 

technology. This technique allows producing a tree summarising the rules as the final output.  

Rule-based classifiers of the CART family are very powerful and easy to interpret. On 

the other hand, one of their main problems is the sensitivity to the details of the training set. 

Their final trees are indeed not very stable; small changes in the training set can result in major 

differences in the final trees. To alleviate this problem, the approach of ensemble rule-based 

classifiers has proved to be very successful. It consists of training many even not very 

https://en.wikipedia.org/wiki/Rule-based_system
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performing classifiers and then somehow average their results in order to obtain the final 

classification of the new examples.   

In order to follow the evolution of the operational space during the campaigns, an 

adaptive form of training has been adopted. Such a training has also the advantage of optimising 

the computational efforts by minimising the training set. This procedure implements a 

“learning from scratch” approach so that all the proposed predictors can start working with 

just one disruptive and one non disruptive example [11, 12]. The last model is updated as the 

campaign progresses, by refining the training with additional cases.  

Regarding the structure of the paper, next section gives an overview of the rule-based 

classifiers of the CART family. Section 3 introduces the methodology of the ensemble rule-

based classifiers, Section 4 discusses in detail the adaptive method adopted to train the various 

versions of the predictors and describes the main characteristics of JET database investigated. 

The results obtained for the ILW and a Carbon wall are reviewed in Sections 5 and 6. The 

conclusions and lines of future work are the subject of the last Section 7 of the paper.  

 

 

2 The basics of Classification Tree analysis   

Nowadays the reference, basic rule-based machine learning tools are the so called 

Classification and Regression Trees (CART). They have been widely implemented for 

constructing prediction models from data [13]. Such models are derived directly from the 

available databases by recursively partitioning the data space and fitting a simple prediction 

rule at each partition. The final partitioning, once properly optimised, consists therefore of a 

series of rules that can be represented graphically by a decision tree. Classification trees, the 

subject of this paper, have been conceived to classify dependent variables that take a finite 

number of unordered values. Their performance are therefore typically quantified in terms of 

misclassification costs. Regression trees are an extension used to handle dependent variables 

that take continuous or ordered discrete values, with prediction error typically measured by the 

squared difference between the observed and predicted values.  

Decision trees are supervised techniques and therefore require the a priori definition of 

the number of classes and a sufficient number of examples. In the applications described in this 

paper, decision trees are used to solve classification problems, which mathematically can be 

formalised as follows. Given a training sample of n observations, the class variable is indicated 

by Y and can in general take a finite set of discrete values 1, 2, ... , k. In our application, the 
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number of classes is typically 2. The set of p features used as predictor variables are indicated 

by X1,..., Xp. The objective of the analysis consists of finding a model, which can predict the 

class Y from new X values. The method to identify the best model consists of partitioning the 

database one node at the time starting from the root. The algorithm exhaustively searches the 

whole database to determine which variable and which value minimize the total impurity of its 

two child nodes. To quantify the purity of a node, the version of CART implemented for the 

studies of this paper uses a generalization of the binomial variance called the Gini index. As a 

metric to split the nodes, the Gini impurity calculates how often a randomly chosen element 

from the training set would be incorrectly labelled, under the assumption that the labels are 

allocated as the distribution of labels in the subset. The Gini factor is typically computed by 

summing the probability pi of the item being correctly classified by the probability (1-pi) of the 

item being wrongly classified  

 

GINI = Σ pi(1-pi)   (1) 

 

Where the sum is extended over the number of classes.  The GINI impurity reaches its 

minimum (zero) when all cases in the node fall into a single target category. 

 

 

3 Ensemble rule-based classifiers  

Ensemble rule-based classifiers implement the concept of weak learners. A 'weak' learner 

(either classifier or predictor) is just a machine learning tool, which produces a model that 

performs relatively poorly but is often, but not always, computationally simple. The relatively 

limited computational resources required allow training various versions of such weak learners 

which can then be pooled (via Bagging, Random Forests etc) together to create a "strong" 

ensemble classifier. The basic elements of the ensembles used in this paper are decision trees 

of the type described in the previous section. The next subsections provide some details about 

the various weak learners trained and pooled to obtain the results reported in the rest of the 

paper. These techniques are nowadays quite standard; the original methodological 

development introduced in this treatment is the category of so called noise-based ensemble 

classifiers, which take into account the effects of the noise on the measurements.  

 

3.1 Bagging 
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One of the main weaknesses of decision trees is the sensitivity of their results to the 

specific data used for their training. A small change in the inputs (for example even using a 

subset of the training data) can imply a major variation in the resulting decision tree and in turn 

quite different predictions. Bagging is an application of ensemble weak learners to reduce this 

a high-variance of decision trees. Bagging of the CART algorithm would consist of the 

following steps:  

1. Generation of many random sub-samples of the original dataset with 

replacement. 

2. Training of a CART model for each subset of samples. 

3. Given a new example, calculate the average prediction from each model and 

select the class with a form of majority vote. 

 

When Bagging, individual tree overfitting the training data is less of a concern. For this 

reason, the individual decision trees can be grown deep and not or less pruned. Of course, these 

trees will tend to have both high variance and low bias. The high variance is then remedied by 

using Bagging. The main adjustable parameter of Bagging is the number of trees; this 

parameter can be chosen by increasing the number of trees until the accuracy begins to saturate 

instead of improving. Very large numbers of models will take longer to train but will not overfit 

the training data. 

 

3.2 Random Forests 

Random Forests or random decision forests are another ensemble learning method for 

classification based on constructing a multitude of decision trees. In a certain sense, Random 

Forests extend bootstrapping since they build multiple CART models with different sample 

and different initial variables. For a given number of trees T Random Forests are trained as 

follows:  

1. Sample the original dataset at random with replacement to create a 

subset of the data. Indicatively each subset should have a size of about 

66% of the total set. 

2. At each node: 

1. select at random a subset of predictor variables from all the 

predictor variables. 

2. The predictor variable that provides the best split, according to 

some objective function, is used to do a binary split on that 

node. 

3. At the next node, another subset of predictor variables is chosen 

at random from all predictor variables and the best one is used 

to split the node. 
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The final prediction is a function of each prediction obtained again with some sort of majority 

voting.  

3.3 Noise-based Ensembles 

One of the main issues of the measurements in Tokamaks is the high levels of noise. 

The resulting uncertainties in the data can therefore reach 30% of the measured values, even if 

the range 10-20% is more common. This noise is very difficult to reduce; the source of noise 

are many and independent. Even if these uncertainties are a potential issue, they suggest an 

alternative approach to the method of building ensembles of weak classifiers, which is an 

innovation proposed for the first time in this paper. The idea consists again of collecting 

ensembles but not with subsets of the original data; on the contrary the various training sets are 

obtained by the original one summing random noise to the measurements. The random noise 

is generated from Gaussian distributions with variance equal to the error bar of the 

measurements. Again the number of trees can be increased until the accuracy begins to saturate 

instead of improving. This approach of Noised-based Ensembles can be applied directly to 

CART trees. It can also be combined with Bagging and Random Forests; to this end, for each 

member of the ensemble obtained with traditional Bagging or random forest methods various 

weak classifiers are trained by adding different noise realizations to the inputs (see Section 5).   

 

 

4 The Adaptive Training and JET Databases 

This section discusses the method used to train the various RBML tools (Subsection 4.1) 

and provides a general overview of JET databases to which they have been applied (Subsection 

4.2). Information about the computational requirements of the implemented methods is 

provided in Subsection 4.3. 

 

4.1 Training of the adaptive predictor from scratch 

As already mentioned, large devices cannot afford collecting many disruptive examples 

to train machine learning predictors with the traditional data mining algorithms. It is therefore 

important to devise efficient training methods, which can start predicting with a limited amount 

of examples; they have also to be sufficiently adaptive to preserve good performance as the 

campaigns progress.  
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Various solutions can be adopted to train an adaptive predictor. In harmony with 

previous instances [9-12], a quite simple strategy has been implemented for the training. The 

predictors are designed with a “from scratch” approach and therefore need only one disruptive 

and one non disruptive case to build the first model. In the campaigns analysed, the first 

disruption occurred after many safe discharges and therefore the first model was obtained after 

the first disruption. For the disruptive discharge, 15 ms before the beginning of the current 

quench have been divided in 5 intervals of 3 ms each and the averages of the selected signal 

features over these five intervals have been used as input to the training. The 5 discharges prior 

to the first disruptive one have been used as examples for the safe case. For each of these 

discharges, two random periods of 20 ms, with plasma current above 750 kA, have been 

averaged and the averages over these intervals have been used as inputs for the training.  

The model derived as previously described needs to adapt by learning how a) 

disruptivity conditions vary and b) the safe space of operation changes. In other words, the 

model has to be automatically updated to follow the evolution of the boundary between the 

disruptive and non disruptive regions of the operational space as the experimental campaigns 

evolve. To this end a model, starting with the one obtained after the first training described 

above, is used for the following discharges until the first missed alarm. When the previous 

model misses a disruption, the shot not properly classified is included in the training set. In this 

way a new model is determined, which is deployed to analyse the following discharges until 

the next error, which provides an example for a new retraining.  
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If the error is a false alarm, it is not appropriate to insert that example in the training set 

and retrain the predictor. In closed loop real time applications, indeed, it is not necessarily the 

case that false alarms can be always recognised, after the discharge has been shutdown 

following the received alarm. Of course post pulse investigations by the experts and analysis 

of possible technical faults can provide indications that the discharge was stopped prematurely, 

but this cannot be assumed to happen systematically. On the other hand, retraining only on the 

basis of disruptive examples can cause the number of false alarms to increase unnecessarily, 

particularly during the course of long campaigns and/or when the scenarios evolve and new 

regions of the operational space are explored. As a compromise solution, adopted to obtain the 

results described in the following, the retraining has been performed with a new safe example 

every time the model launches an alarm. After each alarm the previous discharge, if safe as it 

is normally the case, is used as an example of a non disruptive discharge to retrain. Now for 

the training two 10 ms intervals, around the maximum value of the locked mode, have been 

averaged and these averages are the features for the new training. 

 Of course, in the case of closed loop applications of the predictors, more sophisticated 

strategies could be implemented, such as retraining when new scenarios are developed and run 

or by identifying some false alarms. Therefore the results reported in the following, even if 

 
Figure 1. Overview of the databases for the Carbon wall and ILW- A characteristic point for 

each shot in the database has been reported. The red points belong to disruptive shots.  
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quite good, have to be considered an underestimate of the possible performance in terms of 

false alarms.  

 

4.2 JET Databases: ITER Like Wall  

In building both databases, only non-intentional disruptions have been retained from 

the training. Indeed intentional disruptions do not need to be predicted and, being typically 

different from naturally occurring disruptions, can affect the quality of the adaptive training. 

Only time slices, whose plasma current exceeds 750 kA, have been considered but no other 

general selection has been implemented. All the signals have been resampled at 1kH frequency.  

Since 10 ms is considered the minimum time required on JET to undertake mitigation action, 

alarms, which are launched 10 ms or less from the beginning of the current quench, are 

considered tardy. Alarms triggered more than 2.5 s before the beginning of the current quench 

are considered early, even if this choice is a bit penalising because in various instances, indeed, 

the predictors have detected an 

almost disruptive situation but the 

plasma just managed to survive 

longer than 2.5 s. Therefore if an 

alarm had been launched in these 

cases, since the quality of the 

plasmas had already been 

compromised, in general no useful 

experimental time would have been 

lost and time for a soft landing 

would have been available. 

Therefore keeping these cases in the 

list of the not properly classified 

discharges is a conservative choice.  

Coming to the database with 

the ILW wall, the campaigns C29 to 

C31 have been considered. After proper cleaning and validation of the database, overall 187 

disruptive and 1020 non disruptive shots are included. A plot showing the operational space 

covered by the database is shown in Figure 1 (top row). 

The database of the Carbon wall includes the discharges of campaigns C15a, C15b, 

C16, C1617, C18 and C19 (from shot 65988 to 70749). Overall, 143 disruptive and 2083 non-

 

Table I The main training methods adopted for the 

various versions of the predictors  

Case 

number 
Method 

Number of 

Trainings 

Noise level 

in % 

1 CART 1 0 

2 CART 11 5 

3 CART 11 10 

4 RF 1 0 

5 RF 11 0 

6 RF 11 5 

7 RF 11 10 

8 BAG 1 0 

9 BAG 11 0 

10 BAG 11 5 

11 BAG 11 10 

 



10 

 

disruptive shots are included. A plot showing the operational space covered by the database is 

shown in Figure 1 (bottom row). 

 

4.3 Computational aspects 

With the adaptive approach implemented, and described in detail in subsection 4.1, the 

computational time has been calculated for a typical shot of 20 s, using the input signals of the 

locked mode amplitude and the internal inductance. On a Dell XPS 13 9350 – 1 Processor i7 

6600U 2.5GHz (4 MB L3 Cache) with 8 GB Dual-Channel DDR3 1867MHz, OS Windows 10 

Pro 64-bit the computational requirements for the deployment of the proposed tools are of 

about 2.2 s for the noise-based CART ensemble,  about 4.3 s for Bagging and 4.9 s for the 

Random Forests.  

 

 

5 Results for disruption prediction in JET with the ITER Like Wall 

The various predictors described in Sections 2 and 3 have been applied to the 

experiments of the campaigns C29-C31. For consistency with past tests using other methods, 

the amplitude of the locked mode signal and the internal inductance have been used as features. 

A summary of the tested alternatives is reported in Table I. Each main typology of tree (CART, 

Bagging and Random Forests) has been trained in the traditional way and at various levels of 

added noise. For each level of noise, 11 independent realisations of the input data have been 

generated. The traditional versions of Bagging and Random Forests consist of 40 different 

trees: in the case of non zero noise, each of the 40 trainings has been performed with an 

individual realisation of the 11 noised inputs (for a total of 440 independent trees). In all the 

cases, except the simple CART without noise, the final decision about whether triggering an 

alarm is reached with the method of majority voting. 

An overview of performance, for each alternative training method, is provided in Table 

II. CART without noise give clearly inferior results. Once the approach of noised based 

ensemble is implemented, the simple CART trees become very competitive with Bagging and 

Random Forests. In their turn, the approaches of Bagging and Random Forests are very 

performing in terms of success rate even if the original signals are provided as inputs without 

noise. On the other hand, adding noise to the inputs has a significant positive effect in reducing 

the false alarms also for these methods. Therefore, in general, the approach of providing a series 

of different inputs signals, with different realisations of the noise, has a quite positive effect on 

all the methods. The choice of the more appropriate level of noise is not easy and depends on 
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the relative importance is given to success rate versus false alarms. Increasing the noise level 

from 5% to 10% typically reduces the number of false alarms but also slightly the success rate. 

It has been checked that increasing the added noise above 10% translates into a serious 

worsening of performance. 

It is good to remember that in Tables 2 and 3 the sum of the performances of disruptive 

discharges, good, missed, early and tardy, corresponds to 100% of the disruptive shoots, 187 

for the ILW and 143 for the CW. The False Alarm column is in percentage of the total 1020 

non-disruptive shoots for the ILW and 2083 non-disruptive shoots for the CW. 

The training of simple CART trees with different noise realisations allows to easily 

determine the structure of the typical tree in the set. Obtaining the same information from 

Bagging is much more difficult and practically impossible in the case of Random Forests.  

Visualizing a tree is of course of great help in terms of interpretability. The most 

performing tree in the set of 11 CART, trained with different noise realizations, is shown in 

Figure 2. The key indicators for this tree are: success rate 97.33 % and false alarms 2 %. It is 

worth noting that this tree is in any case quite representative of the whole family.  

 

Table II The traditional performance indicators, used to determine the quality of disruption 

predictors expressed in percentage, for the ILW campaigns. 

 

Case 

Number 

Succes 

Rate 

Missed Early Tardy False Mean 

[ms] 

Std [ms] 

1 83.87 1.07 10.75 4.30 9.46 323 333 

2 94.62 0.54 0.54 4.30 2.36 310 330 

3 93.01 1.61 0.54 4.84 1.97 310 330 

4 94.08 1.07 1.07 3.76 6.19 323 339 

5 94.62 1.07 1.07 3.22 4.32 322 342 

6 94.08 1.61 0.54 3.76 2.07 310 328 

7 94.08 1.07 0.54 4.30 1.27 297 321 

8 94.62 1.07 1.07 3.22 4.42 321 340 

9 94.62 1.07 1.07 3.22 4.11 322 341 

10 94.08 1.61 0.54 3.76 1.67 314 333 

11 93.54 1.61 0.54 4.30 1.57 302 328 
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6 Results for JET with a Carbon 

Wall 

The same tools, introduced in 

Sections 2 and 3, have been deployed 

also to analyse a database of 

disruptions of JET with the carbon 

wall. The main objective of this 

exercise is to confirm the general 

applicability of the developed 

techniques, Again, the amplitudes of 

locked mode and the internal 

inductance signals have been selected 

as input features. The adaptive 

training procedure, described in detail 

in Section 4.1, has also been 

followed. For consistency sake, the same cases reported in Table I have been tested also for the 

campaigns of JET with a Carbon wall.  

 

 
 

Figure 2. The most performing tree of the 11 

CART ones trained with different realisations of the 

noise of the campaigns with the ILW. In the tree, x1 

indicates the amplitude of the locked mode and x2 the 

internal inductance. 

Table III The traditional performance indicators, used to determine the quality of disruption 

predictors expressed in percentage, for the carbon wall campaigns. 

 

Case 

Number 

Success 

Rate 

Missed Early Tardy False Mean 

[ms] 

Std [ms] 

1 88.03 0.00 10.56 1.40 17.39 297 371 

2 95.07 1.40 1.40 2.11 3.79 265 317 

3 95.77 1.40 1.40 1.40 2.83 259 316 

4 89.44 0.00 9.15 1.40 8.80 285 367 

5 88.03 0.00 10.56 1.40 17.30 296 371 

6 94.36 2.11 2.81 0.70 2.92 271 322 

7 95.07 1.40 1.40 2.11 1.58 256 317 

8 90.84 0.00 7.74 1.40 13.40 281 350 

9 88.03 0.00 10.56 1.40 17.30 296 371 

10 92.96 2.11 2.81 2.11 3.74 267 320 

11 96.48 0.70 1.40 1.40 2.54 271 342 
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The performance of the proposed tools is summarised in Table III. For this database, 

the approach of Noise-based Ensembles has a significant improving effect even on the success 

rates of Bagging and Random 

Forests and not only on reducing the 

false alarms. Therefore noise-based 

ensembling is confirmed to improve 

performance significantly and to 

render simple CART trees very 

competitive. A representative 

example of such a CART is shown in 

Figure 3, whose overall 

performances are about 96.5% of 

success rate and 1.6 % of false 

alarms. The structure of this tree is 

similar to the one obtained for the 

ILW but a bit more complex, 

reflecting the larger spectrum of 

discharges explored in the campaigns with the Carbon Wall.  

 

 

7 Discussion and Conclusions 

The development of RBML classifiers has allowed the implementation of a series of 

tools for disruption prediction, which provide very competitive performance. The generality of 

the developed tools has been confirmed by their deployment to predict disruptions in JET for 

both the Carbon wall and the ITER Like Wall.  

The innovative approach of Noise-based Ensembles has proved to be particularly 

effective. In the case of traditional CART it increases the success rate of about 10 percentage 

points, bringing it in line with the traditional ensemble methods. If enough computational 

power is available to apply the approach also to Random Forests and Bagging, the improvement 

is mainly in a reduction of a couple of percentage points in the false alarms. In the case of the 

carbon wall, implementing the Noise-based Ensembles improves also the success rate of a 

couple of percentage point. So, in general, the noise-based approach seems to be a quite 

effective method to train ensembles of weak learners to reduce both their variance and bias.  

 

 
 

Figure 3.  The most performing tree of the 11 CART 

ones trained with different realisations of the noise for 

the Carbon Wall. In the tree, x1 indicates the 

amplitude of the locked mode and x2 the internal 

inductance. 
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The positive results obtained with the application of noise-based ensembles to 

traditional simple CART tress is not important only from the point of view of performance. 

The other remarkable advantage is the increase in interpretability, because a performing tree 

can typically be visualized and a series of specific rules made explicit.  

With regard to future developments, it is planned to utilise rule-based classifiers of the 

CART family also for avoidance. In this perspective, the presented tools could also become 

important in the selection of the most useful features to obtain early warnings for avoidance.  
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