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Abstract 

In the last decades, lacking solid and detailed theoretical understanding, machine learning 

tools have been deployed in various Tokamaks to predict the occurrence of disruptions. Their 

results clearly outperform empirical descriptions of the plasma stability limits. On the other 

hand, all the machine learning techniques applied in practice show very poor “physics 

fidelity” (their mathematical models do not reflect the physics of the underlying phenomena) 

and limited interpretability. To overcome these limitations, in this paper a method is proposed 

to combine the predictive capability of machine learning tools with the formulation of the 

operational boundary in terms of traditional mathematical models, more suited to 

understanding the underlying physics. This is achieved by a novel combination of 

probabilistic Support Vector Machines and Symbolic Regression via Genetic Programming. 

The results are very positive. The obtained equations of the boundary between the safe and 

disruptive regions of the operational space classify with about 2.5 % of missed alarms and a 

similar percentage of false alarms. The models derived with the proposed data driven 

methodology therefore present better performance than traditional representations, such as 

the Hugill or the beta limit, by a factor. More importantly, they are compact and easy to grasp 

mathematical formulas, which are well suited to supporting theoretical understanding and 

benchmarking of empirical models. They can also help in setting up feedback schemes and 

can be deployed efficiently in real time.  
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1 Operation-based description of disruptions in Tokamaks 

Many natural and man-made systems can look very resilient but in reality are prone to 

catastrophic collapse. Some of these collapses are quite straightforward to interpret and do 

not seem worthy of particular attention because, given the proper precautions, they are 

relatively easy to avoid. Others are very subtle and extremely difficult to predict. 

Earthquakes, and in general failures due to atmospheric phenomena, belong to this category. 

In the last years, various efforts have been devoted to develop mathematical tools more 

appropriate to investigate and predict these catastrophic and typically rare events. Machine 

learning tools, of the type described in this paper, constitute an additional family in the 

arsenal of mathematical approaches which can be used to study catastrophic events [1].   

In the field of Magnetic Confinement Nuclear Fusion, disruptions are the most 

striking example of catastrophic failures difficult to predict. Therefore they are one of the 

most severe problems to be faced 

by the Tokamak configuration in 

the attempt to design and operate 

commercial reactors. Disruptions 

are also a not negligible issue for 

the present largest devices, such as 

JET, and indeed they pose a not 

irrelevant constraint to high 

current operation. The percent of 

disruptions allowed in ITER is 

quite limited. Certainly, JET 

disruptivity with the new ITER 

Like Wall (ILW) remains too high 

for the next generation of devices, 

since at high current the percentage of disruptions can exceed 30%. In DEMO even one 

unmitigated disruption could severely damage the reactor [2].  

Since they constitute a potential serious hazard to the integrity of Tokamak devices, 

disruptions are the subject of extensive studies at present. From the perspective of ultimate 

remedial actions which can be undertaken, various methods of mitigation are being 

investigated, particularly massive gas injection and shatter pellets. The main objective of 

massive gas injection consists of limiting the energy conducted directly to the wall by 

converting it into radiation. On the other hand, this conversion method can pose other hazards 

 
 

Figure 1. Hugill plot for a large database of JET with 

the ILW covering campaigns C29-C31. The disruptive 

and safe discharges overlap completely in this space. 
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to the machines, such as the generation of runaway electrons, and shatter pellets are indeed 

aimed exactly at extinguishing the beams of such fast particles. A complementary approach 

to manage the problem of disruptions is based on avoidance, i.e. on the sufficiently advanced 

detection of problems in the discharges and the consequent implementation of remedial 

actions to avoid the abrupt termination of the plasma.  

From an operational perspective, robust and reliable prediction methods are a 

prerequisite to any mitigation or avoidance action. Unfortunately, the theoretical 

understanding of the causes of disruptions is not sufficient to guarantee reliable predictions, 

particularly on the time scales required for avoidance. Lacking solid and detailed theoretical 

understanding of disruptions, it has been attempted to develop an operation-based description 

of Tokamak plasmas, aimed at determining the boundaries of the safe space in terms of 

physically controllable quantities. One of such empirical descriptions of plasma stability is 

the so called Hugill diagram, which combines the low q and density limits [3]. The low q 

limit is expressed in terms of 1/q95, where q95 is the safety factor at 95 % of the plasma 

radius. The density limit is typically expressed in terms of the Murakami factor neR/BT where 

ne is the mean electron density, R the plasma major radius and BT the toroidal field. For a 

large JET database with the ILW 

(see Section 6.2), the Hugill 

diagram is reported in Figure 1. 

Unfortunately such a plot has very 

poor predictive and interpretative 

capability, since the disruptive and 

non disruptive examples overlap 

almost completely and there is 

practically no frontier between the 

safe and disruptive regions of the 

operational space. 

Similar considerations apply 

to another popular diagram, used to 

investigate the so called beta limit.  

The parameter  is typically used to 

quantify the level of the plasma 

pressure compared to the magnetic pressure. It is therefore natural to expect that pressure 

 
 

Figure 2. The beta limit plot for a large database of 

JET with the ILW covering campaigns C29-C31. Also 

in this space the disruptive and safe discharges 

overlap completely. 
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driven instabilities could limit the level of achievable in a certain configuration. This limit 

is typically represented as a function of the parameter I*li/(aBT), where I is the plasma 

current, li the internal inductance and a the minor radius. The -limit plot for various 

campaigns of JET with the ILW is reported in Figure 2. Again inspection of the plot reveals 

that, in this space, it is practically impossible to separate the disruptive from the safe 

operational regions. Therefore, from a practical point of view, these representations have 

poor predictive capability and cannot be used for any form of forecasting. Also from the 

interpretation point a view they leave a lot to be desired, since they do not provide clear 

empirical evidence about the real basis for the difference between the safe and disruptive 

regions of the operational space. . 

The inadequacies of theoretical and empirical models of disruptions have motivated 

the development of data driven predictors. In this perspective, various machine learning 

methods have been developed. They range from neural networks to Fuzzy logic classifiers [4-

12]. In the last years, a new classifier, APODIS, based on Support Vector Machines  (SVM) 

has been deployed in JET real time network and has provided very satisfactory performance 

in terms of both success rate and false alarms, in a long series of campaigns without any need 

for retraining. Manifold learning tools, such as Self Organising Maps and Generative 

Topographic Maps, and simple classifiers based Geodesic distance on Gaussian manifolds 

have provided very good results also in terms of automatically determining the disruption 

type many tens of ms in advance of the beginning of the current quench [13-15].Even if these 

data driven tools are providing quite impressive results, their main problem, particularly in 

the perspective of the next step devices, is the amount of examples required for training. In 

large machines such as ITER, it would be practically impossible to collect hundreds of 

examples to train the most performing machine learning tools such as APODIS. In the last 

couple of years therefore many efforts have been devoted to the developments of 

parsimonious data driven techniques, which can provide good success rate of prediction after 

a few tens of disruptions and even after the first disruption[16,18]. 

The main remaining issues with these advanced machine learning tools are now their 

physics fidelity and the interpretability of their results. They have shown the potential to learn 

very efficiently from the provided examples but they are formulated in such a way that does 

not necessarily reflect the dynamics behind the phenomenon. Since the resulting models are 

also very difficult to interpret, in the present format machine learning tools cannot really 

contribute to the interpretation of the physics behind disruptions. This aspect is quite 
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worrying given the fact that they have therefore to be considered black boxes, whose 

extrapolation to larger devices could be questioned.  

To increase the contribution of machine learning tools to the interpretation of the 

physics, a new methodology has been developed to profit from the knowledge acquired by 

the machine learning tools but presenting it in a more traditional format, in terms of 

manageable formulas, which can be used both as a guide for analysis developments and as a 

benchmark of theoretical models. This approach reconciles the prediction and knowledge 

discovery capability of machine learning tools with the need to formulate the results in such a 

way that they can be related to physical theories capable of extrapolation to larger devices.  

The main technique, to derive physically meaningful models from machine learning 

tools, consists of the following steps:  

 

1- Training the machine learning tools for classification, i.e. to discriminate 

between disruptive and non-disruptive examples 

2- Determining a sufficient number of points on the boundary between safe 

and disruptive regions of the operational space identified by the machine 

learning tools 

3- Deploying Symbolic Regression via Genetic Programming to express the 

equation of the boundary from the points previously obtained in a physically 

meaningful form 

 

The potential applications of the proposed new methodology are many. Two 

important cases will be discussed in detail in the following. The first is the data driven 

derivation of the equation of the boundary between disruptive and non-disruptive regions of 

the operational space, obtained without any “a priori” assumption on the form of the models. 

Such an example is meant to illustrate the exploratory power of the developed techniques. 

The second main application relates to the complementary problem of building models on the 

basis of constraints derived from previous works or theoretical considerations.  

In the proposed approach, the knowledge discovery step is based on Support Vector 

Machines (SVM), whose mathematical background is summarised in the next Section. This 

choice is driven by the properties of structural stability of SVMs, which guarantee very high 

success rates provided the training set is adequate. In addition to traditional Support Vector 

Machines, the proposed method is also adapted to a probabilistic version of SVM, to show in 

general how the approach can be particularised for machine learning tools, which provide 
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outputs of different nature. To formulate the output of SVM in a physically realistic and 

interpretable way, extensive use is made of Symbolic Regression via Genetic programming; 

these tools are therefore described in Section 3. 

The actual combination of the two methods, to provide the equation of the boundary 

between two regions of the operational space, is described in detail in Section 4 and some 

synthetic examples are reported in Section 5. JET database with the ITER Like wall is 

introduced in Section 6 and the results, in terms of describing the boundary between the 

disrupting and non disruptive regions of the operational space, are the subject of Sections 7 

and 8. Discussions and lines of future interpretation are the subject of the following Section 

9. 

 

 

2 Introduction to SVM for Classification 

 Machine learning tools are typically deployed to derive information directly from the 

data in two main eventualities: a) in theory-less applications, such as many in the private 

sector, when there is no ambition to formulate a physically meaningful mathematical model 

b) when the problems to address are so complex that is very difficult or even impossible to 

derive theoretical models from first principles. The main objective of the work presented in 

this paper relates to the second case and consists of defining a methodology, which can allow 

obtain satisfactory mathematical models from the results of machine learning tools instead of 

from basic principles. 

 
 

Figure 3. The basic principle of the SVM approach to classification: the projection to a higher 

dimensional space with a kernel to find the best separating hyperplane.  
 

Input Space
(Non linearly separable problem)

Kernel Trasforming
Function

Higher dimensional feature space
(Linear separating hyperplane)
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2.1Traditional SVM 

SVMs are very powerful machine learning tools, with various very desirable 

properties for scientific applications [19]. They are used as classifiers for the studies 

described in this paper. In intuitive terms, given a set of input examples, which belong to two 

different classes, the SVM maps the inputs into a high-dimensional space through some 

suitable non-linear mapping. In this high dimensional feature space, an optimal separating 

hyperplane is constructed in order to minimize the risk of misclassification. The minimization 

of the error risk is obtained by maximizing the margins between the hyperplane and the 

closets points, the support vectors, of each class. This is achieved by a careful selection of the 

constraints of a suitable functional to maximize. The hyperplane is expressed in terms of a 

subset of points of the two classes, named Support Vectors (SV). The main idea behind the 

SVM approach is illustrated in Figure 3.  

Once the support vectors have been determined, the SVM boundary between the two 

classes can be expressed in the form 

 

𝑑(𝒙) = ∑ 𝛼𝑖𝑦𝑖𝐻(𝒙𝑖 , 𝒙)ℓ
𝑖=1   (1) 

 

where d(x) is the distance from the input x to the hyper-plane that separates the two 

classes and, hence, the hyper-plane points satisfy d(x)=0. 

The rule to classify a feature vector u  as disruptive (class CDis) or non-disurptive 

(class CSafe) is given by: 

𝑖𝑓 𝑠𝑔𝑛(𝐷(𝒖)) ≥ 0 

𝒖 ∈ 𝐶𝐷𝑖𝑠𝑟 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝒖 ∈ 𝐶𝑆𝑎𝑓𝑒 

where sgn(t) is the sign function. 

 

Given the structural stability that they achieve by implementing the margins, SVMs 

are very powerful tools and have performed extremely well in the case of disruption 

prediction, as demonstrated in real time by APODIS. Their hyperplane can therefore be 

considered a very good approximation of the boundary between the disruptive and not 

disruptive regions of the operational space. On the other hand, their mathematical 

representation of the boundary is of the type of equation (1). Relations with the mathematical 
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structure of equation (1) bear no resemblance to the underlying dynamics of the physical 

phenomenon under investigation. Moreover equation (1) is extremely non intuitive. In the 

case of disruptions on JET, the equation of the hyperplane can easily comprise more than 500 

support vectors and therefore the equation of the hyperplane contains an equal number of 

addends. To obtain an equation for the hyperplane, which better reflects the physics of the 

phenomenon and easier to interpret, the method of Symbolic Regression via Genetic 

Programming has been adopted, as explained in the next Section. First an overview of 

probabilistic SVM is provided, since this is the tool mainly used in the rest of the paper for 

the exploratory phase of the analysis.  

 

2.2 Probabilistic SVM 

The availability of classifiers, which can output a probability, would be extremely 

useful in most applications. Unfortunately, traditional SVM provide only a distance to a 

hyperplane, in the from reported in equation (1). Their basic version has therefore to be 

extended to associate a probability to the outputs of their classification [20-22].One possible 

solution consists reformulating the SVM output in terms of a probability with the Bayes rule 

according to the formula: 

                

                  𝑃(𝑦 = 1|𝐷) =
𝑝(𝐷|𝑦=1)𝑃(𝑦=1)

∑ 𝑝(𝐷|𝑦=𝑖)𝑃(𝑦=𝑖)𝑖=−1,1
                         (2) 

 

In equation (2) D are the data and y indicates the label of one of the classes (the 

disruptive one for example to fix the ideas). P(y=1) is the prior probability of disruption and 

p(D|y=1) is the likelihood, the probability of the data given the fact that the time slice in 

question is disruptive. Therefore, to convert the outputs of traditional SVM to probabilities, 

two quantities have to be determined: the prior probability and the likelihood. In our 

application, the natural choice of the prior probability is the percentage of time slices seen so 

far in the campaign for the class to which the SVM classifies the new example. The most 

challenging aspect of relation (2) resides in the evaluation of the likelihood. A solid and 

reliable estimate of the likelihood would require much more data than that available. 

Moreover, in any case probability density estimation is always a delicate and time consuming 

process. Theoretical investigations and practical considerations have shown that, for our 

application, one alternative advantageous solution consists of remapping the distance to the 

hyperplane to a probability by using a sigmoid function [20,21]: 
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                       𝑃(𝑦 = 1|𝑑) =
1

1+𝑒𝑥𝑝(𝐴𝑑+𝐵)
                   (3) 

 

In equation (3) A and B are two fitting parameters, whereas d is the distance of the 

examples to the SVM hyperplane. Equation (3) therefore allows to convert directly the 

distance to the hyperplane, provided by traditional SVM, into a probability. This conversion 

takes place after the training; the distances of the examples in the training set are used to fit 

the parameters of the sigmoid (3). The sigmoid is constrained to be centred on the 

hyperplane, because points at distance zero from it have equal probability of belonging to any 

of the two classes.  

 

 

3 Symbolic Regression via Genetic Programming for interpretability 

As mentioned in the previous 

section, this paper describes the 

application of Symbolic Regression 

(SR) via Genetic Programming (GP) to 

identifying the boundary between safe a 

disruptive regions of the operational 

space. The main advantages of the 

proposed approach consist of: a) 

practically eliminating any assumption 

about the mathematical form of the 

boundary b) allowing to express the 

equations of the boundary in 

mathematical forms, which match the 

physics of the disruption and permit 

comparison with theory. The methods 

developed indeed allow identifying the 

most appropriate mathematical 

expressions for the boundary equations and therefore have the potential to better interpret the 

experimental data for the boundary of the operational space.  

 

Figure 4. Overview of the main steps of the proposed 

methodology used to identify the best mathematical 

models directly from the data. 
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The method consists of testing various mathematical expressions to fit a given database. 

The main steps to perform such a task are reported in Figure 4. First of all, the various 

candidate formulas are expressed as trees, composed of functions and terminal nodes. The 

function nodes can be standard arithmetic operations and/or any mathematical functions, 

squashing terms as well as user-defined operators [23,24]. Terminal nodes are typically 

physically measurable quantities. This representation of the formulas allows an easy 

implementation of the next step, symbolic regression with Genetic Programming. Genetic 

Programs (GPs) are computational methods able to solve complex optimization problems 

[23,24]. They have been inspired by the genetic processes of living organisms. They work 

with a population of individuals, e.g mathematical expressions in our case. Each individual 

represents a possible solution, a potential equation for the boundary between the safe and 

disruptive regions of the operational space in the application presented in this paper. A fitness 

function (FF) is used to measure how good an individual is with respect to the database. The 

FF is basically a metric determining how good an individual is in solving the problem at hand 

given the database. A higher probability to have descendants is assigned to those individuals 

with better FF. Therefore, the better the adaptation (the better the value of the FF) of an 

individual to a problem, the higher is the probability that its genes are passed to its 

descendants.  

In practice, the first step of the method is the generation of the initial population of 

formulas for the operational boundaries and then the algorithm finds how well an element of 

the population works, assessing its performance with the FF. In the second phase, as with 

most evolutionary algorithms, genetic operators (Reproduction, Crossover and Mutation) are 

applied to individuals that are probabilistically selected on the basis of the FF, in order to 

generate the new population. That is, better individuals are more likely to have more 

descendants than inferior individuals. When a stable and acceptable solution, in terms of 

Table I: Types of function nodes included in the symbolic regression used to derive the 

results presented in this paper, xi and xj are the generic independent variables.  

Function and 

operator class 
List 

Arithmetic 

operators 
constants,+,-,*,/ 

Exponential 

functions 
exp(xi),log(xi),power(xi, xj), power(xi,c) 

Squashing 

functions  
logistic(xi),step(xi),sign(xi),gauss(xi),tanh(xi), erf(xi),erfc(xi) 
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complexity, is found or some other stopping condition is met (e.g., a maximum number of 

generations or acceptable error limits are reached), the algorithm provides the solution with 

best performance in terms of the FF.  

In this work, the models are composed of functions and terminal nodes and can be 

represented as a combination of syntax trees. The function nodes included in the analysis 

performed in this paper are reported in Table I. It is worth emphasising that no detailed 

hypothesis on the mathematical structure of the final equation is assumed  “a priori”. SR via 

GP extracts the most suitable formulas on the basis of the input data. On the other hand, 

constraints on the final results can be implemented by selecting the most appropriate basis 

functions or by constraining the structure of the trees. So the proposed approach is data 

driven and does not force the solution to belong to a specific class of models; at the same 

time it can impose a mathematical formulation more appropriate to the phenomenon at hand.  

In addition to the basis functions, the fitness function is the other crucial element of the 

genetic programming approach and it can be implemented in many ways. To derive the 

results presented in this paper, the AIC criterion (Akaike Information Criterion) has been 

adopted [25] for the FF. The AIC form used is: 

 

𝐴𝐼𝐶 = 2𝑘 + 𝑛 ⋅ ln(𝑅𝑀𝑆𝐸)        (4) 

 

In equation (7), RMSE is the Root Mean Square Error, 𝑘 is the number of nodes used for 

the model and 𝑛 the number of 𝑦data provided, so the number of entries in the database (DB). 

The FF parameterized above allows considering the goodness of the models, thanks to the 

RMSE, and at the same time their complexity is penalised by the dependence on the number 

of nodes. The parameters of the mode obtained with SR via GP are typically refined with 

appropriate nonlinear fitting routines. In addition to improving their values, this step allows 

associating confidence intervals to the parameters of the models.  

To assess the quality of the final models the well-known criteria of BIC (Bayesian 

Information Criterion) and Kullback-Leibler (KLD) divergence have been used. The BIC 

criterion is defined as: 

 

𝐵𝐼𝐶 = 𝑛 ⋅ ln(𝜎(𝜖)
2 ) + 𝑘 ⋅ ln(𝑛)                         (5)   
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where𝜖 = 𝑦data − 𝑦model are the residuals, 𝜎(𝜖)
2  their variance and the others symbols 

are defined in analogy with the AIC expression. Again the better the model, the lower its 

BIC.  

Then the aim of the KLD is to quantify the difference between the computed 

probability density functions, in other words to quantify the information lost when 

𝑝(𝑦⃗𝑚𝑜𝑑𝑒𝑙(𝑥⃗)) is used to approximate 𝑞(𝑦⃗𝑑𝑎𝑡𝑎(𝑥⃗)) [27]. The KLD is defined as: 

 

𝐾𝐿𝐷(𝑃‖𝑄) = ∫ 𝑝(𝑥) ⋅ 𝑙𝑛(𝑝(𝑥)/𝑞(𝑥))𝑑𝑥   (6) 

 

Where the symbols have been defined as above. The Kullback-Leibler Divergence 

assumes positive values and is zero only when the two probability distribution functions 

(pdfs), p and q, are exactly the same. Therefore the smaller the KLD is, the better the model 

approximates the data, i.e. the less information is lost by representing the data with the 

model. 

It is worth mentioning that in traditional applications of SR via GP the method has 

been used to perform actual regression and therefore to identify functions [27-29]. The 

application to identification of the boundary between different regions of the operational 

space is a new application in fusion, reported for the first time in this paper. Mathematically 

this problem is more involved; indeed, in general, the boundaries between disruptive and safe 

region of the operational space or between different disruption types do not need to be 

functions. On the other hand, the methodology of SR via GP is much more general and it is 

not limited to function. It has indeed been also verified numerically that, provided the right 

choice of basis functions is chosen, the approach can identify also closed surfaces. 

 

 

4 Combining SVM and Symbolic Regression to Identify the Equation of the  Boundary 

 This section introduces the details of the mathematical procedure to obtain the 

equation of the boundary between disruptive and non-disruptive operational regions, by 

applying symbolic regression to the output of SVM classifiers. The method consists mainly 

of two parts. First points on the SVM separating hyperplane are generated and then they are 

fitted with symbolic regression. In the case of probabilistic SVM the first task is banal. 

Indeed the available tools allow plotting iso-probability surfaces. It is therefore sufficient to 

extract the points which correspond to the chosen level of probability. These points can then 
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be fitted with SR via GP to obtain the required equation. The situation is a bit more involved 

in the case of traditional SVM, which provide a distance to the separating hyperplane and not 

directly points on the hyperplane. The solution for this more complicated case is reported in 

the following for completeness sake and for the benefit of systems using the traditional 

version of the SVM.  

In order to interpret the results produced by the traditional SVM, as already 

mentioned, the first step consists of determining a sufficient number of points on the 

hypersurface separating the two classes. These points can be then given as inputs to the SR to 

obtain a more manageable equation for the hypersurface. To obtain the SVM hypersurface 

points, a mesh is built first, with resolution equal or better than the error bars of the 

measurements used as inputs to the SVM. In this step, a refined mesh throughout the domain 

defined by the ranges of variables is generated; therefore, if the problem presents n 

dimensions and m grid points are generated for each dimension, the grid will consist of mn 

number of grid points. Obviously, more grid points and a better refined mesh lead to more 

accurate results; therefore, the total number of grid points can be set based on computational 

 

Figure 5: SVM hypersurface points for synthetic, linearly separable data set. The black and red points 

belong to the two classes. The blue points are the ones lying of the hypersurface and obtained with the 

method explained in the text and illustrated pictorially in the insert.  
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limitations. On the other hand, suitable criteria are available for selecting more efficiently the 

number of intervals in different directions. The first one consists of allocating more intervals 

along the direction of stronger curvature. The second alternative is that of allocating a higher 

number of mesh points in the direction of the dependent variable, to be sure that the points 

will be selected for the hyper-surface are close enough to the real hyper-plane. 

After building the grid, the algorithm starts selecting the Support Vectors (SVs) on the 

positive side of the hypersurface and moves towards the SVs on the other side, one point on 

the mesh at the time. At each step, the distance to the hypersurface is computed using the 

already trained SVM. If the distance remains positive, the process is repeated since the new 

point remains on the same side of the hypersurface. When the distance of a new point 

changes sign, the two points with different signs are on opposite sides of the hypersurface 

separating the two classes. They can therefore be considered points on the hypersurface, 

since, by construction of the mesh, these points, for which the distance changes sign, are 

within a distance from the hypersurface equal or smaller than the error bar of the features 

(typically measurements). Therefore, for all practical purposes, the points found as previously 

described are sufficiently close to the hypersurface to be considered on it. This way to obtain 

SVM hypersurface points for synthetic data is shown pictorially in Figure 5. The support 

vectors on either side of the hypersurface are given a different colour and a line connecting 

the two sides of the hypersurface is drawn in the insert.  

Once it has been verified that a sufficient number of points close to the hypersurface 

have been found, the equation of the hypersurface itself can be estimated using SR via GP. 

Indeed the points, identified with the procedure just described, are on the boundary between 

the two classes. Therefore the equation of that surface is the equation of the boundary 

between the two classes. The quality of the obtained equation can be assessed first with the 

statistical indicators described in Section 3. Another very important step to prove the quality 

of the obtained equations consists of testing their success rate of classification, for the same 

examples used for training the SVM. 

 

 

5 Numerical tests and results 

The procedure described in the previous section has been subjected to a systematic 

series of numerical tests. The results have always been positive and the proposed technique 

has always allowed recovering the original equations describing the boundary between the 
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two classes. In the following the detailed procedures for these numerical tests are described in 

detail and some results presented.  

  

5.1 Overall procedure for producing synthetic data 

The main technique to produce synthetic data to test the methodology consists of the 

following 6 steps:  

1- Definition of an initial function for the boundary 

2- Generating  samples of the two classes from the function 

3- Training the SVM for classification 

4- Building an appropriate mesh on the domain 

5- Determining a sufficient number of points on the hyper-surface identified 

by the SVM 

6- Deploying symbolic regression to obtain the equation of the hypersurface 

from the points previously generated 

 

In the case of probabilistic SVM, point 4 and 5 collapse to a single very easy step, 

since it is possible to directly obtain the points at the required level of probability from the 

machine learning tool.  

In the rest of this subsection, more details about this procedure are provided. To fix 

the ideas, the discussion is particularised for the case of traditional SVM. In the first step, an 

initial function as a combination of arithmetic, trigonometric, and exponential operators of 

independent variables xi is defined. In general, this function can be written as follows: 

 

y = f ( x1 , x2 … )  a1 < x1 < b1 a2 < x2 < b2    etc 

 

In the second step, a sufficient number of random points is generated in the relevant 

range of the variables and from them the dependent variable y is calculated. Then, a positive 

offset and some random values are added to the y for half of the data to produce the first 

class; a negative offset and some random values are added to y for the other half to produce 

the second class. Adding random values is meant to simulate the effect of the noise. The 

statistics of this additive component can therefore be adapted to the experimental 

measurements available; in our case the noise is assumed to have a Gaussian distribution. The 

equations for producing the two classes can be summarized as follow: 
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y1 = y + random data between 0 and L + offset L= bulk thickness of the data 

y2 = y - random data between 0 and L - offset L= bulk thickness of the data 

 

where y1 and y2 are the values for the first and second class, respectively. 

In the third step, an SVM is trained. The method used to find the separating 

hyperplane is "Sequential Minimal Optimization" [19]. Depending on the level of random 

noise, different success rates can be obtained. For the numerical tests presented in the 

following, the success rate in the classification of the SVM is always very close to 100%.  

 

Table II: General GP parameters for the calculations of the boundary equations 

GP Parameters Value(s) 

Population size 500 

Selection method Ranking and Tournament 

Fitness function Gaussian distribution 

Constant range Integers between -10 and 10 

Maximum depth of trees 5 

Genetic operators 

(Probability) 

Crossover (45 %) 

Mutation (45 %) 

Reproduction (10 %) 

 

In the fourth step, a mesh on the domain is built in order to identify points sufficiently 

close to the hypersurface.  

The fifth step consists of the identification of the points sufficiently close to the 

hypersurface, with the algorithm described in Section 5.  

In the sixth step, the selected hypersurface points are used as inputs to the symbolic 

regression code, to find the appropriate formula for describing the hypersurface. The settings 

adopted to run the GP implementing the SR are presented in Table II: 

 

5.2 Example of two independent variables 

In this section, an example is provided to illustrate the applicability and capability of 

the presented methodology. As a representative test, a function comprising trigonometric and 

arithmetic operators has been defined. The function and ranges of the variables are: 
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y= sin(x1) + x2         -3 < x1 <3      -2 < x1 <2  (7) 

 

For this example, each dimension of the domain has been subdivided in one hundred 

intervals, producing one million mesh points ( 1003 ). After carrying out the six-step 

procedure previously described, the following expression has been obtained: 

 

y= 0.985 ( sin(x1) + x2 )   (8) 

 

SR via GP converges on a final expression that is in excellent agreement with the 

initial function describing the boundary between the two classes, even without making 

recourse to the non-linear fitting step. Figure 6 presents the results of this example in pictorial 

form. 

 

 

Figure 6: Points and surfaces of the example in subsection 5.2. Green are points generated from the initial 

function, blue points are the points belonging to the first class, Red points are the points belonging to the 

second class, black diamond identify support vectors of the first class and the Yellow surface identifies the 

hyper-surface obtained with the SR via GP. 
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5.3 Example for four independent variables 

As mentioned, there is no conceptual difficulty in applying the proposed methodology 

to higher dimensional problems. Of course, the computational resources required increase 

exponentially with the number of independent variables (the so called curse of 

dimensionality). Also the quality of the measurements must be adequate and the number of 

examples sufficient. But these are problems related to the available computational power 

and/or the quality of the data; in no way they affect the applicability of the proposed 

technique. Indeed it has been verified with a series of systematic tests that, with adequate 

level of computer time, problems in higher dimensions can also be solved.  

In this subsection, we describe the results of the application of the SVM-GP 

methodology to a more complex and noisy database. This example can be considered of the 

level of complexity of the actual problem discussed in the following sections, namely the 

determination of the disruptive region in terms of traditional signals available in real time. To 

this end, a five-dimensional synthetic database has been generated with the characteristics 

described in Table III. 

 

Table III Settings for testing SVM-GP on a five-dimensional synthetic database 

  

Steps: Values: 

Initial Function y = sin( x1 + x2 ) - 0.5 x3 x4 

Ranges of Variables 
-1.5 < x1 < 1.5     &     -2 < x2 < 2 

0 < x3 < 2     &     2 < x4 < 4 

Number of Nodes for Each Class 2000 

Thickness of the data's bulk 3 

Offset 10% of y domain 

Classification Noise ~ 4% 

 

Then the procedure of finding the best sigma for the SVM has been applied and the 

best sigma for the classification is equal to 0.6. The final accuracies of classification for the 

train and test data are presented in Table IV. 

 

Table IV: The accuracies obtained by the SVM for the train and test data on the 

classification of the synthetic database with the best sigma that equals to 0.6 
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Database Type: Classification Accuracy in Percent: 

Train Data 96.1337 

Test data 96.0422 

 

After generating the grid and finding the hyper-surface points, SR via GP has been 

applied and the following expression for the hyper-surface has been obtained: 

 

y = 0.9334 sin (0.9190 ( x1 + x2 ) ) - 0.5010 x3 x4      (9) 

 

The obtained equation is in good agreement with the initial function, reported in Table 

III. The quality of this estimate can be confirmed by comparing the success rate of the SVM 

and of the equation found by SR via GP. The classification success rate of the equation found 

with SR is reported in Table V (to be compared with the results reported in Table IV).  

 

Table V: The accuracies obtained for the train and test data for the classification 

of the synthetic database with the expression obtained via GP 

Database Type: Classification Accuracy in Percent: 

Train Data 96.1060 

Test data 96.3061 

 

From the comparison of the success rates obtained via SVM and with the derived 

mathematical equations, it can be concluded that the SVM-GP method has excellent 

performance, even for more complex databases and in higher dimensionality, for interpreting 

the SVM hyper-plane as a hyper-surface equation. 

 

5.4 Computational Requirements 

As an indication about the computational resources required for the application of the 

proposed technique, the run time for the example of 5 variables has been calculated. Using a 

computer with 8 cores and 24 gigabyte of RAM (an Intel Xeon E5520, 2.27 GHz, 2 

processors), with Windows 64 bit operating system, finding the hyper-surface points takes 3 

hours and the GP calculation 48 hours. The number of points on the grid is 164 * 51 is; 16 for 

the four independent variables and 51 for the dependent one. The run time to train the SVM is 
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not a major issue since it is typically of an order of magnitude shorter than the GP 

calculations and therefore negligible compared to the other steps of the procedure. 

 

 

6 Database of JET with the ILW wall 

In building the database, the intentional disruptions have been excluded from the 

training. Only time slices, whose plasma current exceeds 750 kA, have been considered but 

no other general selection has been implemented. All the signals have been resampled at 1kH 

frequency. Alarms, which are launched 10 ms or less from the beginning of the current 

quench, are considered tardy, since 10 ms is the minimum time required on JET to undertake 

mitigation action. Alarms triggered more than 2.5 s before the beginning of the current 

quench are considered early. 

In more detail, the campaigns C29 to C31 have been considered. After proper 

cleaning and validation of the DB, overall 187 disruptive and 1020 non disruptive shots are 

included, unless differently specified (in some analyses at the end of the paper the need to 

consider additional variables not always available will require to slightly reduce the statistical 

basis). A plot showing the operational space covered by the database is shown in Figure 7. As 

can be seen from the reported plots, the set of discharges considered is representative of JET 

operation with the ILW; therefore the same quality of the results are to be expected also if the 

methodology is applied to other campaigns.  

 

 

7 A Data driven Model for JET with the ILW 

 

 
 

Figure 7 .Overview of the database 
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To illustrate the potential of the proposed methodology, in this section the task of 

extracting a mathematical model directly from the data is assessed. The case discussed in this 

section is an example for which the “a priori” knowledge about the problem is kept to a 

minimum. The tools are applied to the database without any bias. The objective of this 

example is to show how the technique proposed can be used to obtain a practical, easily 

interpretable and implementable formula, without necessarily providing a completely 

satisfying physical model. To expedite the formulation of the models, a specific training 

method is adopted, as described in the next subsection. This approach allows reducing to a 

minimum the number of examples required for the training, which is extremely important for 

exploratory applications, since the computational time required by the SVM increases 

exponentially with the number of examples. In subsection 7.2 the method is applied to a 

database of JET with the ILW. 

 

7.1 Adaptive approach to efficient training  

In line with previous cases [16,17], a quite simple approach has been implemented for 

the training. The predictors needs at least one disruptive and one non disruptive case to build 

the first model. In the campaigns analysed, the first disruption occurred after a while and 

therefore the first model was obtained after the first disruption. For the disruptive discharge, 

12 ms before the beginning of the current quench have been divided in 4 intervals of 3 ms 

each and the averages of these three intervals have been used as input to the training. The 10 

discharges prior to the first non disruptive have been used as examples for the safe case. For 

each of these discharges, a random interval of 40 ms, with plasma current above 750 kA, has 

been divided in four 10 ms ranges and the averages over those subintervals have been used as 

inputs for the training. 

The model derived as previously described has been used for the following discharges 

until the first misclassification. When the previous model misses a disruption or causes a 

false alarm, the shot not properly classified is included in the training set. In this way a new 

model is determined, which is deployed to analyse the following discharges until the next 

error, which provides an example for a new retraining. For every retraining, if the previous 

error is a missed alarm, again the same information about this shot is included in the training 

set (12 ms before the beginning of the current quench are divided in 4 intervals of 3 ms each 

and the averages of these three intervals are the additional features). If the error requiring the 

retraining is a false alarm, an interval of 40 ms before the alarm is divided in four 10 ms 

ranges and the averages over those subintervals are the new features. In the case of the false 
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alarms a longer interval has proved better for the predictor to recognise that the discharge is 

in a safe region of the operational space.  

It is worth pointing out that the adopted procedure for the training of the probabilistic 

SVM is very efficient. Only the most relevant information is retained in the training set. 

Therefore, the computational requirements of the SVM training are kept to a minimum. The 

version of the adaptive training 

adopted in this paper has been 

devised to maximize the success 

rate of the classification, in 

order to generate the best 

mathematical models. A version 

compatible with real time 

applications has been already 

presented in [18]. For the 

specific database analysed in 

this paper, adopting the real 

time compatible training 

methodology would not cause 

any significant reduction in 

performance and would not 

alter the conclusions in any 

noticeable way.  

 

7.2 Adaptive approach to 

efficient training  

JET database with the 

ILW has been used to train the 

SVM as described in the 

previous subsection. For 

continuity with the previous 

literature, the locked mode and 

internal inductance signals have 

been provided as input to the 

 

 
Figure 8. Top: plot of the safe and disruptive regions of the 

operational space in JET with the ILW. The colour code 

represents the posterior probability of the classifier. The 

black circles are all the non-disruptive shots (10 random 

time slices for each shot). The red squares are the data of 

the disruptive shots at the time slice when the predictor 

triggers the alarm. The blue crosses are the false alarms. 

Bottom: zoom of the most relevant boundary region. 
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SVM. Indeed various studies performed in the past have shown the importance of these two 

quantities in predicting the occurrence of a disruptions not only on JET but also on other 

devices. The posterior probabilities have then been calculated as indicated in Section 2.2. The 

adaptive training has been performed for a whole range of threshold probabilities. It turns out 

that the probability value, which provides the best performance, is 60%. Therefore the model 

trained with this threshold is the one whose results have been reported in the paper. It is 

worth mentioning that for an interval of 10% around this 60% value, the models give all 

almost exactly the same results. So the choice of the threshold is not too critical for the 

purpose of the present paper, the identification of a manageable formula to describe the 

boundary between safe and disruptive regions of the operational space. The results of the 

systematic tests performed are reported in Appendix A.  

The curve level plots of the posterior probability obtained are reported in Figure 8. The 

curve in light blue represents the equation derived with SR via GP (see later). The safe and 

disruptive regions are well separated in the plane of the locked mode and internal inductance. 

The clear separation is confirmed by the results in terms of success rate and false alarms 

reported in Table VI. From Table VI it is easy to appreciate the extremely good performance 

of the probabilistic SVM.  

The methodology, described in the Section on Symbolic Regression, has then been 

applied to the model obtained at the end of the adaptive training. The following model has 

been retained as a good compromise between complexity and accuracy: 

 

𝑦(𝑥) = 𝑎0exp (𝑎1𝑥𝑎2)  (10) 

 

Table VI. The results reported in the row Training refer to the ones obtained by the adaptive 

training. The ones in the row  called Test have been obtained by reapplying the final model at the 

end of the last campaign back to the entire set of data. 

Model Succes Rate Tardy Early Missed False 
Missed + 

Tardy  

TRAINING 
96.2 % 

(180/186) 

2.7 % 

(5/186) 

0.5 % 

(1/186) 

0.5 % 

(1/186) 

3.9 % 

(40/1016) 

3.2 % 

(6/186) 

TEST 
97.9 % 

(183/187) 

2.1 % 

(4/187) 

 0 % 

(0/187) 

 0 % 

(0/187) 

2.8 % 

(29/1020) 

2.1 % 

(4/187) 
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Where y is the locked mode expressed in 10-4 Tesla, x the internal inductance and the 

coefficients assume the values:  

 

𝑎0 =  5.4128 ± 0.0031; 

       𝑎1 = −0.11614 ± 0.00085;               (11) 

  𝑎2 =  2.21 ± 0.011; 

 

 

The performance of the previous equation, in terms of the usual figures of merit 

adopted to qualify predictors, reproduce very well the one of the original model as can be 

appreciated from Table VII.  

 

Comparing Tables VII 

with Table VI, it is 

possible to see how the 

obtained equation 

reproduces almost exactly 

the performance of the 

original model derived by 

training the probabilistic SVM. In graphical terms, equation (10) is shown in light blue in 

Figure 8; from the plots of this figure, it easy to appreciate how the analytical formula 

obtained with the proposed methodology follows almost exactly the 60 % curve level of the 

probabilistic SVM. Therefore, reformulating the equation of the boundary, in a more 

interpretable way than the output of the SVM, does not imply any significant loss of 

information in this case. In addition to the good performance, it must be appreciated how 

equation (10) represents a major simplification compared to the sum of Gaussians centred on 

the support vectors, the model of the original SVM training. From the point of view of the 

physics interpretation, equation (10) shows how the critical amplitude of the locked mode 

depends on the internal inductance and therefore on the current profile. In particular, more 

peaked profile can tolerate a higher level of the locked mode before disrupting. This evidence 

is not in contrast with the treatment proposed in [30], where it is argued that the amplitude of 

the locked mode is the important quantity to interpret the boundary between the safe and 

disruptive regions of the operational space (see next section). In any case, independently from 

Table VII: The figures of merit obtained using equation (10). 

 

Probability 

Thershold 

Success 

rate  
Tardy Early Missed False 

60 
97.9 % 

(183/187) 

2.1 % 

(4/187) 

0 % 

(0/187) 

0 % 

(0/187) 

2.8 % 

(29/1020) 
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the details of the physics involved, it is clear from equation (10) and the experimental 

evidence of Figure 8 that a simple threshold in the locked mode, the criterion traditionally 

used on JET and other devices to launch alarms, is not a the best choice to maximize the 

performance of predictors.  

 

 

8 Deployment of the proposed approach in support to model building 

In the previous section, an explorative case has been described. Data driven models 

are derived and tested until the best one is selected. In this section, the same tools are applied 

to the assessment of the quality of already devised models. For the present example, 

therefore, guidance, in particular with regard to the signals to be used as inputs to the 

predictors, is obtained from already proposed empirical models. Then a traditional training of 

the SVM has been implemented. 

A first attempt at deriving a reasonable equation separating the safe and disruptive 

regions of the operational space has been tried using the variables at the basis of the Hugill 

and beta limit plots. As described in section 1, these traditional representations have 

practically zero predictive power for JET with the ILW, at least for the campaigns considered 

in this study. On the other hand, one could ask whether the poor success rates are the 

consequence of the simple mathematical form of the equations, even if the variables have a 

high information content and could be good inputs for a classifier. To falsify this hypothesis, 

the developed methodology has been systematically applied to the quantities, which appear in 

both representations. Unfortunately, the results have been very negative. The success rate has 

never been sufficient and the rate of false alarms might even reach 40 %. Therefore, we have 

to conclude that the quantities entering the Hugill and beta limit plots do not constitute an 

effective set of features to perform prediction in JET with the ILW.  

The main reason for the poor performance of the Hugill and beta limit representations 

resides in the fact that they do not include the locked mode and the internal inductance among 

the inputs. The locked mode and the internal inductance signals are really much more 

informative quantities for disruption prediction than the ones use in the Hugill and beta limit 

plots. This is also confirmed by a recent model developed for the level of the mode locked 

leading to disruptions in various Tokamaks [30]. In this study, the amplitude of the locked 

mode, considered the consequence of magnetic islands locked to the wall, is studied in JET, 

ASDEX-U and COMPASS. The simple locking of the magnetic configuration to the wall is 

not deemed a sufficient condition per se to trigger disruptions; the amplitude is proposed to 
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be the real quantity of relevance. Based on theoretical considerations involving the Chirikov 

criterion, the amplitude of the island size required to trigger a disruption was determined. A 

scaling for the value of the locked mode amplitude, considered the limit for the triggering a 

disruption, was derived by considering its value at the time of the beginning of the current 

quench. The resulting equation determining the threshold for the occurrence of a disruption is 

found to be: 

 

  

𝐵𝑀𝐿(𝑟𝑐) = 𝑐 ∙ 𝐼𝑃
𝑎𝐼 ∙ 𝑎𝑎𝑎 ∙ 𝑞95

𝑎𝑞 ∙ 𝑙𝑖(3)𝑎𝑙𝑖 ∙ 𝜌𝑐

𝑎𝜌   (12) 

 

Where BML is the amplitude of the locked mode, c is a constant, ai are regression 

 
Figure 9. Plots of the critical value of the locked mode, predicted by equation (12), versus the 

various quantities used in the regression. Red circles: critical values of the locked mode at 

moment of the alarm. Black squares: critical values of the locked mode at the time 15 ms 

before the beginning of the current quench. Green circles: critical values of the locked mode at 

the flat top of the same discharges. Before the beginning of the current quench the overlap 

between the values of the locked mode is almost complete 
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coefficients, Ip is the plasma current,q95 the safety factor at 95% of the radius, a is the minor 

radius, li is the internal inductance and c the distance between the plasma centre and the 

location of the magnetic loops measuring the amplitude of the locked mode.  

For the database analysed in this paper, equation (12) has been calculated using for 

the parameters the values suggested in [30] and reported in the following: 

 

𝑐 = 8.5; 𝑎𝐼 =  1.07; 𝑎𝑎 =  −1.1;  𝑎𝑞 =  −1.2;  𝑎𝑙𝑖 = 1.2; 𝑎𝜌 = −2.8   

 

Unfortunately equation (12) does not fit well the data of campaigns C29-C31 of JET 

with the ILW. This can be appreciated by inspection of the plots reported in Figure 9. For the 

170 disruptions considered in the present study, the plots of Figure 9 report the critical value 

of the locked mode, as predicted by equation (12), versus all the regressors. The values of the 

critical locked mode has been calculated with equation (12) with the values of the parameters 

suggested in [30] at the following times: at the time slice of the alarm (when the experimental 

locked mode reaches the critical value predicted by the equation) and 15 ms before the 

beginning of the current quench. The estimates of the critical threshold have also been 

calculated for the flat top, safe phase of the same discharges. From the plots reported, it can 

be easily seen that before the beginning of the current quench there is full overlap between 

the estimates for the flat top and the pre-disruptive time slices. Therefore, these estimates are 

not extremely useful for prediction. This has been verified by testing the performance of the 

critical value of the locked mode proposed in [30] for the entire C29-C31 campaigns (for a 

total of 170 disruptive shots and 987 safe discharges). Again, all the time slices at plasma 

current higher than 750 kA have been included in the analysis. The final statistics are 

reported in Table VIII, from which it can be appreciated how the success rate is certainly less 

than satisfactory.  

Table VIII:  The traditional figures of merit to assess the performance of predictors for the case of 

equation (12) 

Succes 

Rate 
Tardy Early Missed False 

Missed 

+ Tardy  

Mean 

[ms] 

Std 

[ms] 

51.85 % 

(70/135) 

26.67 % 

(36/135) 

0 % 

(0/135) 

21.48 % 

(29/135) 

1.96 % 

(20/1020) 

48.15 % 

(65/135) 
184 349 
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Even if equation (12) does not seem to provide very useful information for prediction 

in JET with the ILW, a least for the campaigns analysed, the set of quantities proposed 

contain signals which are unquestionably very important. In particular the locked mode and 

the internal inductance have proved to be essential also in the analysis reported in Section 7. 

Therefore, it can be argued that it is the power law form of equation (12), which is not 

adequate to model JET data. The probabilistic SVM has therefore been applied to the 

regressors used in equation (12) to derive the critical value of the locked mode signal. The 

models derived present very good performance, as can be appreciated by inspection of the 

table in Appendix B. In this case, using a threshold of 80% in probability seems to provide a 

very good compromise between success rate and false alarms. For this choice of threshold 

 

 
 

 

Figure 10. The boundary between the safe and disruptive regions of the operational space in 

the three dimensions x, y, z.  Only the first disruptive point has been reported to help 

visualizing the behaviour of data. 
In green the hypersurface obtained with symbolic regression and non linearly fitted to the 

data. In red the first disruptive point, in blue all the non disruptive ones.  
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probability, the success rate is about 95% and the false alarms are 5%. Therefore the model 

performs slightly worse than the one of equation (10) but it is very competitive.  

The main reason for the better performance of the machine learning models, 

compared to equation (12), resides as expected in the functional form of the final equations. 

Unfortunately, it is not possible to apply the technique proposed in this paper also for such a 

high number of regressors. Indeed the dimensionality of equation (12) is too high and the 

number of disruptions insufficient (by orders of magnitude). In such a number of dimensions, 

the points are to sparse in the hyperspace and it is not possible to reconstruct a boundary with 

any physical sense. On the other hand, the number of really relevant quantities for JET is 

three: locked mode, internal inductance and q95. The others, such as the distance between the 

plasma boundary and the location of the coils measuring the locked mode, are introduced in 

[30] to obtain a multimachine scaling, which is not the objective of the present studies. In 

three dimensions, it is still possible to apply the proposed methodology of SR via GP with 

170 disruptions as examples. Deploying again the probabilistic SVM, it has been found that 

the equation for the model with threshold 80% provides again a good compromise between 

success rate (94%) and false alarms (5.2%). A graphical representation of the boundary 

between the safe and disruptive regions of the operational space in three dimensions is shown 

in Figure 10.  

Using the 80 % threshold model, an advanced application of symbolic regression has 

been deployed to obtain the equation of the boundary between the safe and disruptive regions 

of the operational space. The original range of the variables (including disruptive and non-

disruptive samples) is: ML ϵ [0.0030, 3.1] mT, q95 ϵ [2.07, 7.81], li ϵ [0.45, 1.64]. The 

function to be identified express the critical locked mode amplitude as a function of the 

internal inductance and q95, i.e f(x,y)=LM( li, q95). The obtained equation reads: 

 

LM = 0.475 − 0.017 ⋅ 𝑦0.95 − 0.014 ⋅ 𝑥1.00  (13) 

 

where 

𝑥 = 𝑙𝑖[𝐻] 

y = q95 

z = LM[mT] 
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The plots of Figure 10 show how equation (13) fits the boundary between the safe and 

disruptive regions of the operational space.  

To confirm 

the quality of the 

obtained results, 

equations (13) has 

been deployed to 

classify the 

experimental points 

used to train the original probabilistic SVM. The good quality of the obtained results can be 

appreciated by inspection of Tables IX and X. It is interesting to note that the equations 

obtained with Symbolic Regression via Genetic Programming have a success rate that 

perfectly matches the one of the original probabilistic SVM.  

Therefore, the results of the investigation with the proposed combination of machine 

learning tools indicate that the quantities considered in the model of equation (12) are very 

informative about disruptions. On the other hand, the equation has a different form and in 

particular it cannot be represented by a simple power law, as assumed implicitly in [30] by 

applying log regression to the experimental data. To interpret the results the basics physics 

explanations will 

probably have to 

be revisited. In 

practical terms. 

Equation (12) 

indicates that the 

configuration 

stability becomes 

more delicate as the internal inductance and the q95 increase, since at higher values of these 

quantities the plasma can tolerate a smaller value of the locked mode before disrupting.  

 

 

9 Conclusions 

In this paper, it is shown for the first time how it is possible to derive in full generality 

an equation for the boundary between safe and disruptive regions of the operational space 

directly from the classification provided by a machine learning tool, namely a probabilistic 

Table IX: Performance of the p=0.8 probability hypersurface of 

SVM and of the nonlinearly fitted hypersurface from GP at 

classifying non disruptive pulses. 

 

 Correctly classified False 

SVM 964/987=0.98 23/987=0.02 

GP 964/987=0.98 23/987=0.02 

 

Table X: Performance of the p=0.8 probability hypersurface of SVM 

and of the nonlinearly fitted hypersurface from GP at classifying 

disruptive pulses. 

 

 Correctly 

classified 

Early Missed Tardy 

SVM 156/170=0.917 0/170=0.0 2/170=0.012 12/170=0.071 

GP 156/170=0.917 0/170=0.0 2/170=0.012 12/170=0.071 
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SVM. This goal is achieved by an original application of Symbolic regression via Genetic 

Programming. The performance of the derived equations, in terms of success rate, are 

practically the same as the original machine learning tools. Therefore, the critical aspect to 

obtain valid equations is the quality of the statistical basis used to train the machine learning 

tools.  

The data driven models derived with the methodology described in the paper, clearly 

outperform by a factor, if not by one order of magnitude, traditional empirical models based 

on representations such as the Hugill or the beta limit plots. The derived relations for the 

boundary are also orders of magnitude easier to interpret that the typical equations obtained 

from traditional SVM. Therefore, the developed techniques can be tuned to find the best 

trade-off between complexity and realism; the derived models are of a manageable 

complexity and, at the same time, do not oversimply the problem at the expenses of poor 

success rates like the power laws recently proposed. Moreover, by appropriate selection of 

the Symbolic Regression basic function, it is possible to obtain equations with physical 

meaning, which can be compared with theory or used to guide model developments. It is 

worth emphasizing that the formulation of the equations in more physically meaningful form 

does not cause any reduction in the success rate of classification. Therefore, these equations 

can be usefully deployed also in real time networks for the actual prediction of avoidance of 

disruptions.  

It is important to notice that the analysis presented show very clearly how, at least in 

the features space investigated in the paper, the boundary between the safe and disruptive 

regions of the operational space can have a quite different mathematical form, depending on 

the number of regressors used. In the case of two independent variables, the equation of the 

boundary is an exponential whereas in a three dimensional space becomes a linear equation. 

This emphasizes the importance of the methodology proposed, which does not force a priori 

the models to have any predefined mathematical form. Moreover, power laws have not 

proved to be very useful expressions for the boundary on the operational space in JET with 

the ILW.  
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APPENDIX A: Performance of the MAPP for various choice of the triggering window: 

database of JET with the ILW. 

 

 

 

 

 

 

Table A1. Main figures of merit of MAPP quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented retraining 

after one time slice detected as disruptive.  

 

Soglia 

post prob 

DISR 

Succes 

Rate 

Missed False Early Tardy Mean 

[ms] 

Std 

[ms] 

20 96.77 2.69 4.72 0.54 2.15 336 345 

30 96.77 2.69 4.72 0.54 2.15 336 345 

40 96.77 2.69 4.53 0.54 2.15 335 345 

50 96.77 3.23 3.74 0.00 2.69 326 334 

60 96.77 2.69 3.84 0.54 2.15 334 345 

70 96.77 3.23 3.35 0.00 2.15 330 342 

80 94.09 5.38 2.07 0.54 4.30 321 344 

 
 

Table A2. Main figures of merit of MAPP quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented retraining 

after two consecutive time slices detect a disruption.  

 

Soglia 

post prob 

DISR 

Succes 

Rate 

Missed False Early Tardy Mean 

[ms] 

Std 

[ms] 

20 96.77 2.69 5.12 0.54 2.15 335 345 

30 96.77 2.69 4.53 0.00 2.15 335 345 

40 96.24 3.23 3.44 0.54 2.69 331 344 

50 96.24 3.23 3.25 0.54 2.15 330 341 

60 96.24 3.76 3.65 0.00 3.23 333 344 

70 94.62 4.84 2.66 0.54 3.76 324 343 

80 93.55 6.45 1.77 0.00 5.38 317 342 

 
 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table A3. Main figures of merit of MAPP quality using the posterior probability to decide 

whether to trigger an alarm. This adaptive predicators have been implemented retraining 

after three consecutive time slices detect a disruption.  

 

Soglia 

post prob 

DISR 

Succes 

Rate 

Missed False Early Tardy Mean 

[ms] 

Std 

[ms] 

20 95.70 3.76 4.43 0.54 3.23 332 344 

30 94.09 5.91 3.25 0.00 4.84 323 340 

40 94.09 5.38 2.95 0.54 4.30 325 342 

50 94.62 5.38 2.27 0.00 4.30 324 340 

60 92.47 6.99 2.07 0.54 6.45 309 334 

70 92.47 7.53 1.87 0.00 6.45 319 341 

80 93.01 6.99 1.18 0.00 4.84 321 342 
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APPENDIX B: Performance of the MAPP for various threshold percentages using as 

inputs: ML[mT], q95,Li[H],Rmag~ρc,a[m],I[MA].  

 

 

 

Table B1 Results of the Classification (170 disruptive pulses and 987 non 

disruptive ones) using as inputs ML[mT], q95,Li[H], without standardizing the 

variables. The disruption probability is indicated by pd. 

pd=0.5 

Non 

Disruptive 

Correct False Early Missed Tardy 

 0.963  

=950/987 

0.037  

=37/987 

   

Disruptive      

 0.929  

=158/170 

 0.006  

=1/170 

0.012  

=2/170 

0.053  

=9/170 

pd=0.6 

Non 

Disruptive 

Correct False Early Missed Tardy 

 0.970 

 =957/987 

0.030  

=30/987 

   

Disruptive      

 0.924  

=157/170 

 0.006  

=2/170 

0.012  

=2/170 

0.059  

=10/170 

pd=0.8 

Non 

Disruptiv

e 

Correct False Early Missed Tardy 

 0.98 

=964/987 

0.002  

=23/987 

   

Disruptiv

e 

     

 0.917  

=156/170 

 0.0 

=0/170 

0.012  

=2/170 

0.071  

=12/170 

 

 


