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Abstract

The ”3-ion scheme” [Ye.O. Kazakov et al., Nucl. Fusion 55 (2015) 032001] is a new,
high potential ion cyclotron resonance heating (ICRH) scheme that has recently been
proposed and experimentally tested. In this paper a simple cold-plasma analytical
model is introduced, which shows the beneficial effect of wave interference on the
efficiency of wave damping in a plasma for this scenario. Furthermore, we show the
changes of wave polarisation brought about by a tiny third minority when added to 2
majority ion species are favourable for damping wave power on minority ions.

1 Introduction

Classical ”minority” heating at the fundamental cyclotron layer adopts a minority immersed
in a majority plasma to make essential changes to the wave polarisation brought about
by the nearby confluence layer and allowing to overcome the screening the plasma sets
up at the cyclotron layer when trying to heat a single ion species. For not too energetic
particles, fundamental ion cyclotron resonance heating relies on the (E+) wave polarisation
component rotating in the sense of the ion cyclotron oscillation to ensure efficient transfer
of energy from the waves to the plasma; only for energetic particles comes the component
rotating in the sense of the electrons (E−) non-negligibly into play. At the mode conversion
point were the fast wave has a confluence with the (electrostatic) Bernstein mode, the wave
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electrostatic component is locally more prominent. Recently, the philosophy of minority
heating was extended to a scheme that is efficient at much smaller concentrations than the
usual minority heating (see e.g. [1, 2]). As it involves a minimum of 3 ions, it is known as
the ”3-ion scheme”. Two of the ions species usually - but not necessarily - are majorities,
and a third that is a minority which only is present in minute amounts. The charge-to-mass
ratio of the minority needs to lie in between the charge-to-mass ratios of the majorities.
After having been identified as having a good heating potential based on predictive kinetic
modelling, the scheme was successfully exploited experimentally (see e.g. [3, 4, 5]). In JET
and Alcator C-Mod experiments, adding a small amount of 3He minority ions (< 1%) was
demonstrated to be sufficient for effective heating of H-D plasma mixtures.

The three-ion D-(3He)-H minority scenario is closely linked to the earlier minority and mode
conversion heating in (3He)-H JET plasmas, which was equipped with carbon wall. Indeed, as
discussed in detail in [6], the presence of intrinsic carbon impurities and residual D-like species
resulted in the appearance of the second mode conversion layer in a plasma. The presence
of two mode conversion layers rather than a single one resulted in constructive/destructive
wave interference, which occurs due to the partial reflection of the incident wave at every MC
layer. Taking into account wave interference effect allowed to explain the observed heating
efficiencies in (3He)-H JET-C experiments. As noted in [1], the effect of wave interference
also plays a role in the 3-ion scheme, when most of RF power is absorbed by a small amount
of resonant minority. The modest goal of the present paper is to build a cold-plasma model,
which allows to quantify in more detail the wave interference and polarisation changes in the
vicinity of mode conversion layers in the 3-ion scheme. We note that a hot plasma description
is required in order to distinguish the power transfer from the waves to electrons (as in case
of mode conversion heating experiments) and to minority ions (as in case of 3-ion scenario).

Apart from the introduction, this text is subdivided in 5 sections and an appendix. Section 2
provides a quantitative example of the scheme. Section 3 is devoted to deriving appropriate
simplified equations allowing to study the 3-ion scheme analytically. The basic ingredients
being resonances and cutoffs, the next section (section 4) briefly discusses the asymptotic
solutions of the Budden and the Airy equation and then proceeds to computing the global
connection coefficients across the whole region of interest. In the next but last section
(section 5) it is shown that highly localised damping gives rise to wave reflection. In section
6, finally, the conclusions are summarised. Some details on the asymptotic solution of the
relevant equations are provided in the Appendix.

2 Quantitative example of the 3-ion scheme

Prior to studying the underlying physics, this section provides an example of the potential
of the 3-ion scheme. The adopted parameters are typical for JET. Hydrogen and deuterium
are the majority species and fundamental cyclotron heating of a small amount of helium-
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Figure 1: Double transit absorption and connection coefficients for a fast wave launched from the
low field side in a D − (3He) − H plasma: hydrogen majority scan (left) and 3He minority scan
(right) concentration scan.

3 is aimed at. The major and minor radii are Ro = 2.97m and ap = 0.95m. A central
density of Neo = 5 × 1019/m3 and a temperature of Teo = Tio = 4keV are considered.
At the edge these values reduce to Nes = 1019/m3 and Tes = Tis = 10eV . The adopted
density and temperature profile factors are 1 and 1.5, respectively. For central fundamental
cyclotron heating of the 3He minority the adopted RF driver frequency is 33MHz with a
magnetic field strength of 3.31T . Figure 1 depicts the absorption for a fast wave incident
from the low field side, as well as the corresponding reflection and transmission coefficients.
The integration interval is −0.5m < x < +0.5m where x is the distance with respect to
the geometric axis in the equatorial plane. As discussed by Kazakov [2], the 3-ion scheme
requires a specific mix of the majority ions and fairly small minority concentrations. For
the adopted D-(3He)-H scenario, a crude guess ignoring the effect of the finite parallel wave
number requires X[H] ≈ 2/3 and X[3He] < 1%; accounting for k// increases the hydrogen
minority value slightly to X[H] ≈ 70%. Under the considered coditions, the absorption is
close to 100% and the 3He minority is the only significant absorber.

Figure 2 depicts 2 absorption and wave polarisation profiles; the specific parameters X[H] =
66% (slightly under the concentration guaranteeing optimal absorption) and X[H] = 70%
(optimal concentration for maximising the 3He minority heating) are chosen; X[3He] =
0.1%. The subscripts R and x refer to the direction along the major radius R = Ro + x
(Ex = ER = ~E.~eR) while ~ey is perpendicular to ~ex in a toroidal cut; E± = Ex ± iEy. The
magnitude of the E+ wave field component rotating with the ions and responsible for ion
heating peaks close to the location where the absorption is maximal. It can be seen that
the poloidal (Ey) component is very small on the high field side of the absorption layer
while the the short wavelength electrostatic component is large at the ion-ion hybrid layer
corresponding to the pair of majority ions which lies just to the left of ω = Ω3He, suggesting
that the nearby ion-ion hybrid layer due to the presence of the 2 majorities has an impact
on the wave-particle interaction.
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Figure 2: Absorption (left) and wave polarisation (right) profile for a hydrogen majority con-
centration of X[H] = 66% (top) and X[H] = 70% (bottom). The minority concentration is
X[3He] = 0.1%; its 3He cyclotron layer is at x ≈ 0.06m.

3 Evaluation of a proper simplified expression of the

wave equation coefficients

The cold plasma wave equation can be written [7]

∇×∇× ~E = k2
oK.

~E

where - aligning the z-direction with the direction parallel to the static magnetic field -

K =

( SStix −iDStix 0
+iDStix SStix 0

0 0 PStix

)

in which SStix, DStix and PStix are provided e.g. by Stix and ko = ω/c; ω = 2πf where f is
the driver frequency and c is the speed of light. SStix and DStix are typically decomposed into
the terms responsible for the left and right hand circular motion: SStix = (RStix + LStix)/2
and DStix = (RStix − LStix)/2. Here

RStix = 1−
∑
β

ω2
p,β

ω(ω + Ωβ)

LStix = 1−
∑
β

ω2
p,β

ω(ω − Ωβ)
.
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In the above, ωp,β is the plasma and Ωβ the cyclotron frequency of the species β. Ion cyclotron
heating typically relies on the fast magnetosonic wave to propagate the wave energy from the
launcher outside the main plasma to the core of the tokamak plasma. As the fast wave has a
negligible parallel electric field (”parallel” and ”perpendicular” are w.r.t. the static magnetic
field direction), it will simply be assumed to be zero in this text. It is further assumed that the
only inhomogeneities of the density and the magnetic field lie in the x-direction so that the y-
and z- coordinates are ignorable i.e. that the field is composed or independent components
proportional to exp[i(kyy + kzz)]. Further more we assume that ky can be taken zero and
that the parallel wave number kz = k// is known is prescribed; the distinction between the
parallel and the toroidal direction is ignored. The relevant wave equation now only involves
the y-component of the electric field. The other perpendicular component is not small but
can be found once Ey is known. The fast-wave-only wave equation is

dE2
y

d2x
+ k2

⊥,FWEy = 0

where

k2
⊥,FW =

(k2
oRStix − k2

//)(k
2
oLStix − k2

//)

k2
oS − k2

//

.

The electric field component in the direction of the inhomogeneity is directly obtained from
the first component of the vectorial wave equation:

Ex =
ik2
oDStix

k2
oSStix − k2

//

Ey

Note that this component goes through a maximum at the resonance; this is the cold plasma
equivalent of the earlier shown electrostatic component reaching a maximum at the mode
conversion layer. In a hot plasma, the damping is described via the Fried-Conte plasma
dispersion function ZFC(ζ) [8]; in the above it suffices to make the replacement

1

ω ± Ωβ

→ − 1

21/2k//vth,β
ZFC(

ω ± Ω

21/2k//vth,β
)

in which vth,β is the thermal velocity. We will be using an approximate rather than the actual
reigning wave equation; the coefficients of the approximate equation will be evaluated close
to the region of interest using a Taylor series expansion truncated at the linear terms. The
Fried-Conte function cannot be represented by an equation that only has linear coefficients.
Its dependence can however be approximated in a simply way without requiring to extend the
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polynomial order of the coefficients, introducing finite collisionality by adding a small imagi-
nary part to the driver frequency (ω → ω+ iν). For vanishingly small ν and when the width
of the damping region is small w.r.t. the machine’s major radius so that the approximation
Bo = B00/(1+x/Ro) ≈ B00(1−x/Ro) can be adopted, the integral through the fundamental
cyclotron damping region yields the same result (πR(xmin)/ω) in both cases. Although the
shape is slightly different, adopting a suitable ν allows to get a reasonable match. Imposing
the slope at ω = Ωmin to be identical requires ν = k//vth,min while matching the maximal
value of the real part requires ν = k//vth,min/[2

1/2Re[ZFC ]max] in which Re[ZFC ]max ≈ 1.08.
In both cases ν/ω is the order of 1% for the earlier adopted experimental parameters. Al-
though not fully rigorous, this simplification has the advantage that all the coefficients of the
differential equation are now linear. Note that the size of the collisional correction is bigger
than the correction obtained from Coulomb collisions, the latter typically being 6 orders of
magnitude smaller than the driver frequency in hot fusion relevant plasmas. Nevertheless it
is still a very modest correction: the Budden equations’s wavelength being 6m and relevant
η being of order 1 (see further; η = k∞∆x where k∞ ≈ 25− 50/m).

Once the solution of the wave equation is known, one can evaluate the left and right rotating
components of the electric field: E± = Ex ± iEy. Note that the fraction E+/E− does not
even involve evaluating Ey as it suffices to use a normalised version of it:

E+

E−
= −

k2
oRStix − k2

//

k2
oLStix − k2

//

Looking at the expression for the dispersion root, it is clear that |E+/E−| is maximised at the
k2
oL−k2

// cutoff point. Also note that the fast wave has a resonance at k2
oSStix = k2

// and hence
is rapidly varying there. While RStix is only mildly varying, LStix passes through infinity at
the minority cyclotron layers ω = Ωβ. The 3-ion scheme aims at exploiting the cyclotron
frequency of the minority and hence the majority cyclotron layers are commonly at some
distance from the region where the minority absorbs. Note that the contributions from the
2 majorities to LStix are of opposite sign so that the one partly compensates the other. One
of the basic features of the 3-ion scheme is to ensure the local annihilation of k2

oLStix − k2
//.

Since |k2
oLStix| is typically much larger than |k2

//|, this essentially requires to balance the

2 majority contributions. The remaining (minority) term having a resonant denominator,
its contributions are significant close to the cyclotron resonance, even at modest minority
concentration. Figure 3 shows a typical polarization.

We will now find a suitable simplified version of the reigning differential equation. As the
damping the 3-ion scheme relies on is at the fundamental cyclotron frequency of the minority,
the simplified equation should provide a fair representation near that layer. Since the R varies
only mildly, it can be approximated by its value at the minority cyclotron position xmin. For
the L term, a similar procedure can be used, except for the minority term. For the latter
the function in the numerator can replaced by its value at the cyclotron position, and for
the denominator a Taylor series expansion of the cyclotron frequency truncated at the linear
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Figure 3: Typical polarisation for the 3-ion scheme; parameters as discussed earlier.

term is used. One gets

RStix ≈ 1−
∑

β:e,maj,min

ω2
p,β(xmin)

ω[ω + Ωβ(xmin)]

LStix ≈ 1−
∑

β:e,maj

ω2
p,β(xmin)

ω[ω − Ωβ(xmin)]
−
ω2
p(xmin)

ω2

Rmin

x+ iνRmin/ω

where Ωmin was substituted by ω. Figure 4 gives an idea of the variation of R and L in
the region of interest, adopting parameters as chosen before. Linear approximations are
sufficiently accurate close to the cyclotron layer.
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Figure 4: Plot of Stix’s L and R coefficients as well as their approximations.

Labeling

Ro = 1−
∑

β:e,maj,min

ω2
p,β(xmin)

ω[ω + Ωβ(xmin)]
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Lo = 1−
∑

β:e,maj

ω2
p,β(xmin)

ω[ω − Ωβ(xmin)]

L1 =
ω2
p(xmin)

ω2
Rmin

ξ =
νRmin

ω

we then can rewrite the above dispersion equation root compactly as

k2
⊥,FW = k2

o

(Ro − n2
//)(Lo − L1/(x+ iξ)− n2

//)

So − L1/[2(x+ iξ)]− n2
//

= k2
o

(Ro − n2
//)([Lo − n2

//](x+ iξ)− L1)

[So − n2
//](x+ iξ)− L1/2

upon defining So = (Ro + Lo)/2 and where n// = k///ko. The approximate differential
equation is then

[
[So − n2

//](x+ iξ)− L1

2

]dE2
y

d2x
+ k2

o

[
[Ro − n2

//][Lo − n2
//](x+ iξ)− L1[Ro − n2

//]
]
Ey = 0

which is of the generic form

[a20 + a21x]
dE2

y

d2x
+ [a00 + a01x]Ey = 0 (1)

with

a20 = −L1

2
+ iξ[So − n2

//]

a21 = [So − n2
//]

a00 = k2
o

[
− L1[Ro − n2

//] + iξ[Ro − n2
//][Lo − n2

//]
]

a01 = k2
o [Ro − n2

//][Lo − n2
//]

Provided both a01 and a21 are nonzero, the above is readily written as a Budden equation

8



d2Ey

dX̃2
+ [1− η

X̃
]Ey = 0

where

X̃ =
a

1/2
01

a
3/2
21

[a20 + a21x] (2)

and

η =
a01a20 − a00a21

a
3/2
21 a

1/2
01

The just found approximate equation is suitable close to the minority cyclotron layer but
is not sufficiently accurate close to the second ion-ion hybrid layer, located on the high
magnetic field side of the 3He cyclotron resonance. Adopting a similar procedure as before
we can write an approximate dispersion as

k2
⊥,FW = k2

o

(Ro − n2
// −R′xS)(Lo − n2

// − L′xS) + [L′(Ro − n2
// −R′xS) +R1(Lo − n2

// − L′xS)]x

S ′(x− xS)

where xS is the position where S = n2
// and

Ro = 1−
∑

β:e,maj,min

ω2
p,β(xS)

ω[ω + iν + Ωβ(xS)]

R′ = −
∑

β:e,maj,min

ω2
p,β(xS)

ω[ω + iν + Ωβ(xS)]
[
N ′e
Ne

+
Ωβ

R(xS)(ω + iν + Ωβ)
]

Lo = 1−
∑

β:e,maj,min

ω2
p,β(xS)

ω[ω + iν − Ωβ(xS)]

L′ = −
∑

β:e,maj,min

ω2
p,β(xS)

ω[ω + iν − Ωβ(xS)]
[
N ′e
Ne

− Ωβ

R(xS)(ω + iν − Ωβ)
]

S ′ =
R′ + L′

2
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The relevant approximate differential equation is now of the same form as Eq.1 but

a20 = −S ′xS
a21 = S ′

a00 = k2
o(Ro − n2

// −R′xS)(Lo − n2
// − L′xS)

a01 = k2
o

[
L′(Ro − n2

// −R′xS) +R′(Lo − n2
// − L′xS)

]
and can also be written as a Budden equation. More easily and general, but anticipating
that the region of interest has a cutoff and a resonance, the dispersion equation roots can
be approximated by

k2
⊥ ≈

a(x− xres) + b

x− xres
=
a(x− xcut)
x− xres

where xres is the location of the fast wave resonance i.e. S(xres) = n2
// and xcut is the position

of the R− n2
//-cutoff close to resonance, one readily finds

a = +
dk2
⊥(xcut)

dx
(xcut − xres)

b = −dk
2
⊥(xcut)

dx
(xcut − xres)2.

Looking at the expression, it is also seen that a is the asymptotic value of n2. Identifying
the coefficients as done above, one gets

η = −b/a1/2 = a1/2(xcut − xres) = k2
⊥,∞∆x = [

dk2
⊥(xcut)

dx
]1/2(xcut − xres)3/2.

Figure 5 depicts the fast wave dispersion equation root and its approximate expressions
adopting the local approximations of the dispersion equation for 3 different H majority
concentrations. Crudely speaking, the dispersion equation roots in the region of interest
can thus be approximated by a sequence of 3 regions, 2 of which are described by Budden’s
equation and the third - a usually small region connecting the two interaction regions - where
the wavelength can be assumed not to change at all. The solutions in the latter transfer
region are simply of the form exp[±ikx]. Figure 6 sketches the approximate dispersions in
the 3 regions of interest. If the region is somewhat wider, this approximation may be too
crude and a more suitable equation allows for a small variation of the wavelength so that
d2E/dx2 + (ax + b)E = 0 is more appropriate. This equation can be reduced to the Airy
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Figure 5: Square of the perpendicular refractive index found solving the fast wave cold plasma
dispersion equation, and local dispersion root fit for X[H] = 62%, X[H] = 67% and X[H] = 72%.

equation d2E/dz2 + zE = 0 by the transformation z = αx + β in which α = a1/3 and
β = b/a2/3, the solutions of which solutions are of the approximate form z−1/4exp[±i2/3z3/2]
well away from the cutoff x = −b/a (the cutoff is already included in the Budden description).

Figure 6: Qualitative sketch of the sequence of layers the wave tunnels through.

The subdivision into the 3 subregions is somewhat arbitrary: strictly, the distance away from

11



the confluence region should be large enough to allow the solution to be well approximated
by the leading term of the asymptotic solution of the simplified equation which will be used
to find the connection coefficients. But at that point, the actual dispersion root is different
from that of the simplified model. Likewise, in the region connecting the 2 resonance-cutoff
zones, the dispersion equation root is varying nonlinearly. Figure 7 plots the resonance-cutoff
distances ηA and ηC as well as the width of the connection region ∆x,B for a wide range of
3He minority and H majority concentrations; the transition region is assumed to have a
width of 75% of the distance between the leftmost cutoff and the rightmost resonance and
the connection points are defined symmetrically w.r.t. these points.
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Figure 7: Resonance-cutoff distances and distance between the 2 interaction regions.

The next task is to find solutions in each of the regions and connect the various solutions
requiring the field and its derivative are continuous at the boundaries. The discussion of the
solution of Budden’s equation is done in the next section.

4 Finding the relevant connection coefficients

In the previous section it was found that classical equations allow to capture the behaviour
of the Ey field component relevant for the 3-ion heating scheme: Budden’s equation which
is characterised by a back-to-back resonance/cutoff pair (d2Ey/dX̃

2 + [1 − η/X̃]Ey = 0),
and Airy’s equation (d2Ey/dX̃

2 + X̃Ey = 0) for which grows linearly with distance. If
the variation of k2

⊥ is neglected, Airy’s equation can be substituted for the even simpler
equation for which k2

⊥ is a constant. For the latter case, the solutions are simple plane waves
Ey = exp[±iX̃]. For the other two equations, the reflection and transmission coefficients
can be found relying on the method of Laplace. As both equations have been studied in the
literature, their solutions are well know. The interested reader is referred to the Appendix
for details on the evaluation of the connection coefficients.
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The asymptotic solution of Budden’s equation that propagates towards growing X̃ is

Ey,k≈1 = exp[iX̃]2−iη/2−1

∫
contour

dk̃exp[ik̃X̃]k̃iη/2−1

while that propagating towards decreasing X̃ is the complex conjugate of the above. For
incidence from either side the transmission is T = exp(−πη/2). For incidence from the side of
the resonance the reflection coefficient is zero while incidence from the side of the cutoff yields
R = 1− exp(−πη). The corresponding fluxes are TF = exp[−πη] and RF = (1− exp[−πη])2.
In the former case the absorption is 1− TF while in the latter case it is TF (1− TF ).

The solutions of Airy’s equation are

E ≈ π1/2

X̃1/4
exp[±i(2

3
X̃3/2 − π

4
)].

In the present application the cutoff does no lie in the domain of interest and hence the
decoupled modes remain decoupled. In case one of the resonance pairs is replaced by an
isolated cutoff, the connection coefficients are as follows: For incidence from the evanescent
side, the same WKB mode contributes at both sides of the cutoff so there is no reflection
when approaching from the evanescent side. For incidence on the cutoff from the propagative
side, a contribution of the outward propagating mode is picked up. Both WKB modes have
the same amplitude when X̃ >> 0 but the reflection coefficient is dephased by π/2.

When solving the equation for 2 sets (E1, E2) of independent boundary conditions the coef-
ficients (α1, α2) of a general solution EG = α1E1 + α2E2 can be found by solving

( EG
dEG/dX̃

)
=
( E1 E2

dE1/dX̃ dE2/dX̃

)
.
( α1

α2

)
Two simple independent equations can be found imposing E = 1 at the left end of the
interval and E = 0 at the right end, and vice versa. Away from the interaction region, the
eigensolutions of the equation can written as exp[±iX̃]X̃∓iη/2/exp[±βη/2] in which β is the
argument of X̃. As X̃ is to be interpreted as X̃ + iν with ν very small and positive, β = π
when X̃ < 0; it is 0 for positive X̃.

The finite collision frequency ν substitutes resonances by quasi-resonances i.e. regions where
the solution has steep but finite gradients and eases numerical cross-checking of the obtained
results. Figure 8 depicts the numerically found solutions of the Budden equation for η = 0.5
and ν = 10−2. The transmission and reflection coefficients are in good agreement with the
analytical limit ν → 0+ yielding T = 0.46 and R = 0.79 for the amplitudes and the squares
of these numbers T = 0.21 and R = 0.63 for the fluxes.
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Figure 8: Solutions for incidence from the left (top) and incidence from the right (bottom): electric
field (left), derivative of the field (middle) and flux (right).

From the connection coefficients we can construct a transfer matrix. Linking the eigenvector
solutions s1 and s2 on the left and on the right of the interaction region we have

( s1,L

s2,L

)
=
( α11 α12

α21 α22

)
.
( s1,R

s2,R

)
= Nη.

( s1,R

s2,R

)
i.e.

( 1
0

)
=
( α11 α12

α21 α22

)
.
( T

0

)
for incidence from the left and

( 0
T

)
=
( α11 α12

α21 α22

)
.
( 1− T 2

1

)
for incidence from the right where T = exp[−πη/2]. This yields
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Nη =
( T−1 T − T−1

0 T

)

The transfer matrix in a region of width ∆X̃ away from the resonance i.e. where k2
⊥ ≈ 1 is

constant is simply

( s1,L

s2,L

)
=
( e−i∆X̃ 0

0 e+i∆X̃

)
.
( s1,R

s2,R

)
= N∆x.

( s1,R

s2,R

)

where now simply s1 = exp[+iX̃] and s2 = exp[−iX̃] (substituted by exp[±2i/3X̃3/2]/X̃1/4

if accounting for the modest change of k2
⊥ in the transition region).

To connect the 3 regions together we need to impose the continuity of E and dE/dX̃ at each
connection point. We now need to account for the fact that X̃ = 0 was defined to be the
resonance position in each of the resonance regions. Labeling the leftmost Budden region as
”A”, the intermediate region as ”B” and the rightmost Budden region as ”C”, we have

s1,A(X̃) = e+i[X̃−X̃A](X̃ − X̃A)−iηA/2

s2,A(X̃) = e−i[X̃−X̃A](X̃ − X̃A)+iηA/2

in the interval [X̃L − X̃c,1] containing X̃A,

s1,B(X̃) = e+iX̃

s2,B(X̃) = e−iX̃

(or its Airy-function upgrade) in the interval [X̃c,1 − X̃c,2] of width ∆X̃B,

s1,C(X̃) = e+i[X̃−X̃C ](X̃ − X̃C)−iηC/2

s2,C(X̃) = e−i[X̃−X̃C ](X̃ − X̃C)+iηC/2

in the interval [X̃c,2 − X̃R] containing X̃C . Rather than using the above eigenvectors, a
normalised version needs to be used to ensure that the sum of all outgoing fluxes and the
loss of flux at the resonances adds up to the incoming flux. Recalling that the simplified
wave equation is modelling the fast wave, the relevant flux is the renormalised Poynting flux:
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F =
1

2µo
Re[E∗y

1

iω

d

dX̃
Ey] =

1

2µoω
Im[E∗y

d

dX̃
Ey].

At the first interface X̃ = X̃c,1, continuity of the field and its derivative can be imposed
using

MA.
( α1,A

α2,A

)
=
( E

dE/dX̃

)
= MB.

( α1,B

α2,B

)
i.e.

( α1,A

α2,A

)
= M

−1

A .MB.
( α1,B

α2,B

)
= CAB.

( α1,B

α2,B

)
.

Here Mµ is the local eigenvector matrix

Mµ =
( s1,µ s2,µ

ds1,µ/dX̃ ds2,µ/dX̃

)

where the sα are the eigenvectors corrected for the flux factor 1/|F|1/2 adjusting the amplitude
consistent with the change of k2

⊥ across the interval in absence of damping. The same is done

at the second interface. The whole transfer matrix N tot is then found connecting the leftmost
and rightmost coefficients assembling all the above. One gets

( α1,L

α2,L

)
= N tot.

( α1,R

α2,R

)
= NηA .CAB.N∆X̃ .CBC .NηC .

( α1,R

α2,R

)
For incidence from the left ((s1,L, s2,R=(1,0)) the relevant system is the transmission and
reflection coefficients in terms of the above eigenvectors are

T =
1

Ntot,1,1

R =
Ntot,2,1

Ntot,1,1

and for incidence from the right
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T =
Ntot,1,1Ntot,2,2 −Ntot,1,2Ntot,2,1

Ntot,1,1

R = −Ntot,1,2

Ntot,1,1

Figure 9 depicts the total absorption in the region containing the 2 sets of resonance-cutoff
pairs and the transit region for a set of relevant parameters, ηA, ∆xB and ηC computed from
the Stix coefficient approximations for the case that waves are incident from the right. Re-
mind that the transformation from the approximate wave equation to the Budden equation
brings in a scale reduction, the refractive index being of order 30. All 3 parameters play a
role but as it requires a significant part of the power to get up to that point, the leftmost
interaction layer lying further from the point of incidence has a somewhat more modest role
than the other 2 parameters. Figure 9 reproduces the characteristic multiple optimal damp-
ing regions found numerically by Kazakov when scanning over the minority and majority
concentrations [2] but retaining kinetic effects so that the actual damping is described rather
than a mock-up, as is done here. Since many details of the dynamics are glossed over by the
approximate model, the results are reproduced qualitatively rather than quantitatively. In
particular, the differing damping efficiency depending on whether ion or electron damping
- or a combination - takes place is out of the scope of the present model where all ”damp-
ing” occurs at the resonances. The dispersion equation roots depicted in Fig. 5 show that
the width of the transit region ∆xB varies significantly when the majority concentration is
changed. The successive peaks in the double transit absorption coefficient are a consequence
of the constructive and destructive interference of the incident, transmitted and reflected
waves.

This effect was first noted by Fuchs and Bers [9] who demonstrated that the fast wave mode
conversion efficiency described by the tunneling equation (see e.g. [10]) can be increased
from the ”single transit” value of maximally 25% to 100% by accounting for the fact that
power transmitted through the interaction region proceeds to the high field side R − n2

//

cutoff and is reflected there. The wave proceeds back to the confluence region and hits
the interaction region a second time, giving rise to wave interference. In particular, it was
demonstrated that if an integer number of wavelengths can be folded between the cutoff and
the confluence, the mode conversion efficiency is dramatically boosted.

The role of such interference has been noted experimentally, e.g. during 3He minority ex-
periments in D plasmas on JET [11]. Later, a similar effect was observed during (3He)-H
heating experiments in JET plasmas, where wave interference was caused by the appearance
of the second mode conversion layer due to the plasma contamination with carbon impurities
[6]. Making use of Stokes and anti-Stokes lines, the wave interference effect was examined
for mode conversion heating in [12]. This effect is identified in the present paper to be a sig-
nificant player in the 3-ion scheme when most of incident RF power is absorbed by minority
ions rather than by electrons as in mode conversion experiments. The interference described
by Fuchs and Bers is described by the isolated high field side R-cutoff. The 3-ion-scheme
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equally benefits from a similar wave interference but does so for interaction regions lying
closer to each other; rather than the R-cutoff, the resonance-(L)-cutoff pair occurs here.
A discussion of the kinetic collisionless damping effects deciding on whether the power is
ultimately absorbed by ions or electrons is outside the scope of the present paper. However,
we note that since low minority concentrations are adopted in this scenario, the IIH layer
stays sufficiently close to the cyclotron resonance of minority ions, which is favourable for
wave damping on ions. This observation is supported by the results of more sophisticated
1-D and 2-D full-wave modelling presented earlier [2]. Whereas the common strategy to
ensure optimal damping of a desired species requires ensuring that the wave has the proper
polarisation at the location where the desired type of damping is efficient, the 3-ion scheme
additionally profits from the wave interference to maximise efficiency.

The results presented here are idealised in various respects: (i) They isolate a single parallel
wave number whereas the spectrum launched from RF waves contains multiple components.
(ii) The metallic tokamak vessel acts as a Faraday cage so that waves launched from the
antennas execute multiple passes over the plasma before being damped in case the core
damping scheme is not very efficient; for full rigour parasitic damping in the edge should be
included to have a better idea of how and where the launched power is absorbed. (iii) A
1D description is used while the actual geometry is 3-dimensional; wave diffraction in the
tokamak plasma is not captured by the adopted model. Past JET-C experiments focused
on usual minority heating and mode conversion heating [6, 11] show that the effect of the
interference remains but it is more complex and less sharply de fined. Recent JET and
C-Mod experiments exploring the 3-ion scheme [3, 4, 5] showed a rather high efficiency of
plasma heating for a fairly broad range of the isotopic ratio and 3He concentrations. This is
also related to the fact that once the tail of energetic minority ions builds up, the efficiency
of wave damping generally increases [13].

5 Alternative approach for the cyclotron layer

The previous section points out that the effects observed in the 3-ion scheme come about by
wave interference brought about by reflected waves from interaction regions modeled by the
Budden equation, one region modelling the ion-ion hybrid layer associated with the majority
ions, and the other with the 3rd species, the small minority. Strong reflection can equally
be obtained from regions with steep gradients. In the particular scenario studied here, such
steep gradients are brought about by the presence of the minority cyclotron layer and the
localised damping associated with it, as is demonstrated in the accompanying paper [14]. In
the limiting case where the damping is only at the cyclotron layer itself, the k2

⊥ in the second
order differential wave equation for Ey can be interpreted as k2

⊥+ iαδ(x−xmin). Integrating
the differential equation across the cyclotron resonance allows finding that the derivative of
Ey satisfies the jump condition
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Figure 9: Resonant absorption as a function of the majority H and minority 3He concentration
adopting the simplified differential equations and the analytically obtained connection coefficients.

[[
d

dx
Ey]]|x=xmin

= −iαEy|x=xmin

where [[...]] denotes the jump. Ey itself being continuous one readily finds that at the
cyclotron layer and for incidence from either side the transmission and reflection coefficients
are

T =
1

1 + ζ

R = − ζ

1 + ζ
exp[2ik⊥xmin]

in which ζ = α/[2k⊥], it can easily be seen that when the damping disappears, the corre-
sponding reflection dies away and the transmission is complete. The corresponding connec-
tion matrix is

MB =
( T−1 −RT−1

RT−1 T −R2T−1

)
,

which can be used instead of the earlier formulated one when clicking the solutions in the
various regions together.
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Whereas the Budden model identifies the resonance layer as the location where the fast
wave loses its energy, the delta function description places it at the location where the
minority damping actually takes place: at the minority layer. This ambiguity is at the
origin of the incapacity of fast-wave-only models to give a rigorous account on which species
ultimately benefit from the incoming and locally damped wave heating power and why
a proper description of the finite Larmor radius effects is necessary. Kinetic modelling
(see e.g. [15, 16]) shows that the Budden wave resonance is the 1-wave-only mock-up of
a confluence to a short wavelength branch and that efficient electron damping is taking
place close to the conversion point on this short wavelength branch. It equally shows that
Doppler broadening widens the cyclotron resonance. Hence, both ion and electron damping
typically take place in the interaction region. Dispersion equation studies show that the
proximity of the confluence, cutoff and cyclotron layer give rise to overlapping of coupling
and damping regions (see e.g. [17] in which mode conversion and damping is studied solely
based on dispersion root evaluation) which can at best qualitatively be captured by simplified
1-wave models. Aside from lacking a proper description of the actual damping mechanisms,
a straightforward reason of why the constructive-destructive interference effects described
in this paper can not fully capture the wave physics is that fact that asymptotic solutions
are matched while (i) none of the solutions has actually reached its asymptotic regime, the
proximity of 2 interaction regions being a base ingredient of the 3-ion scheme, and (ii) even
the correct mathematical solutions of the simplified equations do not do justice to the actual
intricate full wave behaviour.

6 Conclusions

The 3-ion heating scheme’s [2] heating efficiency is studied analytically using cold plasma
modelling. We show that high efficiency of the double transit absorption can be achieved
due to wave interference effects. This effect was first identified by Fuchs and Bers [9] and
generalised later by Kazakov [12]. Here, we study the case of two back-to-back mode con-
version layers existing due to the presence of three ion species rather than just two. One of
the ion-ion hybrid layers lies close to the fundamental cyclotron layer of the minority, the
second one can be moved sufficiently close to the first by adequately choosing the relative
concentrations of the majority ions. As is the case for the usual minority heating scheme,
the proximity of the resonance layer affects the polarisation, the proper tuning of the latter
being a key ingredient in maximising the absorption in more sophisticated kinetic models.
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Appendix: Asymptotic solutions of the Budden and Airy equations

The Budden and Airy equations both are classical equation (see e.g. [18] and [19]). ) and
their solutions are well known so the connection formulae obtained in the present section are
mere reminders. For finding the connection coefficients of the above equation the method
of Laplace can be used (see e.g. [20] for the general principle, and the particularly elegant
description in [21] for its application). For a differential equation with linear coefficients

∑
n

[anX̃ + bn]
dnG

dX̃n
= 0 (3)

the solution can formally be written as an line integral in k-space:

G =

∫
contour

dkexp[ikX̃]V (k)dk.

Introducing this into the differential equation and assuming that end contributions to the
line integral vanish, one readily finds that the function V has to satisfy

∑
n

[
[bn(ik)n + ian

d

dk
[(ik)n]]V (k) + ian(ik)n

dV

dk

]
= 0

so that

G(x) =

∫
contour

dk
exp[ikX̃]∑
n an(ik)n

exp[i

∫
dk′
∑

n bn(ik′)n∑
n an(ik′)n

] (4)

Adopting this general procedure for differential equations with linear coefficients Eq.1 to the
specific case of the Budden equation, the solution can be written

Ey =

∫
contour

dkexp[ikX̃][k − 1]iη/2−1[k + 1]−iη/2−1,

which is suitable to evaluate the solutions of the equation far away from the resonance
and cutoff. Adopting the Hankel contour encircling the poles k = ±1 yields the independent
solutions corresponding to the incoming and outgoing waves. A branch cut is associated with
each of the asymptotic dispersion equation roots. To ensure that the dominant contribution
comes from the close neighbourhood of the poles, the contours must start and end at large
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|k| at k = |k|exp[iπ/2] for large positive and at k = |k|exp[−iπ/2] for large negative x.
Around k = 1 and for sufficiently large |x|, the above can be approximated by

Ey,k≈1 = exp[iX̃]2−iη/2−1

∫
contour

dk̃exp[ik̃X̃]k̃iη/2−1.

Figure 10: Contours adopted for representing the solutions of the Budden-type local differential
equation.

in which the integral is the Hankel integral [20],

G(α, X̃) =

∫
dkkαexp[ikX̃]

which evaluated in the principal Riemann sheet has the value

G(α, X̃) =
2πi

Γ(−α)
(iX̃)−(1+α)

hence

Ey,k≈1 ≈ −
2π(2i)−iη/2−1

Γ(1− iη/2)
exp[iX̃]X̃−iη/2 = Cexp[iX̃]X̃−iη/2.
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The complex conjugate of this solution C∗exp[−iX̃]X̃+iη/2 is the solution corresponding to
the contour integral encircling k ≈ −1.

To find the analytical continuations of the solutions, it is sufficient to deform the contour by
rotating it. For the wave that is incident from the side of the resonance, only an amplitude
correction factor is found. For the solution incident from the side of the cutoff, a contribution
from the other wave is picked up. For the wave amplitude one obtains the transmission
coefficient TE = exp[−πη/2] for incidence from either side. For incidence from the side of the
resonance the reflection is zero; from the other side RE = 1− exp[−πη]. The corresponding
fluxes are TF = exp[−πη] and RF = (1 − exp[−πη])2. In the former case the absorption is
1− TF while in the latter case it is TF (1− TF ).

For a forward wave, causality requires that Im(k) has the same sign as Re(k). For the
Budden wave this requires that x is to be interpreted as X̃ + i∆ where ∆ is positive (the
resonance lying slightly under the real axis i.e. arg(X̃) = π when X̃ < 0) when η > 0 and
negative when η < 0. To the left of the resonance, X̃−iη/2 = |X̃|−iη/2exp[πη/2] so that the
rightgoing wave amplitude is depleted by TE = exp[−πη/2] when crossing the resonance
region. A summary of the connection coefficients is given in Fig. 11.

Figure 11: Connection coefficients for wave incidence from either the cutoff or the resonance side.

The line integral deformation method can equally be applied to the Airy equation E ′′+X̃E =
0. Finding the proper coefficients by looking at the general expression Eq. 3, the contour
integral equation Eq. 4 is

E =

∫
contour

dkexp
(
i[kX̃ − k3

3
]
)

=

∫
contour

dkexp[G(k, X̃)]

The WKB solutions at large |X̃| can be found evaluating the above integral for path in the
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complex k-plane passing through the saddle points kSP = ±X̃1/2 and starting and ending in
one of the 3 directions where the integrand dies away fast. If we label the argument of k as
ξ, then at large |k| the integrand is of the form

exp[−i |k|
3

3
cos(3ξ)]exp[

|k|3

3
sin(3ξ)]

so that ξ needs to be ξ = π/2 + 2πM/3 where M is an integer when |k| approaches infinity
to ensure fast decay of the integrand. Writing a Taylor series expansion of the function G
near the saddle points one readily finds

E ≈ exp[G(kSP , X̃)]

∫
contour

dkexp[
1

2
G′′(k − kSP )2].

Rotating the path by a change of variable p = (−G′′/2)1/2(k − ks) the integral can be
evaluated, yielding

E ≈ exp[G(kSP , X̃)](− 2π

G′′
)1/2 =

π1/2

X̃1/4
exp[±i(2

3
X̃3/2 − π

4
)].

where the argument of k − kSP is −π/4 or +π/4 for kSP,1 = X̃1/2 and kSP,2 = −X̃1/2,
respectively, when X̃ > 0, and −π/2 and 0 when X̃ < 0. Figure 12 depicts where the saddle
point contributions are picked up and how the paths are deformed when going from X̃ << 0
to X̃ >> 0. For incidence from the left, the same WKB mode contributes at both sides of
the cutoff (no reflection when approaching from the evanescent side). For incidence from the
right, a contribution of the rightward propagating mode is picked up. As both WKB modes
have the same amplitude when X̃ >> 0, the reflection coefficient has unity amplitude but
is dephased by π/2.
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Figure 12: Contours adopted for representing the solutions of the Airy-type local differential
equation.
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