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 ABSTRACT  

 

 Modelling of the collisional loss of fast ions from tokamak plasmas is important from the 

point of view of the impact of fusion alphas and NBI ions on plasma facing components as well as for 

the development of diagnostics of fast ion losses [1-3]. The present paper develops a 4D Fokker-

Planck approach for the assessment of distributions of collisional loss of fast ions as depending on the 

coordinates of the first wall surface and on the velocities of lost ions. Based on this newly developed 

Fokker-Planck approach the poloidal distribution of neoclassical loss of fast ions from tokamak 

plasma may be examined as well as the contribution of this loss as dependent on pitch-angle and 

energy to the signal detected by the scintillator probe may be evaluated. It is pointed out that the loss 

distributions obtained with the novel Fokker-Planck treatment will be useful for the verification of 

Monte-Carlo models [4, 5] used for simulating fast ion loss from toroidal plasmas. 

 

PACS numbers: 52.55.Fa, 52.55.Pi, 52.65.Cc, 52.65.Ff, 52.65.Pp 

 

1. Introduction  

Precise modelling of the fast ion fluxes onto the plasma facing components (SPFC) in 

tokamaks is important for predicting the heat load and fluences associated with charged fusion 

products and beam ions escaping from the confining magnetic configuration in future fusion 

reactors. Further, such modelling enables the identification and interpretation of the loss 

mechanisms of fast ions in present day tokamak plasmas [1, 6, 7]. Typically, relevant 

simulations were based on Monte-Carlo approaches [4, 5] or on simplified models of poloidal 

distributions only [8, 9] and provide a qualitative rather than quantitative information on loss 

distributions. Former Fokker-Planck treatments of the radial fluxes of fast ions from the 

tokamak plasmas [9, 10] were carried out supposing the simplified shape of the first wall and 

neglecting the effects of gyro motion.  

 A detailed predictive modelling of fast ion loss distributions requires the development 

of new approaches or at least a substantial improvement of the existing methods [4, 5, 9, 10]. 

The purpose of the present paper is to establish a technique for assessing the distributions of 

energetic ion loss induced by the Coulomb collisions in tokamaks using the Fokker-Planck 

(FP) approach. The paper extends former Fokker-Planck treatments of the poloidal 

distributions of fast ion loss induced by Coulomb collisions [11, 12] to an arbitrary poloidal 

shape of the first wall and accounts for the effects of finite gyro radius. It focuses on the 
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losses due to collision induced radial transport of fast ions.  It should be pointed out that radial 

transport associated with Coulomb collisions is expected to determine the losses of energetic 

charged fusion products in ITER [13].  

2. Fokker-Planck equation in the constant-of-motion space  

Our study is based on the drift FP equation for fast ions in the phase space of motion 

invariants, c, and of angular coordinates, θ, determining the particle position on the orbit. In 

case of axisymmetric tokamak considered here such a position is specified by the poloidal 

angular coordinate, , only. Therefore, it is sufficient to employ the FP treatment in a 4D 

phase space x={c,}, i.e.  

   ,t f f L f S L        
x x x x x x

x d D                              (1)                           

where  and 
x x

d D describe convective and diffusive collisional transport of fast ions associated 

correspondingly with the slowing down, pitch-angle scattering and diffusion in energy and 

S(x) is the source term. We also suppose that fast ions are a weak component (number and 

and energy density small compared with background) of plasma [14].  

2.1 FP description of confined ions Due to the smallness of the collisional rates of the 

slowing down, s, of the pitch-angle scattering, , and of diffusion in energy, ll,  as 

compared to the frequency of poloidal motion,  , the distribution function of confined ions, 

f(x),  can be represented as a superposition of the dominant part, f
0
(c), which is independent 

on angular coordinate and of a small oscillating part,  f
1
(c,), varying periodically with . 

Note that f
0
(c) satisfactorily describes the ions with confined orbits and is determined by 

bounce averaged FP equation in 3D constant-of-motion (COM) space [9, 10] 

     0 0 , ... ... ...t f L f S d g d       x x
c                            (2)                   

where gx  is the Jacobian of transformation from Eulerian coordinates (r,v) to Lagrangian 

coordinates x, g   x is -independent value due to an evident relationship 0  
x

x . 

Distribution function f
0
(c) can be obtained by solving a boundary value problem in the COM 

space. Following [9, 10] we can use the following set of COM variables: energy E, 

normalised magnetic moment  and radial coordinate Rm denoting the maximum major radius 

R along the guiding centre orbit for trapped and co-passing particles and the minimum major 



radius along the guiding centre orbit for counter-passing particles. In case of up-down 

symmetric (or only slightly asymmetric) magnetic configuration the values of R=Rm are 

reached at the plasma equatorial plane, Z=Zeq. Evidently that owing to the axisymmetric limit 

accepted here the shape of 3D c-domain of fast ions confined in the absence of collisions is 

determined both by the parameters of magnetic configuration and by the poloidal shape of the 

plasma facing surface. Fig. 1 demonstrates the typical shape of the confinement domain in the 

plane spanned by the COM variables Rm and m=Vll(R=Rm, Z=Zeq, )/V at fixed energy for the 

JET-like magnetic configuration. To inspect the confinement domain boundaries in Fig. 1 we 

have supposed the parabolic profiles of the safety factor, q=q0+(qa-q0)x
2
, and of the Shafranov 

shift,  =0(1- x
2
), with x - the normalised flux surface radius [15], qa/q0=5/1 and 0=0.15m. 

The flux surfaces are assumed to be up-down symmetric with elongation k=1.7. Furthermore 

we have supposed the axisymmetric plasma facing surface with the poloidal shape R=W(Z) 

corresponding to the shape of inner surface of poloidal limiters at least in the vicinity of 

plasma equatorial plane. At the above assumptions the confinement condition for co-passing 

and trapped ions can be represented as Rm<RmLBS=WLBS(Zeq)/(1+sinm/Rc), where =V/c, 

V=(2E/m)
1/2

 – ion velocity, c=eBc/(mc) – gyro frequency at R=Rc=2.86m, WLBS(Zeq)=3.9m 

and m pitch angle at R=Rm, Z=Zeq. Respectively for ctr-passing ions the confinement 

condition has a form Rm> RmHBS=WHBS(Zeq)/(1+csinm/Rc) with WHBS(Zeq)=1.82m.  

 It is clearly seen in Fig. 1 that the confinement domain of ctr-passing ions is well 

separated from the domain of co-passing and trapped ions both in Rm and in m variables. The 

counter-passing ions are entirely localised at the high-B side of the plasma (at R less than the 

magnetic axis major radius Rax) while the co-passing and trapped ions are located completely 

at R>Rax.  The collisional exchange between ions from the left domain and ions from the right 

domain is possible only through the trapped/passing separatrix represented by the ctr-

circulating/trapped boundary (red solid line) and by the trapped/ctr-circulating boundary (red 

broken line). Both domains are partially bounded by well confined ions executing the 

stagnation (violate lines) and strictly ctr(co)-passing (green lines) orbits. Fast ions can be lost 

to the wall via the radial diffusion through the boundaries represented by the marginaly 

confined orbits (violate broken lines at Rm close to RwHBS =1.82m for ctr-passing domain and 

at Rm close to RwLBS =3.9m for co-passing and trapped particle domain). Finally ctr-passing 

ions with =5cm can be lost due to the scattering of marginally confined ctr-passing ions into 

the unconfined orbits of barely trapped ions through the loss-cone boundary (red broken line). 



Typical orbits of ions lost as a result of radial diffusion and due to scattering into the loss-

cone are shown in Fig. 2.  

Note that the shape of confinement domain in Rm, m variables is extremely sensitive to the 

energy of fast ions.  This is obviously demonstrated by Fig. 3 displaying the =0 slice of 3D 

c-domain of confined fast ions. Shown in this figure is also the area of trapped orbits, areas 

with possible collisional exchange between the ctr-passing and trapped orbits as well as areas 

of marginally confined orbits and of ctr-passing orbits scattered into loss-cone. It is seen also 

that depending on ion energy one should distinguish between the 5 ranges with qualitatively 

different orbit topology of confined fast ions and with different loss mechanisms. We note 

that co-passing ions are better confined as compared to the ctr-passing ones. This is confirmed 

by Fig. 4 where displayed are the confinement domains of ctr- and co-passing ions in Rm, m 

variables at high energies ( = 20cm, 31cm and 40cm). It is seen that at high-energy confined 

are only ions with nearly stagnation orbits at small V. The reason of substantial dissimilarity 

in the maximum energy of confined ctr-passing (4  32cm) and co-passing fast ions (5  

46cm) is the Shafranov shift enhancing the BZ component of poloidal magnetic field at R>Rax 

and correspondingly allowing for the stagnation condition at higher energies.  

Table 1 Energy ranges (see Fig. 3) with different orbit topology and confinement properties 

of fast ions 

 

Energy 

range 

Main features 

ctr-passing (p
-
) trapped (t) co-passing (p

+
) 

 <1 

p
-
t exchange 

Radial diffusion (RD) loss 

Cone loss 

tp
-
 exchange 

tp
+
 exchange 

RD loss 

p
+
t exchange 

RD loss 

1< <2 
RD loss 

Cone loss 

tp
+
 exchange 

RD loss 

p
+
t exchange 

RD loss 

2< <3 
RD loss 

Cone loss 

 RD loss 

3< <4 Cone loss  RD loss 

4< <5   RD loss 

 

Evidently that, in the case of confined orbits, Rm cannot exceed the value of RmLBS(E, m) 

corresponding to the marginally confined orbits of co-passing and trapped ions. Analogously 

the Rm should exceed the RmHBS(E, m) – the Rm-boundary of the confinement domain of ctr-

passing ions. Moreover f
0
(c) should satisfy the following boundary condition 



 
 

 
mLBS

0 m mMCO mMCO

mHBS

,  if 0
, , 0,

,  if 0

m m

m

m m

R E
f E R R R

R E

 


 


   


.                           (3)                                                    

In addition f
0
(c)=0 at the boundary of ctr-passing ions with unstable stagnation orbits 

corresponding to loss cone. Knowledge of the f
0
(c) allows to find the oscillating part of 

distribution function f
1
(c,) by performing the -integration of Eq. (1), i.e. 

     1 0

0

, ... ...f L f S d g



    x xx ,                                        (4) 

where poloidal variable  is determined by the relationship 

      2

max max min sin , 0 2
2

r r r r


       c c c                                (5) 

with r the flux surface radius, rmax and rmin the maximum and minimum radial coordinate on 

the particle orbit. An explicit expression for L
x
 in (c,) variables is presented in Appendix 1. 

Note that generally the oscillating part of distribution function  1 m; , , 0m mMCOf E R R   

and is dominant for marginally confined ions with Rm  RmMCO. Evidently that the radial flux 

of fast ions lost to the first wall is determined by those with the unconfined orbits, i.e. with Rm 

> RmLBS for co-passing and trapped ions and with Rm < RmHBS for ctr-passing ions. 

 

2.2 FP description of unconfined ions To examine the distribution function of lost ions we 

use a set of COM variables  ˆ , ,l lE Zc , where ξ
l
 and Z

l
 are pitch-angle cosine and poloidal 

coordinate at the first wall (see Fig. 5). To account for the finite gyroradius effects on the 

distribution function of escaping ions we will suppose that particle is lost when the distance 

between the guiding centre and the PFS is equal to the gyro-radius value.  Under this 

assumption the guiding centre coordinates Rgl and Zgl of the particle lost onto the 

axisymmetric plasma facing surface with the poloidal shape R=W(Z) can be represented in the 

following form 

 

 

   

 

 

2

2

sin
,

sin 1 sin1
1

, cos , sin ,

l l l w l

gl gl l
l l

c l l l

c l

l
l w l l l

c

W Z W Z W Z
R Z Z

R W Z

R W Z

VV
sign V

V

  

     

    





  

 


   

 .                  (6) 

Expressions (6) for Rgl and Zgl are valid only for particles at the moment when the full orbits 

are tangent to the PFS, namely at the moment when the normal to the PFS component of 

velocity of lost particle Vn(Zl) = 0. In reality the lost orbits are not unavoidably tangent to PFS 



and particle can be lost when Vn(Zl)>0 and when the guiding centre of lost particle is located 

slightly closer to the PFS than the gyroroadius [16]. This is demonstrated by Fig. 6 where 

compared are orbits with Vn=0 and Vn>0.  However according to Fig. 6 (see also [16]) we 

conclude that the difference between the guiding centre positions for particle lost at Zl with 

given V and ξ
l
 but with different Vn is very small (<< gyro radius). Consequently in our 

analytical treatment we suppose that relationships (6) providing Rgl (ξ
l
, Zl), Zgl (ξ

l
, Zl) are valid 

for all lost ions.  Similarly to confined poloidal variable  for confined orbits, the cyclic 

poloidal variable ̂  for unconfined ones is determined by the relationship 

 

 

2

min

ˆ
, sin , 0 2

2

, ,

gl gl gl

gl l l

r r R Z

r r V Z


 



   

  

                                      (7) 

where rgl is a flux surface radius of a guiding centre at R=Rgl (ξ
l
, Zl), Z=Zgl (ξ

l
, Zl). In present 

study the fast ions, escaping to the first wall as a result of collisional convection and diffusion 

transport, are described by 4D FP equation (1) in variables    ˆ ˆˆ ˆ, , , ;l lx c E     . An 

explicit expression for ˆLx  is presented in Appendix 2. It is important that diffusion and 

convection in poloidal coordinate Z
l
 significantly dominate those in pitch angle ξ

l
 as well as in 

the energy. The reason for that is localisation of lost particles in rather narrow range of 

poloidal angles [8, 12],  χ ~ 0.1 - 0.3 << π, where 

1/4
2

2 2

4 r b

d

VD

a V




 
    

 

 ,                                                            (8) 

Dr is the radial diffusion coefficient of lost ions; Vχ and Vd are correspondingly poloidal and 

drift components of particle velocity, a the plasma radius and b the bounce period. 

Domination of convective and diffusive transport in poloidal coordinate 3ˆ
lx Z  makes 

possible to neglect the collisional fluxes in 2ˆ
lx   and in 1x̂ E  and to use a reduced 2D FP 

equation of a following form (see Appendix 2) 

   3 33

ˆ ˆ ˆ ˆ
ˆ

l ll l l
l Z Zf g d D f

   
     

c c c
c .                                        (9) 

Source term  ˆS x  is not accounted for in Eq. (9) because in the case of unconfined ions it is 

associated with the collisionless first orbit losses and not with the collisional convective and 

diffusive ones. Finally Eq. (9) should be appended by the following initial and boundary 

conditions 



 

   
fw

ˆ 0

1
0

ˆ, ; , 0,

ˆ ˆ, ; , , , ; , ;

l l

l l m l m gl l eq l

f Z E

f Z E f E R R Z Z E





 

      







     
 

.                 (10)                                                   

In Eq. (10) the function  1
ˆ, , ; , ;m l m gl l eq lf E R R Z Z E        

 
 is determined by Eq. 

(2) and corresponds to the marginally confined fast ion, variables  , lE   in present 2D FP 

treatment are the parameters.  

 Radial flux  , ,l lE    of fast ions lost to the first wall is determined by the following 

expression  

     ˆ, , 2 , ; , , ,r

l l l l d l lE f Z E V Z E        ,                              (11) 

where r

dV  is the particle radial velocity at the first wall. Thus solution of Eq. (9) under 

conditions (10) allows examination of spatial and velocity distributions of collisional loss via 

simple formula (11).  

2.3 Results of numerical modeling Here we represent the results of numerical evaluation of 

the poloidal and pitch-angle distributions of a convective-diffusive collisional loss of 130 keV 

deuterons  to the first wall of JET-like tokamak plasma with a = 0.95 m and Rc = 2.95 m, ne(0) 

= ni(0) = 0.710
14

 m
-3

, ne(a) = ni(a) = 0.210
14

 m
-3

,  Te(0) = Ti(0) = 5.0 keV, Te(a) = Ti(a) = 1.0 

keV. We use also model magnetic configuration with Shafranov shift 0.2 m, elongation k(0) = 

1.3, k(a) = 1.7, triangularity = 0.15 and plasma current I = 2.5MA. To simplify simulation we 

suppose that    1 max, , ; sin 2f E r a    . Fig. 7 displays the calculated distribution 

function of lost 130 keV deuterons with pitch-angle cosine 
l
=0.5 as dependent on the polidal 

angular variable ̂  and poloidal coordinate at the wall Z
l
. As expected, f(̂ ,Z

l
) is localised in 

rather narrow range of Z below the mid-plane  -0.2m < Z
l
 < 0.3m. Fig. 8 represents the 

distribution of lost co-circulating deuterons over the pitch angle cosine 
l
 and poloidal 

coordinate Z
l 

at the first wall. The maximum loss is observed at Z
l 

= 0.1m for marginally 

trapped ions with 
l
 = 0.65.  

 

 



3. Conclusions 

We demonstrate that in drift approximation the distribution function of fast ions lost from the 

axisymmetric tokamak plasmas as a result of collisional convection-diffusion transport can be 

treated by 1D in COM space and 1D in poloidal angular coordinate Fokker-Planck kinetic 

equation. Solution of this equation allows direct evaluation of the spatial and velocity 

distributions of the flux of lost ions to the tokamak first wall. Modeled collisional loss of fast 

deuterons in JET-like tokamak are found to be localized in rather narrow range of poloidal 

coordinate Z (-0.2m < Z < 0.3m) below the plasma midplane. It should be pointed out that 

solution of the boundary value problem for lost fast ions allows to extend our Fokker-Planck 

code FIDIT [9, 11] oriented at present time predominantly on the description of confined fast 

ions (only velocity distributions of total loss of fast ions are calculated) also to detailed 

description of lost ions (including loss distribution over the tokamak first wall). Finally we 

note that approach developed accounts for effects of gyro motion and real poloidal shape of 

plasma facing surface and should be useful for the verification of Monte-Carlo models used 

for the simulation of fast ion loss from toroidal plasmas as well.  
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Appendix 1 Fokker-Planck equation for confined ions in    , , , ,m mX V R   c  

 To get an explicit expression for L
x
 in (c,) variables we start from the Eulerian 

representation of drift Fokker-Planck equation with  

   
1

1,2

i j

i ij

V V
ij

L L g g d D f




    x V V V V V ,                              (A1.1) 

describing collisional relaxation of fast ions on the background plasma. Supposing V
1
=V and 

V
2
=Vll/V= we can use well known expressions [14] for transport coefficients of energetic ions 

of (A1.1) with 1dV
- the slowing down, 2 0d V

, 11DV
 - diffusion in energy and 22DV

- pitch-angle 

scattering. At a first step we express LV in terms of new variables    , , , ,m mX r V R r c

with r the flux surface radius. As a result we obtain  

   
1

1,2,3

i j

i ij

r r r r rc c
ij

L g g d D f




   c c c c c ,                              (A1.2) 

where 

       

1 1 2 1 3 1

2 22 211 11 22 11 22 33 11 22

12 11 13 11 23 11 22

, ,

, ,

, ,

r r V m r V m

r r V m m r V m m

r V m r V m r V m V m m m

d d d d d d R

D D D D D D D R D R

D D D D R D D R D R

 

 



 

  

    

        

         

c V c V c V

c V c V V c V V

c V c V c V V

.    (A1.3) 

Using the relationships between Eulerian variable  ,r V and new Lagrangian variables  ,r c  

following from the constants of motion in drift approximation, i.e.   
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Here (r) is the poloidal magnetic flux, b=B/Bc, Bc is the magnetic field at the plasma centre 

(R=Rc, Z=Zeq),   1

m m mP r b   
c  and  2 11m m cR R   

c
 are correspondingly toroidal 

canonical momentum and normalised magnetic moment, rm is the radius of flux surface at 

R=Rm, Z=Zeq. Relationships (A1.4) allow getting the explicit expressions for Rm, VRm, 

m, Vm and for Jacobian rgc - 
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In (A1.5) YR
2
 is the Jacobian of transformation from cylindrical coordinate R, Z to flux 

coordinate r,  [15]. It can be shown that  rg r c c , i.e. is a constant of motion with 

  3 1 2J c mR V b   c .                                             (A1.6) 

In (A1.6) J is a sign of toroidal current in plasma (see Fig. 5).  Introducing the poloidal 

variable   determined by the relationship (5) we express Lx in terms of new variables

   , , , ,m mV R  c  and get the following Fokker-Planck equation 
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with 

 

4 1 2 3

41 11 21 31

42 12 22 32

43 13 32 33

, for , 4

,

m m

m m

m m

m m

i i ij ij

r r

r V r r R

r V r r R

r V r r R

r V r r R

r r

d d D D i j

d d d d

D D D D

D D D D

D D D D

g g g

 

 

 

 

 

 

  

  

  

  

 

  

     

     

     

     

   

c c c c

c c c c

c c c c

c c c c

c c c c

c c cc

.                                     (A1.8) 

 

Accounting for relationship  
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derivatives cr in (A1.8) can be represented as 
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 Due to weak collision rates as compared to bounce frequencies the distribution 

function of fast ions, f(c,), can be represented as a superposition of the dominant part, f
0
(c), 

which is independent on angular coordinate and of a small oscillating part, f
1
(c,), 
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Using (A9) we arrive at the following equation for f0 
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Finally the f
1
(c,) can be represented as 
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It should be noted that 44Dc
does not contribute to f

1
(c,). 

 

Appendix 2 Fokker-Planck equation for lost ions in coordinates    ˆ ˆˆ , , , ,l l lX V Z   c  

 To get an expression for Lx  in  ˆ,l c variables we follow the procedure of Appendix 

1. Using the following relationships of Eulerian coordinates with New Lagrangian coordinates 

   ˆ ˆ, , , ,l l lV Z  c  given by  
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Using (A2.1) we arrive at the following FP equation for lost ions 
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In (A2.2) 
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Due to condition (8) equation (A2.2) can written as  
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with the following transport coefficients 
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In (A2.5) 
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Fig. 1: Confinement domains of counter-passing (left) and co-passing and trapped (right) fast 

ions with full gyro-radius  =5cm in constant-of-motion variables Rm and pitch-angle cosine 

m=Vllm/V confined in JET-like plasma (qa/q0=5/1, Shafranov shift 0=0.15m and elongation 

k=1.7). Here  =(2mE/m)
1/2

c/(eBc) – gyro-radius at the plasma centre (Rc=2.86m). 
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Fig. 2: Distinctive orbits of fast ions lost a result of radial diffusion – b) and via scattering 

into a loss cone – d).  Shown in violate are unperturbed marginally confined trapped – a) and 

confined ctr-passing – c), d) orbits. 
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Fig. 3: Confinement domains of counter-passing (left) and co-passing and trapped (right) fast 

ions in constant-of-motion variables Rm,  confined in JET-like plasma (qa/q0=5/1, Shafranov 

shift 0=0.15m and elongation k=1.7). Here  = (2mE/m)
1/2

c/(eBc) – full gyro-radius at the 

plasma centre (Rc=2.86m). 1, 2, …, 5 are characteristic values of gyro-radius separating 

energy ranges with qualitatively different orbit topology of confined fast ions and with 

different loss mechanisms. 
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Fig. 4: Confinement domains of counter-passing (left) and co-passing (right) fast ions with 

full gyro-radii  =20cm, 31cm and 40cm in constant-of-motion variables Rm, m confined in 

JET-like plasma (qa/q0=5/1, Shafranov shift 0=0.15m and elongation k=1.7). Here  = 

(2mE/m)
1/2

c/(eBc) – gyro-radius at the plasma centre (Rc=2.86m). 

 

 

 

 

 

 

 



L

Plasma facing surface R
w
 = W(Z)

V
ll

VV


R

Z

0

B



G
n


l

Z
l

 

Fig. 5: Constant-of-motion variables of lost ions. Here Zl and l are values of Z coordinate 

and pitch-angle at the point L, where ion hits the PFS; G is the guiding centre position at the 

moment when the ion reaches the point L; n is the normal to PFS at the point L. 
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Fig. 6: (a) - Typical orbits of fast ions escaping to the plasma facing surface at point L(Rl,Zl) 

with the same pitch-angle l but with minimum (red) and maximum (blue) values of the 

normal to the PFS velocity. (     ,       )- full orbits, (---,---) - guiding centre orbits.  Points 

G(Rg,Zg) and G′(R′g,Z′g) denote the guiding centre positions at the moment when ion hits the 

PFS. (b) – Distance between the ion and the plasma facing surface as a function of gyro 

phase  = t.  = 0° corresponds to the closest approach to PFS during the gyro period 

prior the ion loss. 

 

 

  

Fig. 7: Fast ion distribution function of co-

circulating lost deuterons with E = 130 keV 

and 
l
=0.5 vs polidal angular variable ̂  and 

poloidal coordinate Zl at the first wall. 

Fig. 8: Contours of the convection-diffusion 

collisional flux of trapped and co-passing 

beam deuterons in the plane spanned by the 

pitch angle cosine  and poloidal coordinate Z
 

at the first wall. 

 

 


