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Abstract. In order to contribute to the understanding of runaway electron

generation mechanisms during tokamak disruptions, a test particle tracker is

introduced in the JOREK 3D non-linear MHD code, able to compute both full and

guiding center relativistic orbits. Tests of the module show good conservation of the

invariants of motion and consistency between full orbit and guiding center solutions. A

first application is presented where test electron confinement properties are investigated

in a massive gas injection-triggered disruption simulation in JET-like geometry. It is

found that electron populations initialised before the thermal quench (TQ) are typically

not fully deconfined in spite of the global stochasticity of the magnetic field during the

TQ. The fraction of “survivors” decreases from a few tens down to a few tenths of

percent as the electron energy varies from 1keV to 10MeV. The underlying mechanism

for electron “survival” is the prompt reformation of closed magnetic surfaces at the

plasma core and, to a smaller extent, the subsequent reappearance of a magnetic

surface at the edge. It is also found that electrons are less deconfined at 10MeV than

at 1MeV, which appears consistent with a phase averaging effect due to orbit shifts at

high energy.
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1. Introduction

Runaway Electrons (RE) are defined as the fraction of a plasma electron population

being in the phase space region where the drag force due to collisions does not

compensate the acceleration caused by a driving electric field [1]. RE beams carrying a

substantial fraction of the plasma current can be generated during a tokamak disruption.

When such an event happens in large machines, for example in JET [2], the plasma

facing components struck by the terminating RE beam suffer high heat loads, sometimes

leading to melting or sputtering [2]. ITER is designed to generate plasmas having high

currents (Ip ≈ 15 MA) which implies that a larger energy may be contained in RE beams.

RE impacts are therefore a threat to the successful operation of ITER and prevention

or mitigation techniques are necessary [3, 4]. The design of such techniques should

ideally rely on a good understanding of the mechanisms underlying the generation and

dissipation of RE.

A typical disruption [5] comprises two main consecutive phases: the Thermal

Quench (TQ), during which the thermal energy of the plasma is lost over a millisecond

timescale, and the Current Quench (CQ), i.e. the fast decay of the plasma current due

to the very large post-TQ plasma resistance, which terminates the discharge. During

the CQ, a strong self-induced toroidal electric field appears in the plasma which is

typically large enough to give rise to a runaway avalanche, i.e. an exponentiation of

the number of RE due to knock-on collisions of RE onto thermal electrons [6]. The

avalanche mechanism however needs an initial “seed” RE population and the origin of

this seed is less clear. According to [7] (for ITER) and [8] (for Tore Supra), a direct

acceleration of thermal electrons by the electric field, the “Dreicer mechanism” [1,9], is

unlikely to take place during the CQ because the electric field is not large enough. A

more likely candidate is the so-called “hot tail” mechanism [10,11], which relies on the

fact that electrons from the high energy tail of the pre-TQ distribution take a longer time

to thermalise than the TQ duration. As a consequence, these electrons are still “hot”

at the beginning of the CQ and may therefore be accelerated by the electric field and

become RE. Another possibility is that RE may be formed by the Dreicer mechanism

already during the TQ [12–14].

The last two above-mentioned mechanisms can however be envisaged only if the

relevant fast electrons remain (at least partly) confined throughout the TQ. This is

questionable because it is thought that magnetohydrodynamic (MHD) activity during

the TQ makes the magnetic field stochastic over a significant part (if not all) of the

plasma volume. Due to their fast motion along field lines, these electrons may therefore

be expected to be lost. However, MHD fluctuations decay after the TQ so that flux

surfaces may promptly reappear (as indeed observed in simulations, see below, and

also as suggested experimentally by means of a tomographic reconstruction of soft X-

ray data [13]) and stop the loss process. It is therefore difficult to conclude a priori

on how much of the fast electrons eventually remain in the plasma. This is the main

question addressed in the present paper. It should be noted that, due to the extremely
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large avalanche amplification factor expected in ITER (present theoretical estimations

suggest that up to 40 e-folds may be possible [14]) and to the fact that only ∼ 1019 RE

would be sufficient to carry 10 MA in ITER, even tiny fractions of “survivors” many

orders of magnitude below 1% could make a very significant difference.

The consequences of magnetic stochasticity on fast electron transport have been

explored in several theoretical [15–19], numerical [20–22], and experimental [19] works,

but not necessarily in disruptive situations. From the experimental point of view and in

a disruptive context, a clear trend has been observed in some machines toward smaller

RE currents as MHD fluctuations during (and just after) the TQ get stronger [23, 24].

Regarding numerical modelling, to our knowledge the only studies on fast electron

transport in fields from disruptions simulated by a 3D non-linear MHD code have been

performed by Izzo et al. with the NIMROD code [25,26].

In view of addressing the above questions, we introduce in the 3D non-linear MHD

code JOREK [27, 28] a module capable of computing relativistic test electron full and

guiding center orbits. In the present paper, attention is given to the description of the

new module (Section 2) and its tests (Section 3). A first physical application to test

electron confinement in a JOREK-simulated JET disruption triggered by a Massive Gas

Injection (MGI) is then presented (Section 4). Section 5 discusses the results and future

plans.
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2. A relativistic test particle module in JOREK

2.1. Full orbit model

The dynamics of relativistic particles is described by the following set of equations,

called the Full Orbit (FO) model [29]:

ẋ =
p

mγ
(1a)

ṗ = q

(
E +

p

mγ
×B

)
(1b)

γ =

√
1 +

(
p

mc

)2

, p2 = p · p (1c)

where q is the particle charge, m its rest mass, c the speed of light and E and B

the electric and magnetic fields. A numerical computation of the particle trajectory

requires the resolution of the gyromotion [29, 30] which implies a time step of the

order of ∆t = 0.01 · Tgyro where Tgyro = 2π mγ
|q|B is the gyration period (in this work

Tgyro = Tgyro|γ=1 = 2π m
|q|B will be implicitly used) [29], i.e. ∆t ∼ 10−13 s for an electron

in a 2T magnetic field. This means that a few 1010 iterations are needed in order to

track an electron for a few milliseconds, which may result in a poor solution accuracy

if a non-conservative scheme is used [31]. Therefore the Volume Preserving Algorithm

(VPA), a symplectic scheme developed in [32–34], is implemented. For completeness,

the VPA scheme for the kth iteration is reported hereafter:

xk+ 1
2

= xk +
∆t

2m

pk√
1 +

(
pk
mc

)2 (2a)

p̂ = pk +
q∆t

2
Ek+ 1

2
(2b)

p = Cay

q∆t
2m

×Bk+ 1
2√

1 + ( p̂
mc

)2

 · p̂ (2c)

pk+1 = p +
q∆t

2
Ek+ 1

2
(2d)

xk+1 = xk+ 1
2

+
∆t

2m

pk+1√
1 +

(
pk+1

mc

)2 (2e)

×B =


0 B3 −B2

−B3 0 B1

B2 −B1 0

 (2f)

where Bj is the jth component of the magnetic field vector, Cay
(
A
)

=(
I − A

)−1 (
I + A

)
is the Cayley transform of the matrix A, and I is the identity matrix.
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It is important to stress that the equations of motion are resolved in a Cartesian reference

system in order to preserve symplecticness. The perfect conservation of the symplectic

structure implies that deviations of the invariants of motions are bounded, in accordance

with the scheme order and time step, and do not drift (for a deeper insight into this

subject see [35] and references therein). In reality, numerical errors arising from the

description of the plasma fields (such as the finite numerical solution smoothness and

accuracy) and from the particle tracking procedure (described in Section 2.4) inevitably

break the conservation of the symplectic structure. Thus, a perfect bounding of the

invariants of motion should not be expected.

Finally, we remark that in the following, we use the exact Cayley transform instead

of the computationally less expensive approximated form proposed in [32]. This choice

is based on a comparison between the two methods, computing the orbit of an electron

with a kinetic energy of 10MeV and a pitch angle of 170◦ in an equilibrium plasma

field. The total simulation time and time step were respectively of T = 1 ms and

∆t = 1.4 · 10−2 · Tgyro. Despite a 27% reduction of computational time (average on 10

tests), the approximated Cayley transform was found to perform much worse regarding

the conservation of the canonical toroidal momentum (Pφ) with fluctuations having an

amplitude up to 2.5%, while the exact Cayley transform showed a Pφ conservation error

of only 2.8 ·10−9 (the total energy conservation errors of the two methods were similar).

2.2. Guiding center model

The Guiding Center (GC) model used in the JOREK particle tracker is the first order

energy-like relativistic GC model described in [36] and [37]:

Ẋ =
1

b ·B∗

(
qE×b− p‖

∂b

∂t
× b +

mµb×∇B + p‖B
∗

mγGC

)
(3a)

ṗ‖ =
B∗

b ·B∗
·
(
qE− p‖

∂b

∂t
− µ∇B

γGC

)
(3b)

γGC =

√
1 +

(
p‖
mc

)2

+
2µB

mc2
(3c)

where X is the GC position vector, p‖ is the particle momentum in the direction

of the magnetic field, µ =
‖p−p‖b‖2

2mB
is the magnetic moment [36], B is the magnetic

field norm, b = B
B

the magnetic field direction and B∗ = p‖∇× b + qB is the so-

called “effective magnetic field”. Being a reduced dynamical model, the first order GC

approximation is associated to a number of validity conditions:

1 The electromagnetic field time scale T has to be much longer than the particle

gyro-period Tgyro:
Tgyro
T
� 1, with Tgyro defined in subsection 2.1.

2 The electromagnetic field length scale L has to be much larger than the gyro-radius

ρ: ρ
L
� 1, where ρ =

‖p−p‖b‖
|q|B [29].
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3 The particle displacement in a gyro-period along b has to be small compared to the

electromagnetic field parallel variation length scale L‖:
l‖
L‖
� 1, where l‖ =

2π|p‖|
|q|B is

an estimate from equation 3a of the GC parallel displacement.

4 The electric field has to satisfy
|E‖|
E⊥
∼ ρ

L
� 1, having defined E‖ = E·b and

E⊥ = ‖E− E‖b‖. This condition is related to the GC ordering self-consistency as

discussed in [37,38].

In order to make estimates regarding conditions 1, 2 and 3 in a RE context, the

length and time scales for electrons with energies between 0.5 and 500 MeV, as well as the

order of magnitude of the ratios Tgyro
T

, ρ
L

and
l‖
L‖

are given in Table 1. These values assume

a magnetic field of 2 T and a tokamak major radius of 3 m and minor radius of 1 m (i.e.

JET-like parameters). Here, L and L‖ are calculated as the minimum gradient lengths

(L = min B
‖∇B‖ and L‖ = min B

|b·∇B|) of a simple axisymmetric equilibrium tokamak-like

magnetic field with a constant q=1 profile (estimations in fields from JOREK disruption

simulations are provided in Section 3). Their values are L= 2.66 m and L‖= 5.22 m.

The plasma characteristic time T is conservatively taken to be the smallest JOREK time

step used in the most extreme disruption simulations: T= 3 · 10−8 s (a typical JOREK

time step is within ∼ [10−7, 10−5] s). The Larmor radius is obtained using the limiting

pitch angle of 90 degrees while 0 degrees is used for the parallel displacement. Table 1

indicates that the GC model should be a good approximation for electrons up to a few

MeV while a numerical assessment is required for energies of tens of MeV. For energies

above hundreds of MeV, FO simulations are advisable [33]. Numerical assessments are

also required concerning the validity of condition 4 since it is very hard to estimate the

electric field a priori.

Ekin (MeV) Tgyro (ns) ρ (mm) l‖ (mm) OfM (Tgyro/T) OfM (ρ/L) OfM
(
l‖/L‖

)
0.5 0.035 1.45 9.14 10−4 10−4 10−3

5 0.19 9.15 57.5 10−3 10−3 10−2

50 1.77 84.2 529 10−2 10−2 10−1

500 17.5 835 5245 10−1 10−1 100

Table 1. Electron length and time scale estimates, as well as the order of magnitude

(denoted OfM) of the critical ratios for GC validity, at different energies (see text for

details)

In terms of numerical scheme, the GC equations are solved using the fifth

order Cash-Karp Runge-Kutta scheme described in [39], using a cylindrical (R,Z, φ)

coordinate system, where φ is the toroidal angle. An adaptive time stepping (allowing

only for a time step reduction from the one set by the user) has been implemented

in order to mitigate, if need be, the lack of symplecticness [31]. This is based on the

truncation error control method, originally developed in [40, 41] and reported in [42],

using the total energy and the canonical toroidal momentum as control variables. These

variables were chosen because they are conserved quantities in stationary axisymmetric
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fields. In what follows, the ∆t values are however chosen quite small so that the

controller action is almost negligible.

2.3. JOREK fields description

JOREK uses a finite element method to compute the plasma evolution in realistic

tokamak geometries [27]. In the reduced MHD version of JOREK, the field variations

in the poloidal plane are described using a Bézier surface for each quadrangular mesh

element [28]. In the toroidal direction, a Fourier expansion is used. A generic interpolant

of a JOREK variable (here noted ψ) has the following representation:

ψ(t, r, s, φ) =
N∑
k=0

[
Ψk(t, r, s)cos (kφ) + Ψ̄k(t, r, s)sin (kφ)

]
(4a)

Ak(t, r, s) =
3∑

i,j=0

Âk,i,j(t)B
3
i (r)B3

j (s) with Ak = Ψk or Ψ̄k (4b)

B3
n (p) =

3!

n! (3− n)!
pn(1− p)3−n (4c)

where t is the time and {r, s} ∈ [0, 1]× [0, 1] are the mesh element local coordinates.

An important feature of this representation is the C 1 continuity which comes from

coefficient constraints typical of Bézier surface representations [28]. A new feature

introduced within the JOREK particle module is the time interpolation of fields, which is

necessary due to the particle time step being typically orders of magnitude smaller than

the JOREK one. The Hermite-Birkhoff interpolant, which is used for all the simulations

presented in this paper, is given, for t0 ≤ t ≤ t1 (where t0 and t1 denote two successive

JOREK times), by [43]:

Ãk,i,j(t) =
1∑

m=0

[
Âk,i,j(tm)Cm (t) +

dÂk,i,j
dt

(tm)Dm (t)

]
(where Âk,i,j are the same as in Eq. 4b)

Cm (t) = [1− 2 (t− tm)
dlm
dt

(tm)]l2m (t)

Dm (t) = (t− tm) l2m (t)

lm (t) =
1∑

o=0,o 6=m

t− to
tm − to

The Hermite-Birkhoff interpolant is chosen for its properties of locality (the

interpolation in the time interval [t0, t1] depends only on the JOREK solution at t0 and

t1) and continuity (the global interpolation has C 1 continuity). Altogether, the use of

Bézier (Bernstein), Fourier polynomials and Hermite-Birkhoff interpolants guarantees

global C 1 continuity in space and time of both electric and vector potentials, which

translates to C 0 continuity for the electric and magnetic fields.
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2.4. Particle tracking in the JOREK mesh

As mentioned above, in the FO (resp. GC) model, particles are pushed in a global

Cartesian (resp. cylindrical) coordinate system. On the other hand, plasma fields are

given in mesh element local coordinates (see Section 2.3). Therefore a procedure to

find the element and the local coordinates {r, s} corresponding to the particle {R,Z}
position is required (after a conversion from Cartesian to cylindrical coordinates in the

FO case). This identification, called “particle tracking”, is achieved in the following

way.

First, the new particle position is sought in the local coordinate system of the

element where the particle was at the previous time step. Due to the fact that the

inverse of a Bézier interpolant is not known in closed form, a Newton algorithm with

backtracking is used. Denoting k the Newton iteration index, we define ∆{R,Z}k =

{R,Z}−{R,Z}k where {R,Z}k is obtained from {r, s}k by Bézier interpolation. A first

estimation of the increment of the particle local coordinates at the kth Newton iteration

is calculated as:

[ ∆rk ,∆sk]
T = [J(r, s)k−1]

−1 [ ∆Rk−1 ,∆Zk−1]
T (6)

where [J(r, s)k−1]
−1 is the inverse of the Jacobian matrix of the {r, s} → {R,Z}

coordinate transformation obtained at the (k− 1)th Newton iteration. In order to

increase the convergence rate, a backtracking method is used. Denoting m the

backtracking loop index, an estimate of the particle position in local coordinates is

calculated as:

{r, s}k,m = {r, s}k−1 + 0.5m−1 {∆r,∆s}k (7)

The backtracking loop terminates when the error errk,m at the present backtracking

iteration is smaller than the one at the (k− 1)th Newton iteration errk−1 , having defined:

errk,m =
√

(R−Rk,m)2 + (Z − Zk,m)2 and errk−1 =
√

(R−Rk−1)
2 + (Z − Zk−1)2. The

Newton algorithm stops when the error between two Newton iterations is below a pre-set

tolerance or when a pre-set maximum number of iterations is reached.

If the converged {r, s}k is not inside [0, 1] × [0, 1], which means that the particle

has changed element, a logic verifies which side of the element has been crossed and its

associated neighbouring element (which is known thanks to a mesh pre-processing) is

selected. The Newton method with backtracking is then repeated in the new element

using a position guess obtained from a first order estimation of the old element origin

in new element coordinates (also computed in the pre-processing). If convergence is not

reached then the particle is searched in each mesh element using a standard Newton

method.

2.5. Test particles initialisation

Test particles are typically initialised via a Monte Carlo method where the sequences

of random numbers are obtained using the PCG random number generator [44]. In
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physical space, particles are sampled from uniform distributions in Z and φ coordinates

while a correction is used for the radial position in order to guarantee uniform particle

density (R =

√
Rmin

2 + Ns

(
Rmax

2 − Rmin
2
)

where Ns ∈ [0, 1] is a random number from

a constant uniform distribution). A standard acceptance-rejection procedure [45] may

then be performed in order to initialise particle populations in a restricted region of

space, for example near a given flux surface, as done in Section 4.

Velocity space initialisation is obtained via Monte Carlo sampling from uniform

distributions of kinetic energy, pitch angle θ
(
cos θ = p·b

‖p‖

)
and (for FO only) gyroangle

χ (tanχ = p·e⊥
p·e∇ψ

, having defined e∇ψ = ∇ψ−(∇ψ·b)
‖∇ψ−(∇ψ·b)‖ and e⊥ = b× e∇ψ and denoting

with ψ the poloidal magnetic flux). Moreover, the code has the possibility to initialise

GC from particles, allowing comparisons between models. This is done by computing

the GC position using the first order GC transformation and its velocity by matching

particle total energy and toroidal canonical momentum as described in [46]:

xGC = x− B

qB2
× p (8a)

pGC‖ =
1

pφbφ

[
Rpφ + q

(
ψ − ψGC

)]
(8b)

µGC =
E0

2BGC


[
γ +

q

E0

(
Φ− ΦGC

)]2
−

1 +

(
pGC‖
mc

)2
 (8c)

where (∗)GC are GC quantities, (∗)φ vector components along the toroidal direction,

E0 = mc2 is the particle rest energy and Φ is the electric potential. It is necessary to

point out that particle and GC magnetic moments are not strictly equal (enforcing such

equality results in a overconstrained problem). This implies that their orbits will present

a (generally) small mismatch.
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3. Numerical tests

In this section, tests of the JOREK test particle module for both FO and GC models are

presented. Orbits are computed in fields from a JOREK disruption simulation of JET

pulse 86887, an ohmic pulse with Bt = 2 T, Ip = 2 MA, q95 = 2.9 where a disruption

was triggered using a D2 MGI [47,48]. Electrons are followed for a physical time of 1ms

in equilibrium (axisymmetric) or pre-disruptive (non-axisymmetric) MHD fields which

are kept stationary in time. This allows testing the conservation of, in the first case,

kinetic energy Ekin and toroidal canonical momentum Pφ, and in the second case, total

energy Etot. In each set of fields, both a passing relativistic electron (Ekin = 10 MeV,

θ = 170◦, χ = 0◦) and a trapped relativistic electron (Ekin = 1 MeV, θ = 100◦, χ = 0◦)

are tracked. A scan in time step ∆t is performed to verify the solution convergence. A

numerical assessment of the GC validity conditions (see Section 2.2) is also performed.

3.1. Tests in stationary axisymmetric fields

Figures 1 and 2 represent the solutions for respectively passing and trapped orbits in the

core region (initial position: R=3.25 m, Z=0.22 m, φ = 45◦) for stationary axisymmetric

fields.

It can be seen in Figure 1 that the passing electron describes a toroidal surface

(red and green dots for FO and GC, respectively), called drift surface, which is shifted

radially outward compared to magnetic surfaces (blue dots). This shift is related to the

grad-B and curvature drifts which play an important role at high energy [15, 49, 50].

Figure 2 shows the banana orbit typical of trapped particles [15, 50]. Zooms on small

parts of the orbits (right plots in Figures 1 and 2) show the precise consistency between

the FO and GC trajectories.

Conservation properties are assessed both for the above test cases, where electrons

are located in the core region, as well as for cases with electrons near the edge (initial

position: R=2.98 m, Z=1.3 m, φ = 45◦). This is important because in this JOREK

simulation, the mesh is coarser at the edge than in the core.

With the FO tracker, the kinetic energy Ekin is conserved within 10−11 in all test

cases, independently of ∆t (as long as ∆t ≤ 1.4 · 10−1 · Tgyro - note that above this time

step, the gyromotion is not well reproduced). For ∆t = 1.4 · 10−3 · Tgyro, the canonical

toroidal momentum Pφ is conserved within 10−10 in the core and within 10−8 in the

edge. The difference may be related to the coarser mesh at the edge. In contrast to

Ekin, the Pφ conservation degrades with increasing ∆t, roughly quadratically.

GC conservation errors for Ekin (plain lines) and Pφ (dashed lines) are shown in

Figure 3 as a function of time step for the four test cases (core/edge, passing/trapped).

The GC tracker performs clearly less well than the FO tracker, which is not surprising

due to its lack of symplecticness and the presence of high order spatial derivatives in the

equations of motion. In most cases, error convergence is reached for ∆t = 14 · Tgyro. As

for the FO tracker, conservation errors are much greater at the edge than in the core.
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(a) Global view (b) Zoom

Figure 1. Passing orbits in stationary axisymmetric fields: red dots, green dots and

blue dots are respectively FO, GC and field line solutions

(a) Global view (b) Zoom on banana tip

Figure 2. Trapped particle in stationary axisymmetric fields: red dots, green dots

and blue dots are respectively FO, GC and field line solutions

At this point, we turn our attention to the GC validity conditions. The quantities
ρ

L∇B
,

l‖
L‖∇B

defined in Section 2.2 and the deviation of the magnetic moment µ with

respect to its mean value for the FO simulations (with ∆t = 1.4 · 10−2 · Tgyro) are

reported in Table 2. As expected (see Section 2.2), electrons with energies of 10 MeV
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Figure 3. GC Ekin and Pφ error profiles for a 1ms simulation in stationary

axisymmetric fields. The time step is normalised to the electron gyroperiod Tgyro

in equilibrium fields satisfy the GC validity conditions. Note that the µ variation given

in Table 2 is essentially due to high frequency fluctuations around an approximately

constant mean value, a behaviour which confirms the GC validity.

3.2. Tests in stationary non-axisymmetric fields

In the following, the JOREK fast particle tracker behaviour in non-axisymmetric

stationary fields is described. Figure 4 shows a Poincaré plot for a passing 10 MeV

electron near the q=2 surface. It can be seen that GC and FO solutions are consistent

and that the orbit describes an m=2, n=1 island which is shifted from the magnetic

island due to drifts (similarly to the axisymmetric case above), an effect already observed

in [20] and [21].

The FO and GC tracker maximum total energy Etot conservation errors for a passing

10 MeV and a trapped 1 MeV electron near the q=2 surface in non-axisymmetric

stationary fields are shown in Figure 5. As in the equilibrium case, the symplectic FO

integrator shows much better conservation that the GC one at very small ∆t, but above

∆t = 1.4 · 10−1 · Tgyro, its performances degrade strongly. The GC integrator presents

similar features to the above axisymmetric test case, although a general increase of the

ρ
L∇B

l‖
L‖∇B

max(µ−<µ>)
µ(t=0)

Core passing orbit 5.1e-03 5.3e-02 7.8e-02

Core trapped orbit 2.0e-03 2.9e-04 1.1e-03

Edge passing orbit 5.1e-03 7.0e-02 8.4e-02

Edge trapped orbit 1.7e-03 2.7e-03 1.3e-03

Table 2. Estimation of critical quantities involved in GC validity conditions (see

Section 2.2) and magnetic moment variation for stationary axisymmetric test cases
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Figure 4. Passing 10 MeV orbit near q=2 surface in stationary non-axisymmetric

fields. Red, green and blue dots denote respectively FO, GC and field line solutions

conservation errors can be observed, which is probably caused by the reduction of the

fields smoothness compared to the axisymmetric case. Errors remain on the order of

10−4, which seems acceptable for the physics investigated below.

Figure 5. GC and FO Etot error profiles for a 1ms simulation in stationary non-

axisymmetric fields. The time step is normalised to the electron gyroperiod Tgyro

Critical quantities related to the GC validity conditions are shown in Table 3

(calculated from the ∆t = 1.4 · 10−2 · Tgyro FO simulation). The non-axisymmetry of

the fields and the presence of islands does not cause a violation of the GC validity

conditions.

Finally, a test of the total energy conservation in a stationary fully stochastic
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ρ
L∇B

l‖
L‖∇B

<
E‖
E⊥

> max(µ−<µ>)
µ(t=0)

Passing particle 5.2e-03 7.0e-02 4.4e-03 1.1e-01

Trapped particle 2.2e-03 1.7e-03 4.4e-03 1.5e-03

Table 3. Estimation of critical quantities involved in GC validity conditions (see

Section 2.2) and magnetic moment variation for stationary non-axisymmetric test cases

magnetic field is conducted for the GC and FO models using time steps of ∆t = 14 · Tgyro

and ∆t = 0.014 · Tgyro respectively. This analysis is conducted tracking two electrons

initialised in the plasma core region (R = 3.25 m, Z = 0.22 m, φ = 45◦) and having

kinetic energies of 1 keV and 1 MeV and pitch angles of (respectively) θ = 170◦ (passing)

and θ = 100◦ (trapped), for a total simulation time of 1 ms. The use of a kinetic energy

of 1 keV for the passing case, instead of 10 MeV as in the above tests, is necessary

in order to avoid a prompt deconfinement. The total energy conservation error is of

2.9 · 10−7 (passing case) and 1.5 · 10−4 (trapped case) for the GC model and 1.8 · 10−9

(passing) and 2.1 · 10−6 (trapped) for the FO model, which is again acceptable for our

purposes. It is worth mentioning that a small increment in the total energy is observed

when a particle passes near the magnetic axis, which is a singular point of the JOREK

mesh in this simulation, but this is small enough not to significantly affect the global

energy conservation in these tests.
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4. Test electron transport in a JOREK-simulated MGI-triggered disruption

in JET-like geometry

This section presents the first physical application to RE physics of the above-described

test particle module. The main objective is to assess to what extent a test electron

population initialised before the TQ is deconfined by the MHD activity during a

disruption, a question of high importance for the two mechanisms mentioned in the

introduction: hot tail and Dreicer acceleration during the TQ. For this purpose, test

electron populations will be initialised in the pre-TQ phase and tracked until the CQ

phase. Initial energies going from 1 keV to 10 MeV will be considered in order to assess

how transport depends on energy. Note that while 1 keV electrons definitely exist before

the TQ (the pre-TQ electron temperature in the simulated pulse is about 1 keV), the

10 MeV electrons in this transport study are purely hypothetical.

Here, since collisions are not yet implemented in the model, the objective is

restricted to investigating collisionless transport properties. Since the mean free path of

a 1 keV electron (at a density of 1020 m−3) is of several hundreds of meter, which is much

larger than 2πqR ' 60 m in JET, the collisionless approximation appears sufficient to

estimate the transport due to magnetic stochasticity. Note that, due to the lack of drag

in the model, it has been chosen to cut the inductive
(
∂ψ
∂t

)
part of the electric field in

the equations of motion in order to avoid a spurious acceleration of the electrons.

The JOREK simulation used here is a JET D2 MGI-triggered disruption simulation

[47, 48] similar to the one used in Section 3 with the difference that here the q profile

is artificially increased by ∼20% (one consequence being the suppression of the internal

kink mode). This particular simulation was chosen because it runs far enough into the

CQ phase whereas the simulation from Section 3 suffers from numerical instabilities at

the end of the TQ. It should be stressed that no RE were observed experimentally in

this pulse. In fact, JOREK simulations of disruptions which produced a RE beam do

not yet exist, although efforts have been started in this direction. But the present case

is nonetheless interesting for two reasons: first, it is important to verify that the model

does not predict RE when they are not observed; second, qualitative findings made on

the present case may have a more general importance. It is clear nevertheless that the

present study is only a first step and that many more simulations will be necessary if

we are to gain a deep understanding of RE physics during disruptions using JOREK.

Let us start by briefly describing the evolution of the magnetic field structure in this

disruption simulation. Figure 6 presents Poincaré plots of the magnetic field lines (FL)

(black dots) at 3 times in the simulation (note that in this section, t=0 corresponds to

a time during the pre-TQ phase, about 0.5 ms before the TQ). It can be seen that the

pre-TQ phase (left) is dominated by the growth of a large m = 2, n = 1 magnetic island,

while the TQ (middle) is characterized by a global stochastisation of the magnetic field

after the stochastic region has expanded from the edge to the core of the plasma. Finally,

during the CQ (right), closed flux surfaces gradually reappear, firstly in the core and

subsequently at the edge. We call attention on the fact that this evolution is different
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from the one assumed by Boozer and Punjabi in [17], where a broad stochastic region is

initially bounded by an annulus of closed flux surfaces which are progressively destroyed

in time. This does not imply that Boozer and Punjabi made a wrong assumption,

because different scenarios may be possible. In fact, NIMROD simulations [25, 26]

display various types of evolutions depending on, for example, machine size, divertor

vs. limiter configuration, existence and structure of the 1/1 mode, etc. The scenario

studied in the present paper should by no means be considered universal.

(a) 0 < t(ms) < 0.1 (b) 0.405 < t(ms) < 0.505 (c) 3.255 < t(ms) < 3.355

Figure 6. Pseudo-Poincaré plots at different times in the simulation. Blue (resp. red)

dots are electrons with an initial kinetic energy of 1 keV (resp. 10 MeV), while black

dots are field lines.

Figures 6 and 7 present the results of simulations where populations of 1000

test electrons are initialised near given flux surfaces ψ̄ = ψ̄init (where ψ̄ is the n=0

component of the poloidal flux being normalised so that the magnetic axis radial position

corresponds to ψ̄ = 0 while ψ̄ = 1 identifies the last closed magnetic surface) in the pre-

TQ phase and tracked with the GC model for ≈ 3.4 ms (time step = 14 · Tgyro), i.e.

until the CQ phase. The initial kinetic energy of the electrons is 1 keV (blue dots in

Figure 6 and upper plot in Figure 7) and 10 MeV (red dots in Figure 6 and lower plot in

Figure 7). The initial pitch angle is θ = 170◦ (passing electrons) which is chosen within

the typical experimental interval, seen in various machines, of θ ≈ (5◦, 12◦) [51–53] and

respecting the runaway electron counter-current motion [20,25] (in JET, plasma current

and magnetic field are both in clockwise direction seen from above so a counter-B field

momentum is required for a correct RE initialisation). We refer to Figure 6 as “pseudo-

Poincaré” plots. These plots are obtained by representing the nearest position, from

the discrete trajectory output by the code, of each electron to a given poloidal plane

within a short time (δt = 0.1 ms) and toroidal angle (δφ = ±30◦) window. Note that

for magnetic FL, these plots are standard Poincaré plots.
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Figure 7. Fraction of electron (GC model) populations which are still in the plasma

at a given time. Each population contains 1000 electrons initialised at 1 keV (above)

or 10 MeV (below) and at a given radial position (different colors show different initial

radii).

Figure 7 shows the fraction of electrons which are still “alive”, i.e. which have not

been lost, after a given time, for initial energies of 1 keV (upper plot) and 10 MeV (lower

plot) and a set of initial radii (different colors). It can be seen that electrons (both at 1

keV and 10 MeV) start being lost at a time which varies between 0.25 ms, for electrons

initialised at the edge, and 0.5 ms, for those initialised in the core. This corresponds to

the gradual stochastisation of the magnetic field during the TQ, which starts from the

edge near 0.25 ms and reaches the core at about 0.5 ms (as visible in the middle plot in

Figure 6). Electron losses are faster for 10 MeV than 1 keV electrons. However, around

0.75 ms, losses stop for the 10 MeV population. This corresponds to the reappearance

of flux surfaces in the core of the plasma, which trap the electrons located in this region.

It can indeed be seen in the right plot of Figure 6 that the electrons from the 10 MeV

population which are still present at the end of the simulation are located in the core

region. In contrast, 1 keV electrons are present throughout the plasma at the end of

the simulation. The difference is related to the fact that 10 MeV electrons diffuse across

the stochastic region much faster than 1 keV ones due to their faster parallel motion (as

will be shown below), and that the latter diffuse slowly enough that a significant part
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of them remains in the stochastic region until a flux surface reappears at the edge and

stops the loss process. This explains why 1 keV electron losses stop at a later time than

10 MeV losses (see Figure 7). The final fraction of remaining electrons is much larger

for 1 keV (a few tens of %) than 10 MeV, although the fraction of 10 MeV “survivors”

is not negligible: typically a few %.

Figure 8 shows, for a few selected cases, that the GC and FO models agree rather

well in terms of electron losses (for FO simulations, the gyro-angle was initialized

randomly in the interval [0, 2π) and a time step of 0.014 · Tgyro was used). This gives

confidence that the computationally much faster GC model can be used for the type of

studies presented in this paper. It is important to note however that for other aspects of

RE physics, such as synchrotron radiation or the analysis of electron orbits for Ekin > 10

MeV, FO effects may have to be taken into account, as reported in [33] and [54].

Figure 8. Comparison among evolutions of “surviving” electron populations obtained

using FO (dashed lines) and GC (solid lines) trackers (different colors are related to

different test cases).

Figure 9 shows how the fraction of remaining electrons (or “survivors”) at the end

of the simulation depends on the initial energy and radial position. It can be seen that

the fraction of survivors decreases when the initial energy increases from 1 keV to 1 MeV

with a saturation-like behaviour above 100 keV, and then, interestingly, increases above

1 MeV. The behaviour below 1 MeV is qualitatively consistent with the picture that

electrons are lost by parallel transport along stochastic FL, because increasing energy

means increasing parallel velocity. The saturation above 100 keV is likely related to the

fact that the parallel velocity tends to the speed of light. Finally, the fact that losses

decrease with energy above 1 MeV is consistent with the phase-averaging effect related

to the orbit shift at high energy already mentioned in Section 3, as described by [55]

and [19].

Figure 10 gives information on local (in time and space) transport properties. It

shows how initial narrow Heaviside-like radial distributions of FL or electrons (width

∆ψ̄init = 10−3) evolve after a given number of toroidal turns (electron distributions are

represented at times corresponding to a given number of toroidal turns). Populations are
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Figure 9. Fraction of electrons (GC model) still confined at the end of the simulation

versus initial kinetic energy and initial radial position (different colors)

initialised at t=0.47 ms (i.e. during the TQ, when the magnetic field is stochastic across

the whole plasma - see middle plot in Figure 6) and at two radial positions: ψ̄init = 0.7

(upper plot) and ψ̄init = 0.95 (lower plot), and two types of electron populations are

tracked: one initially at 1 keV and the other at 10 MeV. Different colors represent

different numbers of turns between 0 and 2. Each population is made of 104 FL or

electrons. A first observation on Figure 10 is that distributions of FL and electrons

initialised at ψ̄init = 0.7 are very similar after a given number of toroidal turns. This

strongly suggests that electron radial diffusion is essentially due to parallel motion along

the stochastic FL with a magnitude proportional to the parallel velocity, as discussed

in [56, 57]. The situation is less clear for FL and electrons initialised at ψ̄init = 0.95.

Indeed, while FL and 1 keV electrons have comparable distributions after a given number

of turns, 10 MeV electron distributions show clear differences. These are likely due to

orbit shift effects. A second observation on Figure 10 is that distributions initialised

at ψ̄init = 0.7 spread radially much faster than those initialised at ψ̄init = 0.95 (which

probably explains why orbit shift effects are visible only in the latter case). Radial

transport is therefore clearly not homogeneous within the plasma. This can be seen

also in the Poincaré plots shown in Figure 11. In these plots, a large number of FL

are initialised at ψ̄init = 0.7 (left) and ψ̄init = 0.95 (right) and different colors represent

FL positions after different numbers of toroidal turns. The radial spread is obviously

much faster for ψ̄init = 0.7 than ψ̄init = 0.95, consistently with Figure 10. It is likely

that the relatively slow transport at the edge plays an important role in global electron

confinement properties. A side remark on Figure 11 is that transport in the core does

not seem to result from a quasi-linear diffusion where information on the phase (the

initial poloidal or toroidal angle) is lost in a time much shorter than the radial diffusion

time.
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Figure 10. Distributions of field lines (solid lines) and electrons initialised at 1

keV (dash-dotted lines) and 10 MeV (dashed lines) after 0, 1 and 2 toroidal turns,

starting from narrow Heaviside-like distributions centered at ψ̄init = 0.7 (upper plot)

and ψ̄init = 0.95 (lower plot).

Figure 11. Poincaré plots (at a toroidal angle of 45◦) showing evolutions of field line

populations initialised at ψ̄init = 0.7 (left plot) and ψ̄init = 0.95 (right plot). Different

colors represent field line positions after an increase of one (left plot) or two (right

plot) toroidal turns
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5. Discussion and future plans

In this work, the JOREK module capable of computing relativistic full and GC orbits

in time-varying 3D MHD fields is presented. A volume preserving symplectic scheme is

used for FO tracking while the Cash-Karp Runge-Kutta method with time step control

is used for GC tracking. The module was verified in both stationary axisymmetric and

non-axisymmetric fields, showing good invariants of motion conservation properties up

to a physical time of 1ms.

The JOREK fast particle tracker was used for studying electron confinement in

an MGI-triggered disruption simulation in JET-like geometry [47, 48]. Results suggest

that electron deconfinement due to magnetic stochasticity does not prevent the hot tail

mechanism or the Dreicer mechanism during the TQ. Indeed, a fraction of the order

of 1% up to a few tens of % of a test electron population initialised before the TQ

is typically not deconfined, depending on the initial energy and position. This fraction

should be regarded as a large number since very small RE densities are sufficient to carry

the whole plasma current (this is all the more true in presence of a strong amplification

by the avalanche mechanism during the CQ). On the other hand, as mentioned in Section

4, the simulated pulse did not produce RE, which appears paradoxical.

A possible reason could be that the MHD activity simulated by JOREK is too

weak and therefore that electron losses are underestimated in the present work. In

fact, it has been stressed in [47] that the plasma current spike in the simulations is

typically one order of magnitude smaller than in the experiment, which points in the

same direction. The edge region deserves particular attention due to its relatively low

stochastic transport (see Section 4). It is planned to investigate (by means of JOREK-

STARWALL simulations with a resistive wall model [58,59]) whether this is physical or

whether the fixed ψ boundary condition used here, with a computational boundary closer

to the plasma than the actual wall, artificially reduces magnetic stochasticity at the

edge. More generally, future efforts will focus on validating JOREK simulations versus

magnetic measurements. Until this is achieved, conclusions on fast particle confinement

should be taken with caution.

A quantitative validation of the test particle module itself appears to be a difficult

task which may require the implementation of synthetic diagnostics (soft X-ray for

example). Qualitative validation seems a more realistic goal in the near term. For

example, it is planned to assess whether the model is qualitatively consistent with the

RE existence domain observed at JET versus toroidal field and Argon/D2 fraction in

the injected gas during MGI experiments [2]. The observed trend that RE appear

more easily in limiter than divertor configuration [2] can also provide a good test.

Moreover, the recently developed RE beam tomographic reconstruction [60], might be

used for checking the agreement between the spatial distribution of surviving electrons

in simulations and the observed beam geometry.

An important ongoing development of the test particle module will be the

introduction of collisional drag terms, which will allow direct investigations of primary
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RE generation mechanisms.

Finally, it is also planned to perform test particle studies in different types

of disruptions simulated by JOREK, e.g. disruptions triggered by shattered pellet

injection, where first JOREK simulations show clear differences in terms of MHD activity

compared to MGI-triggered disruption simulations [61].
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[28] O. Czarny and G. T. A. Huysmans, “Bézier surfaces and finite elements for mhd simulations,” J.

Comp. Phys., vol. 227, p. 7423, 2008.

[29] L. D. Landau and E. M. Lifshitz, The classical theory of fields, vol. 2 of Course of theoretical

physics. New York (USA): Pergamon Press, 3 ed., 1971.

[30] R. D. Hazeltine and J. D. Meiss, Plasma Confinement. New York (USA): Dover, 2003.

[31] H. Qin and X. Guan, “Variational symplectic integrator for long-time simulations of the guiding-

centermotion of charged particles in general magnetic fields,” Phys. Rev. Lett., vol. 100,

p. 035006, 2008.

[32] R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He, and Y. Sun, “Volume-preserving algorithm for secular

relativistic dynamics of charged particles,” Phys. Plasmas, vol. 22, p. 044501, 2015.

[33] Y. Wang, H. Qin, and J. Liu, “Multi-scale full-orbit analysis on phase-space behavior of runaway

electrons in tokamak fields with synchroton radiation,” Phys. Plasmas, vol. 23, p. 062505, 2016.

[34] Y. He, Y. Sun, R. Z. and. Y. Wang, J. Liu, and H. Qin, “High order volume-preserving algorithms

for relativistic charged particles in general electromagnetic fields,” Phys. Plasmas, vol. 23,

p. 092109, 2016.

[35] P. J. Morrison, “Structure and structure-preserving algorithms for plasma physics,” Phys. Plasmas,

vol. 24, p. 055502, 2017.

[36] X. Tao, A. A. Chan, and A. J. Brizard, “Hamiltonian theory of adiabatic motion of relativistic

charged particles,” Phys. Plasmas, vol. 14, p. 092107, 2007.

[37] J. R. Cary and A. J. Brizard, “Hamiltonian theory of guiding-center motion,” Rev. Mod. Phys.,

vol. 81, p. 693, 2009.

[38] R. G. Littlejohn, “Hamiltonian formulation of guiding center motion,” Phys. Fluids, vol. 24,

p. 1730, 1981.

[39] J. R. Cash and A. H. Karp, “A variable order Runge-Kutta method for initial value problems with

rapidly varying right hand sides,” ACM Tans. Math. Soft., vol. 16, p. 201, 1990.

[40] L. F. Shampine, “Local error control in codes for ordinary differential equations,” App. Math.

Comp., vol. 3, p. 189, 1977.

[41] L. F. Shampine and H. A. Watts, “The art of writing a Runge-Kutta code. II,” App. Math. Comp.,

vol. 5, p. 93, 1979.

[42] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in Fortran

77 the art of scientific computing, vol. 1. Cambridge (UK): Cambridge university press, 2 ed.,

1997.

[43] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Texts in applied mathematics,

Berlin (Germany): Springer-Verlag, 2 ed., 2007.

[44] M. E. O’Neill, “PCG: A family of simple fast space-efficient statistically good algorithms for

random number generation,” Tech. Rep. HMC-CS-2014-0905, Harvey Mudd College, Claremont,

CA, Sept. 2014.

[45] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation. Adam Hilger series

on Plasma Physics, Bristol (UK): Adam Hilger, 1991.

[46] D. Pfefferl, Doctoral dissertation: Energetic ion dynamics and confinement in 3D saturated MHD

configurations. Lausanne, Swiss: Ecole polytechnique fderale de Lausanne, 2015.

[47] E. Nardon, A. Fil, M. Hoelzl, G. Hijsmans, et al., “Progress in understanding disruptions triggered

by massive gas injection via 3D non-linear MHD modelling with JOREK,” Plasma Phys. Control.

Fusion, vol. 59, p. 014006, 2017.

[48] A. Fil, E. Nardon, M. Hoelzl, G. T. A. Huijsmans, F. Orain, M. Becoulet, P. Beyer, G. Dif-

Pradalier, R. Guirlet, H. R. Koslowski, M. Lehnen, J. Morales, S. Pamela, C. Passeron,

C. Reux, and F. Saint-Laurent, “Three-dimensional non-linear magnetohydrodynamic modeling

of massive gas injection triggered disruptions in JET,” Physics of Plasmas, vol. 22, no. 6,



Test particles dynamics in the JOREK 3D non-linear MHD code and application to electron transport in a disruption simulation26

p. 062509, 2015.

[49] R. J. Goldston and P. H. Rutherford, Introduction to plasma physics. Bristol (UK): IOP

Publishing, 1 ed., 1995.

[50] A. J. Brizard, “Compact formulas for guiding-center orbits in axisymmetric tokamak geometry,”

Phys. Plasmas, vol. 18, p. 022508, 2011.

[51] R. Jaspers, N. J. L. Cardozo, A. J. H. Donné, H. L. M. Widdershoven, and K. H. Finken, “A
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