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Abstract: Recent studies at JET focus on analysis of the LH wave power absorption and CD calculations by 

means of a new Ray Tracing (RT) / Fokker-Planck (FP) package. The RT code works in real 2D geometry 

accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, 

N||, spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by 

different combinations of klystrons. Various FP solvers were tested including a new 3D relativistic bounce 

averaged FP code. LH wave power deposition profiles from the new code have been compared to the 

experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4T low and high density. 

This kind of direct comparison between power deposition profiles from experimental ECE data and numerical 

model are carried out for the first time for waves in the LH range of frequencies. The results are in a very good 

agreement with experimental data at lower density, line averaged values of 𝑛̅𝑒 ≈ 2.4 × 1019 𝑚−3. At higher 

density, 𝑛̅𝑒 ≈ 3 × 1019 𝑚−3, the code predicts more on-axis LH power deposition and very small absorption at 

the plasma periphery. The latter is inconsistent with the experimental observations and possible sources of 

these discrepancies have been briefly discussed in the paper. The code is also used to calculate the LH power 

deposition and CD profiles for the low-density preheat phase of JET’s Advanced Tokamak (AT) scenario. It 

was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and 

driven current move inward i.e. towards the plasma axis. A total driven current of about 70kA for 1MW of 

launched LH power was predicted in these conditions.  
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INTRODUCTION 

Lower Hybrid (LH) waves are widely recognised as the most effective source of off-axis 

current in magnetically confined fusion experiments [1], [2], [3]. This fundamentally 

determines their main scope of use such as to drive a large amount of off-axis non-

inductive current for fully non-inductive operation in advanced tokamak scenarios, for 

example the Steady State (SS) scenario, as well as for shaping the plasma current profile 

to avoid instabilities in the plasma core during the pre-heat and in the main heating phase. 

Based on these features LH system is also considered as one of the main microwave 

heating systems on ITER [4], [5] and a vital part in sustaining ITER SS scenario [6], [7]. 

Recent simulations [6] show that LH heating and Current Drive (CD) power of about 

20MW can maintain SS scenario in ITER with minimum safety factor q of above 1.5, 

which is desirable with regard to avoiding neoclassical tearing modes. 

LH waves’ propagation, absorption and CD generation have been extensively studied 

numerically in the last three decades. A large number of numerical codes have been 

created, validated and subsequently tested and compared against each other, e.g. [3], [8]. 

It is acknowledged, however, that a more precise assessment of the LH power deposition 

and CD efficiency is required [9], [10], [11] for the purposes of possible ITER 

implementation. 

Most of the present numerical tools, developed to deal with wave heating and CD 

problem in LH range of frequencies, fall into one of the following three categories: (i) 

Ray Tracing (RT) also called eikonal [12], [13] or Wenzel-Kramers-Brillouin (WKB) 

methods coupled with Fokker-Planck (FP) solver; (ii) Full Wave (FW) / Fokker-Plank 

codes and (iii) Particle-In-Cell (PIC) packages. The Ray Tracing / Fokker-Planck codes, 

which will be referred to as RT/FP codes, are the simplest in terms of physics background 

and computational power needs. These codes are the first to be used to study LH wave 

propagation and absorption. The so called geometric optics approximation used in this 

case, however, breaks down at the cut-offs at the plasma edge due to the sharp dielectric 

gradients there. In addition to this, in the pure RT case, the diffraction effects which 

occur at the caustics are not taken into account [13]. Recently paraxial treatment [14] of 

the eikonal and the so called beam tracing techniques were applied to solve this issue 

[15]. In the last decade more complex full wave solvers have been developed and 

successfully tested [16], [17]. Mixed WKB-full-wave approach has also been reported 

[18], [19]. Also in the recent years there is a significant progress in LH wave propagation 

modelling based on simulations with particle codes [20]. A summary of some of the 

advantages and disadvantages of the existing LH wave propagation codes is summarised 

in Table 1. 

All the codes based on RT/FP and FW/FP models make use of the so called quasi-linear 

theory [21] to relate the wave electric field to the evolution of the Electron Distribution 

Function (EDF). The main difficulties here arise in the coupling between the wave 

propagation model and the Fokker-Planck solver. This is, in general, done by means of so 

called quasi-linear diffusion coefficient, Dql, which relates the wave energy flux to 

diffusion in velocity space for the FP problem.  
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Table 1: Summary of the existing LH wave absorption and CD codes 

 Advantages Disadvantages 

RT/BT 1. Simple and straightforward model 

implying simple computational model; 

2. BT takes into account the geometry 

of the beam and diffractional effects at 

the caustics. 

1. Not accurate in caustics and near 

cut-offs where the rays are reflected 

back to the plasma (geometrical optics 

breaks down); 

2. RT does not take into account the 

geometry of the beam, so it does not 

account for the diffraction effects at 

the caustics. 

FW 1. Comprehensive treatment of the 

wave behaviour near caustics and 

reflections from cut-offs. 

1. Requires huge computational 

power; 

2. The link between FW and FP is 

more complex which requires even 

more computational power. 

PIC 1. Provides more complex picture of 

wave-particle interactions during 

wave propagation; 

2. Non-linear Landau damping can 

treated. 

1. Requires huge computational 

power; 

2. Due to the large number of particles 

required only simple cases (e.g. 

cylindrical plasma, constant magnetic 

field and temperature) can be treated 

at the moment. 

 

Presently a large amount of RT/FP codes, including those used at JET, are optimised for 

fast execution and aim at providing rudimentary estimates. The rays are usually traced in 

a simple 1D geometry. The same applies for the FP solvers which are hugely simplified 

due to requirements for quick processing. This paper presents details of a new more in-

depth RT/FP code used at JET for LH wave propagation, absorption and CD calculations. 

The new suite of codes consists of separate RT and FP packages and is designed to 

account for all the issues mentioned above. It works with real plasma configuration of 

JET and deals with the realistic shape of the LH launcher. Various 𝑁∥  spectra along 

poloidal length of the launcher can be used as well. In the following the basics of the RT 

and FP modules are discussed and some interesting results from the code at low and high 

plasma densities are presented. Comparison of the results from the code with the power 

deposition from experimental studies is a novel approach in analysing the LH wave 

absorption and details are highlighted in the paper. Section 2 discusses briefly the 

specifics of present day codes. Some details of the LHCD system and JET are provided 

as well. Structure of the new code is discussed in Section 4. Results of various tests and 

validation procedures are discussed in Section 5. The last part of the paper summarises 

the results and briefly discusses possible future applications of the code. 

BRIEF OVERVIEW OF THE EXISTING RT/FP CODES 

The existing RT / FP codes have two general parts: wave propagation module and 

Fokker-Planck solver.  
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There are various approximations which allow for simplification of the wave propagation 

problem. For instance, the application of ray equations and eikonal method can be used to 

provide an estimate of where in the plasma the microwave power is flowing. The so 

called geometric optics approximation used in this case, however, breaks down at the cut-

offs at the plasma edge. This is even more pronounced in the case when the LH waves are 

weakly absorbed and propagation is in so called multi-pass absorption regime. In this 

case, the rays bounce between the plasma edges and caustics many times before being 

fully absorbed. As the number of bounces increases the stochasticity of the rays’ position 

and wave vectors increases as well [22], [23], [47], [48]. In addition, in this 

approximation the diffraction effects which occur at the caustics are not taken into 

account [13]. Despite these minor disadvantages RT codes were widely used in all 

tokamaks with LH for treating wave propagation problem [7], [24], [25], [26], [27], [28], 

[29], [30], [31], [32], [33], [47], [49].  

A number of FP codes with variable level of complexity can be found in the literature. 

The simplest solution is 1D non-relativistic treatment [1], [29], which employs 1D 

collision operator in a simplified form with contributions from collisional diffusion and 

drag coefficients, which are functions of the parallel velocity. Under this simplification 

the FP equation is reduced to an integral which can be solved numerically to provide the 

steady state electron distribution function (EDF). This approach is simple and does not 

allow for undesired negative values of EDF. Another more complex FP solver has been 

presented by Karney [34], [32]. It is fully relativistic and includes electric field treatment. 

Also, the collisions can be treated with the truncated collisional operator which is a more 

realistic approximation. As a result more consistent power deposition and CD profiles 

can be achieved. The most complicated FP solvers take into account the trapping effects 

as well, [35], [36], [37], [38], [39], [40].  

In general, various combinations between wave propagation solvers and FP codes can be 

used. The only condition is that the wave absorption should be iterated consistently with 

FP by means of feeding the latter with Dql from the wave equations, while in the iteration 

process the wave damping should be solved with EDF, f, from the FP code being used. 

LHCD SYSTEM AT JET 

The LH system at JET is capable of launching maximum about 6MW in L-mode plasmas 

at 3.7GHz. At high-density H-modes the available LH power is slightly lower due to 

coupling issues; in most of the experiments discussed here the coupled power was of the 

order of 2MW. The spectrum of the launched LH wave, expressed as a function of the RF 

power on the parallel refractive index N||, can be changed by phase shifting the power 

delivered by each klystron. When the phases of the klystrons are selected so that there is 

no phase shift between adjacent multijunctions at the launcher mouth the spectrum can be 

presented as a narrow Gaussian curve peaked at N||=1.83. Some of the experiments in SS 

scenarios at JET are performed at different launching spectrum, N||=2.1 or N||=2.3, 

achieved by a phase shift at the launcher of 45
o
 and 90

o
 respectively. 

STRUCTURE OF THE NEW RT/FP CODE 

The existing RT codes at JET, FRTC [24] and LHCD [25], are fast but this is achieved 

mainly by using a simplified geometry of the plasma and the launching structure. These 
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codes work well in cylindrical approximation assuming the LH wave is launched at the 

outer mid-plane and propagates in plasma with simple geometry. In reality the LH 

launcher has a finite poloidal geometry while the plasma is usually elongated and not up-

down symmetric.  

At JET a new RT/FP code (JRT) has been developed to address these issues and to study 

the impact of the real geometry of the LH launcher and the plasma shape and the real 

spectrum from various poloidal positions along the launcher. This way the code covers 

most realistic and interesting cases where the LH plant is pulsed with different klystrons’ 

patterns in poloidal direction. Important problems, as for instance if launching different 

spectra from different rows affects the power deposition and CD efficiency, can be 

studied with the new model. In addition, the new code is also more portable and can be 

used with a number of FP solvers.  

Some of the most essential features of the new RT/FP code include: (i) it works with the 

correct 2D geometry of the plasma; (ii) rays are launched according to the real geometry 

of the launcher; (iii) it has the capability to use different N|| spectrum of the launched 

wave along different rows of the grill. These features are aiming at accurate simulation in 

real geometry emulating the real experimental conditions.  

Ray tracing module.  

The new code uses RT solver, which works in the real 2D plasma geometry. Rays are 

initially launched at the periphery of the plasma from locations corresponding to the LH 

launcher mouth. An iterative procedure then finds the exact location along the major 

radius at which density is equal to the cut-off density, ne = ne, SW cutoff. Rays start from that 

point assuming N=0 and then traced in the real R, Z geometry of the plasma.  

The geometry used is right-handed cylindrical R = (R, , Z) with wave refractive index N 

= kc/ω = k/k0 with components (NR, M=RN, NZ). The Ray Tracing equations then are: 
𝑑𝑅

𝑑𝑡
= −

𝑑𝐷0 𝑑𝑁𝑅⁄

𝜔𝑑𝐷0 𝑑𝜔⁄
;   

𝑑𝜑

𝑑𝑡
= −

𝑑𝐷0 𝑑𝑀⁄

𝜔𝑑𝐷0 𝑑𝜔⁄
;  

𝑑𝑍

𝑑𝑡
= −

𝑑𝐷0 𝑑𝑁𝑍⁄

𝜔𝑑𝐷0 𝑑𝜔⁄
;       (1) 

𝑑𝑁𝑅

𝑑𝑡
=

𝑑𝐷0 𝑑𝑅⁄

𝜔𝑑𝐷0 𝑑𝜔⁄
;   

𝑑𝑀

𝑑𝑡
=

𝑑𝐷0 𝑑𝜑⁄

𝜔𝑑𝐷0 𝑑𝜔⁄
;  

𝑑𝑁𝑍

𝑑𝑡
=

𝑑𝐷0 𝑑𝑍⁄

𝜔𝑑𝐷0 𝑑𝜔⁄
      

The spatial variables and M are normalized to 1m, the time to 1m/c, ω to 2π*1Hz and 

group velocity of the wave vgr=(dR/dt; Rd/dt; dZ/dt) to c.  

The dispersion relation D0(R, N, t)=0 used in (1) is expressed in terms of the 

perpendicular, N = k / k0 , and the parallel, N|| = k|| / k0, refractive indexes: 

𝐷0(𝑹, 𝑵, 𝑡) = 𝐴1 𝑁⊥ 
6 + 𝐴 𝑁⊥ 

4 + 𝐵 𝑁⊥ 
2 + 𝐶 = 0     (2) 

𝑫̂0 = (

𝑆 − 𝑁||
2 −𝑖𝐷 𝑁||𝑁⊥

𝑖𝐷 𝑆 − 𝑁||
2 − 𝑁⊥

2 0

𝑁||𝑁⊥ 0 𝑃 − 𝑁⊥
2

)       

with 𝐴1, 𝐴, 𝐵, and 𝐶 coefficients defined as 

𝐴1 = − (
3

2

𝜔𝑝𝑖
2

𝜔2

𝑣𝑡𝑖
2

𝑐2 +  
3

8

𝜔𝑝𝑒
2

Ω𝑐𝑒
2

𝜔2

Ω𝑐𝑒
2

𝑣𝑡𝑒
2

𝑐2 ) ;        

𝐴 = 𝑆;   𝐵 = (𝑆 + 𝑃)(𝑁∥
2 − 𝑆) + 𝐷2;     𝐶 = 𝑃[(𝑁∥

2 − 𝑆)
2

−  𝐷2]   (3) 

where we use standard Stix notations for S, P and D in (3), while N|| = k||c/ and N = 

kc/ are the parallel and the perpendicular refractive index. 
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Equilibrium data are presented in poloidal cross-section, i.e. (R, Z) geometry, while 

plasma kinetic profiles are assumed functions of the normalized toroidal flux radius . 

The latter is regarded as prerequisite for interfaces with transport codes. 

The present code does not include calculation of the launched spectra from the antenna, 

instead spectra from the SWAN code [41] were used. It is assumed that near Gaussian N|| 

spectra are launched from launcher poloidal locations corresponding to waveguide 

sections.  

The impact on the geometrical effects and the pitch of the magnetic field lines in front of 

the launcher are shown in figure 1 a). The launched spectra (in red) peaked at N|| =1.83 

for all the six rows (Row 1 to Row 6 for top to bottom, figure 1b) are downshifted (see 

dashed black curves) with respect to N|| as shown for all rows. The spectra changes in 

some cases is significant, e.g. in rows 5 and 6 the launched spectrum is peaked at N|| 

=1.82-1.84, while when the wave enters the plasma N|| down-shifts to 1.77-1.79. It is also 

clear that not all the rows are affected in the same way, e.g. rows 1 and 2 are less affected 

than rows 5 and 6. It is clear from figure 1 a) that due to poloidal inhomogeneity proper 

treatment of the wave propagation problem requires raytracing in 2D geometry. The 

correct spectra are thus used to calculate the relevant power absorption and CD. 

 

 a)  b) 

Figure 1: a) The launched (red dashed line) and the real (black solid line) spectra from rows 1 to 6. Power spectrum 

peaked at N|| = 1.83, dP/dk|| [MW.m] is plotted in the interval 1.6 < N|| < 2 for N|| box size of ΔN|| =0.02 and total 

launched power 0.5MW on rows 1 to 6 of the JET’s LH launcher. b) JRT ray (blue line) launched from row 2 of LH 

launcher (profile in red on the right) is validated versus GENRAY result (dashed magenta line) for JET pulse #74871, 

15.5s 

 

The RT code is validated by comparing various ray paths with results from GENRAY 

code [30]. Different poloidal launching locations and different N|| have been checked. In 

figure 1 b) an example with two traces of rays with N||=1.8 launched at the mid-plane is 
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shown. The two rays in figure 1 b) are undistinguishable up to the point where they 

approach the caustic at the plasma centre. The deviation from this point on is due to the 

difference in the equilibrium meshes used in GENRAY and JRT.  

LH wave absorption 

Wave power absorption can be calculated by making use of the weak damping 

approximation, according to which the small imaginary part of the wave frequency, 

+it, can be derived from the imaginary part of the dispersion relation (2) resulting from 

various damping mechanisms: 
𝑑𝑃𝑟

𝑑𝑡
= −2 𝛾𝑡 𝑃𝑟 ;     𝛾𝑡 ≈

𝐼𝑚(𝐷0)

𝜕𝐷0 𝜕𝜔⁄
≈

𝐼𝑚(𝑃) 𝜕𝐷0 𝜕𝑃⁄

𝜕𝐷0 𝜕𝜔⁄
       (4) 

Where Pr is the power in Watts carried by an individual ray, t is the wave electric field 

damping rate. In the non-relativistic case of resonant damping on electrons: 

𝐼𝑚(𝑃) = −𝜋
𝜔𝑝𝑒

2

𝜔
∫ 2𝜋𝑣⊥𝑑𝑣⊥ ∫ 𝑣∥

𝜕𝑓

𝜕𝑣∥
𝛿(𝜔 − 𝑘∥𝑣∥)𝑑𝑣∥

∞

−∞

∞

0
=

                  −𝜋
𝜔𝑝𝑒

2

𝜔
∫ 𝑣∥

𝜕𝑓||

𝜕𝑣∥
𝛿(𝜔 − 𝑘∥𝑣∥)𝑑𝑣∥

∞

−∞
= −𝜋 sign(𝑘∥)

𝜔𝑝𝑒
2

𝑘||
2

𝜕𝑓||

𝜕𝑣∥
|

𝑣∥=𝑣∥,𝑟𝑒𝑠

 (5) 

where parallel EDF was introduced according to 𝑓∥(𝑣∥) = ∫ 2𝜋𝑣⊥𝑓𝑑𝑣⊥
∞

0
 and resonance 

parallel velocity 𝑣∥,𝑟𝑒𝑠 = 𝜔/𝑘∥ is equal to the wave phase velocity. 

In the relativistic case starting from the general expression for P, [32]: 

𝑃 =
𝜔𝑝𝑒

2

𝜔
∫ 2𝜋𝑝⊥𝑑𝑝⊥ ∫

𝜕𝑓

𝜕𝑝∥

𝑣∥𝑚𝑒

(𝜔−𝑘∥𝑣∥)
𝑑𝑝∥

∞

−∞

∞

0
      (6) 

and after using the relation: 
1

𝜔−𝑘∥𝑣∥
= 𝑃 (

1

𝜔−𝑘∥𝑣∥
) − 𝑖𝜋 𝛿(𝜔 − 𝑘∥𝑣∥)      (7) 

one obtains for Im(P) at the resonance 𝜔 = 𝑘∥𝑣∥: 

𝐼𝑚(𝑃) = −𝜋
𝜔𝑝𝑒

2

𝜔
∫ 2𝜋𝑝⊥𝑑𝑝⊥ ∫ 𝑣∥𝑚𝑒

𝜕𝑓

𝜕𝑝∥
𝛿(𝜔 − 𝑘∥𝑣∥)𝑑𝑝∥

∞

−∞

∞

0
=

                  −𝜋
𝜔𝑝𝑒

2

𝜔
∫ 𝑣∥𝑚𝑒

𝜕𝑓||

𝜕𝑝∥
𝛿(𝜔 − 𝑘∥𝑣∥)𝑑𝑝∥

∞

−∞
     (8) 

where parallel EDF was introduced according to 𝑓∥(𝑝∥) = ∫ 2𝜋𝑝⊥𝑓𝑑𝑝⊥
∞

0
. 

By using the relations 𝑣∥𝑚𝑒 = 𝑝∥ 𝛾⁄ , 𝛿(𝜔 − 𝑘∥𝑣∥) = (𝛾𝑚𝑒 |𝑘∥|⁄ )𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥), where  

is the relativistic factor, 𝛾 = √1 + (𝑝 𝑚𝑒𝑐⁄ )2, and the resonance parallel momentum is 

defined as 𝑝∥,𝑟𝑒𝑠 = (𝜔𝛾𝑚𝑒 𝑘∥⁄ ) = (𝑐𝛾𝑚𝑒 𝑁∥⁄ ) , after performing the integration over 

parallel momentum 𝑝∥ one has for Im(P) the following expression: 

𝐼𝑚(𝑃) = −𝜋
𝜔𝑝𝑒

2

𝜔
∫ 2𝜋𝑝⊥𝑑𝑝⊥ ∫

𝑝∥𝑚𝑒

|𝑘∥|

𝜕𝑓

𝜕𝑝∥
𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥)𝑑𝑝∥

∞

−∞

∞

0
=

                 −𝜋
𝜔𝑝𝑒

2

𝜔
∫

𝑝∥𝑚𝑒

|𝑘∥|

𝜕𝑓∥

𝜕𝑝∥
𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥)𝑑𝑝∥

∞

−∞
= −𝜋sign(𝑘∥)

𝜔𝑝𝑒
2

𝑘∥
2 𝛾𝑚𝑒

2 𝜕𝑓∥

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

=

                −𝜋sign(𝑘∥)
𝜔𝑝𝑒

2

𝜔2

𝑐

𝑁∥
2 𝛾𝑚𝑒

2 𝜕𝑓∥

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

      (9) 

Which transforms (4) into: 
𝑑𝑃𝑟

𝑑𝑡
=  2𝜋

 𝜕𝐷0 𝜕𝑃⁄

𝜕𝐷0 𝜕𝜔⁄
sign(𝑘∥)

𝜔𝑝𝑒
2

𝜔2

𝑐

𝑁∥
2 𝛾𝑚𝑒

2 𝜕𝑓∥

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

𝑃𝑟     (10) 



8 

 

FP solvers.  

A number of FP solvers – from the simplest 1D model to more comprehensive codes as 

for instance CQL3D – can be used in conjunction with RT code. The present version of 

JRT has been tested with a number of different FP codes. A brief description of these is 

provided here. 

The simplest approach is outlined by the 1D non-relativistic FP solver. The physics basis 

of it has been developed by Fish and Karney [1] and it is also used in [29]. Despite its 

simplistic form, this approach helps understanding the picture behind the wave heating 

and CD by LH waves in plasma. It can be also used when quick assessments of the CD 

are required, although, as it will be shown later it significantly overestimates the CD 

efficiency. It originates from the assumption that the parallel EDF, F||, and the collision 

operator, 
𝜕

𝜕𝑣∥
[(𝐷𝑐(𝑣∥) 𝜕 𝜕𝑣∥⁄ + 𝜈𝑐(𝑣∥)𝑣∥) 𝐹∥(𝑣∥)], can be simplified as 1D functions on 

the parallel velocity, v||, only. Coefficients Dc and c are calculated in high velocity limit 

and also depend on v|| and impurity content, Zeff. This significant simplification of the 

problem allows for the 1D FP equation to be directly integrated, giving for the steady-

state EDF the following integral expression: 

𝐹∥(𝑣∥) =
1

√2𝜋𝑣𝑡
2

exp (− ∫
𝜈𝐶(𝑣′∥)𝑣′∥𝑑𝑣′∥

𝐷𝐶(𝑣′∥)+𝐷𝑞𝑙(𝑣′∥)

𝑣∥

0
)      (11) 

The quasi-linear diffusion coefficient, Dql, can be easily derived from the formula 

provided below. Although very simple this approach can still provide reasonable results 

and, in addition, it can work with large values of Dql. Indeed, the denominator in the 

expression above allows for infinite values of the quasi-linear diffusion coefficient to be 

treated as well. It was found however that the 1D approach overestimates the driven 

current. 

A more comprehensive approach is to use a 2D relativistic code as the one from Karney 

[34], which also includes electric field and relativistic effects. Similar approach is used in 

[32] as well. The transient relativistic full 2D equation which describes the evolution of 

the EDF 𝑓: 
𝜕𝑓

𝜕𝜏
= −∇𝑝 ⋅ 𝐒 ,   𝐒 = 𝐒𝐪𝐥 + 𝐒𝑬 + 𝐒𝒄       (12) 

is solved numerically. The momentum 𝒑 is presented in spherical co-ordinates (𝑝, 𝜃) 

where 𝑝  is the absolute momentum and 𝜃  is the pitch angle, while the velocity 𝑣  is 

𝑣 = 𝑝 𝛾𝑚𝑒⁄ . The flux in momentum space can be presented as superposition of RF, 𝐒𝐪𝐥, 

electric field, 𝐒𝑬  and collisional contributions, 𝐒𝒄 , whereby 𝐒𝐪𝐥  depends on the quasi 

linear diffusion coefficient. The absorbed RF power can be computed from the 

corresponding flux: 

𝑃ql = ∫ 𝐯 ⋅ 𝐒𝐪𝐥𝑑
3𝒑         (13) 

The 2D relativistic bounce-averaged solver is derived from an early version of Shoucri 

code [35], [36], [37] and apart from the normalisations it is similar to CQL3D [40]. A 

couple of modifications have been made to the code to account for the trapped particle 

profiles. An interface to the wave propagation code has been developed as well. 

Assuming the bounce time 𝜏𝑏 = ∮ 𝑑𝑙𝑏 |𝑣∥|⁄
′

 is much smaller than the collisional time 𝜏𝑡𝑒 

and ordering the FP equation in increasing order of 𝜏𝑏 𝜏𝑡𝑒 ≪ 1⁄  terms, one gets for the 
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first order EDF 𝑓(𝑝0, 𝜇0) computed on the Low Field Side (LFS) radial positions where 

magnetic field B is minimal: 
𝜕𝜆𝑓

𝜕𝜏
= −∇𝑝 ⋅ 𝜆𝐒 − 𝜆𝐼0(𝑓𝑀𝑎𝑥, 𝜇0𝑓1)         (14) 

where collisions were approximated by a contribution in divergence form, 𝐒𝒄
𝒂, accounted 

for in 𝐒 = 𝐒𝐪𝐥 + 𝐒𝑬 + 𝐒𝒄
𝒂 and an integral contribution, 𝐼0(𝑓𝑀𝑎𝑥, 𝜇0𝑓1).  

The ‘0’ subscript in (𝑝0, 𝜇0) notation means these parameters are calculated at the LFS 

mid-plane minimum B points and are related to the local momentum and pitch angle by 

the relations: 

𝑝 = 𝑝0   
𝜇2 = 1 − 𝜓(1 − 𝜇0

2)         (15) 

where 𝜓 = 𝐵0 𝐵⁄  is the ratio of the magnetic fields at LFS minimum and at the local 

point.  

The parameter  in (14) accounts for the bounce averaging and is related to the bouncing 

period 𝜏𝑏: 

𝜆 = |𝑣∥0|𝜏𝑏 = |𝑣𝜇0|𝜏𝑏 ≈ 2𝑞𝑅0(𝐽0 − 0.5 𝜇𝑇
2𝐽2)     (16) 

where the boundary between trapped and passing particles can be defined as 𝜇𝑇 =

√2𝜖 (1 + 𝜖)⁄ , with 𝜖, q and R0 being the device inverse aspect ratio, safety factor and 

major radius at the plasma axis. J0 and J2 are combinations of elliptic functions of the 

ratio 𝜇0 𝜇𝑇⁄  and can be found in [37]. 

The contributions to the flux in the momentum space, S, are flux surface and bounce 

averaged, meaning that the LH contribution from the quasi-linear diffusion coefficient 

has to be bounce-averaged as well. 

Quasi-linear diffusion coefficient.  

Mapping the wave energy carried by a particular ray into a quasi-linear diffusion 

coefficient, Dql, is challenging. The procedure requires converting the power attributed to 

the ray into parallel wave electric field |𝐸∥|
2
. Here some of the typical problems, related 

to the techniques being used in this paper, will be outlined. Comparison between different 

approaches will be discussed as well.  

The general expression for Dql has the following form: 

𝐷𝑞𝑙 =
𝜋

2

𝑒2

𝑚𝑒
2 |𝐸∥|

2 𝑘∥
2𝑣∥

2

𝜔2
𝛿(𝜔 − 𝑘∥𝑣∥)       (17) 

where E|| is the amplitude of the electric field parallel to the magnetic field. The delta 

function, , accounts for the resonant wave-particle interaction and in general there is no 

good numerical approximation for it. 

An estimate of the parallel electric field can be found from the expression for the 

propagating wave energy density U:  
𝑃𝑟

𝒗𝒈𝒓.𝑺𝝍
≈

𝑃𝑟

𝑑𝑉 𝑑𝑡⁄
≈

𝑃𝑟 Δt

ΔV
 ;   

𝑃𝑟

𝒗𝒈𝒓.𝑺𝝍
≈ 𝑈 =

𝜀0

4
 𝑬∗ 𝜕𝜔𝑫̂0

𝜕𝜔
𝑬     (18) 

where vgr is the wave group velocity, S is the surface area of the flux surface being 

crossed by the ray, V is the differential volume covered by ray element in t time 

interval. For slow wave in the electrostatic limit the following approximation can be used 

[42]: 
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𝑬∗ 𝜕𝜔𝑫̂0

𝜕𝜔
𝑬 ≈ 𝜔 (

𝑁⊥
2

𝑁∥
2

𝜕𝑆

𝜕𝜔
+

𝜕𝑃

𝜕𝜔
) |𝐸∥|

2
       (19) 

Replacing (19) in (18) and using (17) one gets the following contribution to the quasi-

linear diffusion coefficient from a particular ray: 

𝐷𝑞𝑙 =
𝜋

2

𝑒2

𝑚𝑒
2

4

𝜀0

1

𝜔(
𝑁⊥

2

𝑁||
2

𝜕𝑆

𝜕𝜔
+

𝜕𝑃

𝜕𝜔
)

 
𝑃𝑟 Δt

ΔV
𝛿(𝜔 − 𝑘||𝑣||) =

                       
𝜋

2

𝑒2

𝑚𝑒
2

4

𝜀0

1

𝑁⊥
2

𝑁||
2

𝜕

𝜕𝜔
(𝜔

𝐷0

𝑁⊥
4 )

𝑃𝑟 Δt

ΔV
 𝛿(𝜔 − 𝑘||𝑣||)     (20) 

The denominator in the last equation (20) is further simplified by the approximation 

𝜔 (
𝑁⊥

2

𝑁||
2

𝜕𝑆

𝜕𝜔
+

𝜕𝑃

𝜕𝜔
) ≈

𝑁⊥
2

𝑁||
2

𝜕

𝜕𝜔
(𝜔

𝐷0

𝑁⊥
4) which has been used by Bonoli [28] and in 1D case [29]. 

Alternatively, one can derive the quasi-linear diffusion coefficient, Dql, by comparing the 

expression for the wave power damping equation with the absorbed RF power as 

calculated from FP. This approach is used in the 2D relativistic case by Imbeaux and 

Peysson [32]. Starting from the expression for wave power absorption, eqs. (4) and (10), 

we have for the ray’s power damped in a time interval of t the following expression 

Δ𝑃𝑟 = −2𝛾𝑡𝑃𝑟Δ𝑡, while for the absorbed power in the momentum interval p||, p|| + dp|| 

from (10) one can use the following approximation: 

𝑑𝑃𝑟|𝑝∥

𝑝∥+𝑑𝑝∥ = 2 𝜋 
𝜕𝐷0 𝜕𝑃⁄

𝜕𝐷0 𝜕𝜔⁄

𝜔𝑝𝑒
2

𝜔

𝑝∥𝑚𝑒

|𝑘∥|

𝜕𝑓∥

𝜕𝑝∥
𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥)𝑑𝑝∥𝑃Δ𝑡 =

                        2 𝜋 
𝜕𝐷0 𝜕𝑃⁄

𝜕𝐷0 𝜕𝜔⁄

𝜔𝑝𝑒
2

𝜔

𝑝∥,𝑟𝑒𝑠𝑚𝑒

|𝑘∥|

𝜕𝑓

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥)𝑑𝑝∥𝑃Δ𝑡  (21) 

In addition, the absorbed power can be calculated from the FP code providing Dql is 

known: 

𝑃𝑞𝑙 = −𝑛𝑒ΔV ∫ 2𝜋𝑝⊥𝑑𝑝⊥
∞

0
∫ 𝑑𝑝∥

∞

−∞
𝐷𝑞𝑙

𝑝∥,𝑟𝑒𝑠

𝛾𝑚𝑒

𝜕𝑓

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

=

         −𝑛𝑒ΔV ∫ 𝑑𝑝∥
∞

−∞
𝐷𝑞𝑙

𝑝∥,𝑟𝑒𝑠

𝛾𝑚𝑒

𝜕𝑓∥

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

      (22) 

Expression (22) can be also transformed into the following expression for the absorbed 

power in the momentum interval p||, p|| + dp|| [32]: 

𝑑𝑃𝑞𝑙|𝑝∥

𝑝∥+𝑑𝑝∥
= 𝑛𝑒ΔV𝐷𝑞𝑙

𝑝∥,𝑟𝑒𝑠

𝛾𝑚𝑒

𝜕𝑓∥

𝜕𝑝∥
|

𝑝∥=𝑝∥,𝑟𝑒𝑠

 𝑑𝑝∥     (23) 

The quasi-linear diffusion coefficient can then be found after equalling 𝑑𝑃𝑟|𝑝∥

𝑝∥+𝑑𝑝∥ from 

expressions (21) and 𝑑𝑃𝑞𝑙|𝑝∥

𝑝∥+𝑑𝑝∥
 from (23) resulting in the following expression for Dql: 

𝐷𝑞𝑙(𝑝∥) =
2𝜋

𝑛𝑒

 𝜕𝐷0 𝜕𝑃⁄

𝜔𝜕𝐷0 𝜕𝜔⁄

𝜔𝑝𝑒
2

𝜔
𝑃𝑟

Δ𝑡

ΔV

𝛾𝑚𝑒
2

|𝑘∥|
𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥) =

                        
𝜋

2
𝑒2 4

𝜀0

 𝑁2𝑁∥
2

𝜔𝜕𝐷0 𝜕𝜔⁄
𝑃𝑟

Δ𝑡

ΔV

𝛾𝑚𝑒

𝜔|𝑘∥|
𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥)    (24) 

A close look to (24) reveals that in typical LH wave propagation regime 𝑁2 = 𝑁⊥
2 +

𝑁∥
2 ≈ 𝑁⊥

2 it is in general the relativistic form of (20).  

More comprehensive 2D bounce averaged relativistic codes as those from Shoucri [35] 

and CQL3D [40], also treat the trapping effects. In this case EDF is a function of the 

momentum p and pitch angle θ with 𝜇 = cos 𝜃. The corresponding quasi-linear diffusion 
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coefficient now accounts for the trapping effects and we derive it directly from the 

expression for B0 from the CQL3D manual [40]: 

𝐷𝑞𝑙(𝑝0, 𝜇0) =
𝛿𝑠𝑝𝑜𝑙

2𝜋∆Ψ

𝜇0

𝜇
|𝐵|

𝛿𝐵̃

𝑆̃𝑝𝑜𝑙

Δ𝑃

Δ𝑘∥
=

                 
𝜋

2
𝑒2 4

𝜀0

 𝜕𝐷0 𝜕𝑃⁄

𝜔𝜕𝐷0 𝜕𝜔⁄

𝛿𝑠𝑝𝑜𝑙

𝑣𝑔𝑟𝑝𝑜𝑙
[

1

2

1

4𝜋𝑅0

1

Δ𝑙Ψ

1

𝑞𝑅

|𝐵|

𝐵𝑝

1

(𝐽0−0.5 𝜇𝑇
2𝐽2)

𝜇0

𝜇
] 𝑃𝑟𝛿(𝜔 − 𝑘∥𝑣∥) (25) 

In CQL3D notations 𝑆̃𝑝𝑜𝑙  ≈ 𝑣𝑔𝑟𝑝𝑜𝑙
𝜀0

4
𝑬∗ 𝜕𝜔𝑫𝟎̂

𝜕𝜔
𝑬

1

|𝐸∥|
2 ≈ 𝑣𝑔𝑟𝑝𝑜𝑙

𝜀0

4

𝜕𝜔𝑆

𝜕𝜔
∆𝑘∥  is the 

normalised wave energy flux, vgrpol is the poloidal projection of the wave group velocity, 

spol is the poloidal projection of the ray element, Δ𝑙Ψ = ∆Ψ/|Ψ|  is the width 

perpendicular to the flux surface of a volume element containing the ray element and  is 

the poloidal flux function. The variable 𝜇 = cos 𝜃 = √1 − 𝜓 sin2 𝜃  is calculated 

according to (15) for values of  taken at the local coordinate. The rest of the variables 

have the usual meanings: R is the plasma major radius at the point of interest, 𝐵 and 𝐵𝑝 

are the total and the poloidal magnetic field also calculated at the point of interest. The 

expression for the non-trapping case can be quickly recollected noting that Δ𝑡 =
𝛿𝑠𝑝𝑜𝑙 𝑣𝑔𝑝𝑜𝑙⁄  and Δ𝑙Ψ = ΔΨ |∇Ψ|⁄ , |∇Ψ| = 𝑅𝐵𝑝, 𝑞 ≈ 𝑟𝐵𝑇 𝑅0𝐵𝑝⁄  and in large aspect ratio 

approximation 𝜇T → 0, 𝐽0 ≈ 𝜋/2 and 𝜇0 𝜇⁄ ≈ 1 and resulting in [
1

2

1

4𝜋𝑅0

1

Δ𝑙Ψ

1

𝑞𝑅

|𝐵|

𝐵𝑝

1

𝐽

𝜇0

𝜇
] ≈

1/(4𝜋2𝑟𝑅0Δ𝑙Ψ)  ≈ 1/Δ𝑉.  

Numerical implementation.  

The velocity in the 1D FP solver is normalised to the thermal one, 𝑣𝑡 = √𝑇𝑒 𝑚𝑒⁄ , while 

in the relativistic case the momentum p is normalised to the thermal momentum 𝑝𝑡 =
𝑚𝑒𝑣𝑡 . In the latter case vt is different from the thermal velocity, which we define as 

𝑉𝑡𝑒 =  𝑣𝑡𝑒√1 − 5Θ 2⁄ + 55Θ2 8 − ⋯⁄  with  parameter equal to Θ = 𝑇𝑒 𝑚𝑒𝑐2⁄ =
𝑣𝑡

2 𝑐2⁄ . The electron temperature used in these normalisations, 𝑇𝑒, can be either the local 

electron temperature or in bounce-averaged case a fixed value of Te is selected for all 

EDFs along the plasma profile. In normalised units, 𝑝 = 𝑝 𝑝𝑡⁄ = 𝑝 𝑚𝑒𝑣𝑡⁄ = 𝑝 √𝑚𝑒𝑇𝑒⁄  , 

while the EDF 𝑓 = (𝑚𝑇𝑒)3 2⁄ 𝑓 so that ∫ 𝑓𝑑3𝑝 = 1.  

In solving the FP equation the time is normalised to the collisional time, τ = 𝑡/τ𝑡𝑒 = 𝑡ν𝑡, 

with τ𝑡𝑒 = 4𝜋𝜀0
2𝑚𝑒

2𝜐𝑡
3/𝑛𝑒𝑞𝑒

4𝑙𝑛Λ where 𝑙𝑛Λ is the Coulomb logarithm. The power density 

is normalised to 𝑛𝑒𝑝𝑡
2/𝑚𝑒𝜏𝑡, quasilinear diffusion coefficient to 𝑝𝑡

2/𝜏𝑡, the electric field 

to 𝑝𝑡/𝑞𝑒𝜏𝑡𝑒  and the current density to 𝑛𝑒𝑞𝑒𝑝𝑡/𝑚𝑒 . Expression (10) for the LH power 

absorption in normalised units converts into:  
𝑑𝑃𝑟

𝑑𝑡
=  2𝜋

 𝜕𝐷0 𝜕𝑃⁄

𝜕𝐷0 𝜕𝜔⁄
sign(𝑘∥)

𝜔𝑝𝑒
2

𝜔2

𝛾

𝑁∥
2

1

Θ1

𝜕𝑓̃∥

𝜕𝑝̃∥
|

𝑝̃∥=𝑝̃∥,𝑟𝑒𝑠

𝑃𝑟     (26) 

where the normalised resonance parallel momentum 𝑝∥,𝑟𝑒𝑠 is defined as 𝑝∥,𝑟𝑒𝑠 =
𝛾

𝑁||

1

√Θ
.  

The quasilinear diffusion coefficient, Dql, in the equations (20) to (25) involves  function 

calculations. Depending on whether relativistic or non-relativistic FP code is used the 

Dirac delta function can be approximated in different ways. In the non-relativistic case 

where 𝑣̃ = 𝑣 𝑣𝑡𝑒⁄  we have: 

𝛿(𝜔 − 𝑘∥𝑣∥) =
1

|𝑘∥|𝑣𝑡𝑒
𝛿(𝑣̃∥,𝑟𝑒𝑠 − 𝑣̃∥) =

1

𝜔

1

|𝑁∥|√Θ
𝛿(𝑣̃∥,𝑟𝑒𝑠 − 𝑣̃∥)   (27) 
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with 𝑣̃∥,𝑟𝑒𝑠 = 1 (𝑁∥√Θ)⁄ . In the relativistic case the replacement 𝑣∥ = 𝑝∥ 𝛾𝑚𝑒⁄  needs to 

be made and with the normalisation 𝑝 = 𝑝 𝑝𝑡𝑒⁄  the above expression for transforms into: 

𝛿(𝜔 − 𝑘∥𝑣∥) =
1

𝜔

𝛾

|𝑁∥|√Θ
𝛿(𝑝∥,𝑟𝑒𝑠 − 𝑝∥)      (28) 

where 𝑝∥,𝑟𝑒𝑠 = 𝛾 (𝑁∥√Θ)⁄ .  

In the bounce-averaged case the momentum is normalized to the thermal momentum, 𝑝𝑡1, 

defined for a fixed temperature, e.g. 1keV, 𝑝1 = 𝑝 𝑝𝑡1⁄ . The values of 𝑝1,0 and 𝜇0  are 

taken at the outer mid-plane at the minimum of the B field. Delta function can be 

rewritten for 𝑝1,|| = 𝑝1,0𝜇0 variable with 𝛿(𝜔 − 𝑘||𝑣||) =
1

𝜔

𝛾

|𝑁|||√Θ1
𝛿(𝑝1|| − 𝑝1||,𝑟𝑒𝑠), with 

𝑝1,||𝑟𝑒𝑠 = 𝛾 (|𝑁|||√Θ1)⁄ , where Θ1  is calculated at fixed temperature, e.g. 1keV. A 

common problem in interfacing RT code and FP solver is the numerical implementation 

of the Dirac delta function in momentum space. A too narrow function can lead to comb-

like EDF plateau while too broad approximation will overestimate the absorbed LH 

power. There are various ways to represent numerically the Dirac  function. For 

instance, one can use a boxcar or step function. Other possibility, which is mainly used 

here, is to use a Gaussian approximation: 

𝛿(1 − 𝑥) ≈
1

Δ√𝜋
𝑒−(1−𝑥)2 Δ2⁄         (29) 

Another issue in the numerical calculations, which is a possible source of errors, is in 

converting the quasilinear diffusion coefficient, Dql, from wave propagation equation to 

the one for FP code. Usually Dql from wave propagation is calculated in (p||, p) 

coordinates while FP codes use (p, μ=cos(θ)) coordinates hence a mapping into the new 

coordinates is needed.  

At relatively high power the normalized Dql from wave propagation is quite large and 

results in numerical instabilities in the FP solver, so it often needs reducing. It was found 

[32] that the FP codes work well by limiting the normalised Dql to 10, which is adopted in 

our model. A good estimate of the RT/FP convergence is by comparing the absorbed 

power density, pLH, from the wave equation (10) (or alternatively (21)) mapped into the 

flux surface to derive the power deposition profile, pw, and the one calculated by the FP 

code, pql, as in (13) (or alternatively (22)). The values of the total power, derived after 

integration over the plasma volume, Pw, and, Pql, in all of the calculations presented here 

differ by maximum of about 30%. In the paper absorbed power, Pw, is provided when 

discussing the power deposition profiles, while the CD profiles are estimated from the 

CD efficiency from the FP code, which is multiplied to Pw to get the corresponding CD 

profile. 

POWER DEPOSITION AND CURRENT DRIVE CALCULATIONS 

RT/FP calculations require iterative procedure between wave absorption calculations and 

the FP solver in order to derive consistent power deposition profiles. Ideally, after first 

few iterations the absorbed power from the FP code converges towards the one calculated 

by the wave absorption module. Errors in the two modules usually result in discrepancies 

in absorbed power and this can be used as a tool to debug the codes used in the numerical 

calculations. In the following, the power deposition profiles derived from the wave 

absorption eq.(10) and from the FP solver eq.(13) are compared between each other and 
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then to the power deposition profiles derived in early experimental studies on the EC 

emission.  

Comparison between different FP solvers 

The power deposition profiles from 1D and 2D relativistic FP solvers are calculated and 

compared to the experimental findings in two JET pulses: (i) low density 3.4T/1.5MA 

JET pulse #77609 and; (ii) high density 3.4T/1.8MA JET pulse #77609. In the first case 

density line averaged values were about 𝑛̅𝑒 ≈ 2.4 × 1019 𝑚−3, while the central electron 

temperature was of the order of 𝑇𝑒0 ≈ 3𝑘𝑒𝑉, i.e. a relatively cold plasma in L-mode with 

small amount (<1.4MW) NBI power for diagnostic purposes. In the second case line 

averaged density was of the order of 𝑛̅𝑒 ≈ 3 × 1019 𝑚−3  with H-mode like density 

pedestal and higher central electron temperature 𝑇𝑒0 ≈ 3.5𝑘𝑒𝑉 was achieved by applying 

~9.5MW of NBI power. Density and temperature profiles in these two pulses are shown 

in figure 2 and were kept constant during the LH heating phase. The LHCD power 

peaked at N||=1.83 was modulated in the first 3 seconds and then cw power with the same 

averaged values - 1.9MW (#77609) and 1.8MW (#77612) - was applied. The power 

deposition profiles during the modulated phase was studied and experimentally estimated 

in [43] and the conclusions were backed up by analysis of the non-thermal ECE emission 

[44]. 

 

 

Figure 2: Plasma density (blue) and temperature (magenta) profiles for the low density 3.4T/1.5MA JET pulse 

#77609 (solid lines) and high density 3.4T/1.8MA JET pulse #77612 (dashed lines). 

 

Power deposition profiles from 1D and 2D relativistic and 2D relativistic bounce-

averaged codes are shown in figure 3. In the latter case two cases with temperature 

normalisations of Te0=1keV and Te0=2keV were considered. 
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a) b) 

Figure 3: Comparison of power deposition profiles from wave damping (pw, solid lines) and from FP solver 

(pql, dashed lines) as derived from 1D (black lines) and 2D (cyan lines) relativistic codes a) and 2D relativistic 

bounce-averaged code b) for low density JET 3.4T/1.5MA pulse #77609. In b) two profiles are shown: one for 

temperature normalisation of Te0=1keV (blue lines) and one for Te0=2keV (magenta lines). The amount of the 

total absorbed power from the wave absorption calculations, Pw, and the FP results, Pql, are provided in the 

legends. 

 

In all four cases in figure 3a and 3b power deposition profiles from wave absorption, pw, 

and from FP code, pql, are consistent and converge reasonably well within the first 6-7 

iterations. The total amount of absorbed power from the wave damping, Pw, agrees well 

with FP solver value, Pql, as shown in the legends. In the 1D and 2D relativistic case, 

figure 3a, it was found that these two values are very close with FP results being about 

~10% lower. Discrepancy is larger in the 2D bounce-averaged case with Te0=2keV, figure 

3b, where the absorbed power calculated by FP code was about 25% lower. It was found, 

however, that after reducing the spatial mesh size, e.g. by increasing the number of points 

of  from 21 to 51 points, this discrepancy can be reduced to about ~10%. Comparing the 

four cases, one concludes that all 2D relativistic cases are consistent and show a broad 

power deposition profile with density of about 510
4
 W/m

2
 between magnetic axis and 

normalised toroidal radius of =0.6. The 1D case is slightly narrower with power density 

of about 710
4
 W/m

2
 in the region 0.1<<0.5. 

In figure 4a and 4b the power deposition profiles from 1D and 2D relativistic FP solvers 

and 2D relativistic bounce-averaged code with two temperature normalisations, Te0=1keV 

and Te0=2keV, are shown for higher density JET pulse #77612. 

 

a) b) 

Figure 4: Comparison of power deposition profiles from wave damping (pw, solid lines) and from FP solver 
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(pql, dashed lines) as derived from 1D (black lines) and 2D (cyan lines) relativistic codes a) and 2D relativistic 

bounce-averaged code b) for high density JET 3.4T/1.8MA pulse #77612. In b) two profiles are shown: one 

for temperature normalisation of Te0=1keV (blue lines) and one for Te0=2keV(magenta lines). The amount of 

the total absorbed power from the wave absorption calculations, Pw, and the FP results, Pql, are provided in the 

legends. 

 

Here again the power deposition profiles for the 1D and 2D relativistic FP cases are 

consistent, while the coarse spatial mesh in the second case results FP power deposition 

being about 25% lower than the one calculated by wave absorption. Here again choosing 

finer mesh seems to cure the problem and FP power is within 15% of the one from the 

wave absorption. Comparing the latter from the four cases – 1D, 2D relativistic and 2D 

relativistic bounce-averaged with Te0=1keV and Te0=2keV – one finds that there is a 

small discrepancy in the central absorption. In the 1D and 2D relativistic cases, figure 4a, 

no power is absorbed on-axis, while in the 2D relativistic bounce-averaged case, figure 

4b, some power is absorbed in the very core. For >0.2 all four cases are consistent with 

power densities of about 510
4
 W/m

2
.  

The CD profiles for the two pulses discussed above are shown in figure 5. They are 

calculated by deducing the CD efficiency from the FP solver and then multiplying it to 

the power density from the wave absorption. In the low density case, figure 5a, the two 

2D FP codes are in a reasonably good agreement regarding the current drive profile, jLH, 

and total CD, ILH. The latter is of the order of 0.15MA by the 2D relativistic and 0.14MA 

by the bounce averaged FP codes. In the 1D case twice larger CD is predicted with ICD 

=0.28MA. This large overestimate of the CD by the 1D approach means it is not 

applicable in our case. 

 

a) b) 

Figure 5: Current drive profiles from 1D (black dashed lines), 2D relativistic (blue dash-dotted lines) and 2D 

relativistic bounce-averaged FP with Te0=1keV (solid cyan lines) codes for low density JET pulse #77609 a) 

and high density JET pulse #77612 b). The total amount of the driven current for each case is provided in the 

legends. 

 

In the high density case, figure 5b, the two 2D FP codes differ slightly with respect to 

the current drive profile, jLH, but are more consistent regarding the total driven current, 

ILH. The latter is again slightly lower, 0.12MA, in the bounce averaged FP case compared 

to 2D relativistic case, where total driven current of 0.14MA is predicted. As in the 

previous case, the 1D approach overestimates by factor of about 2 both the driven current 

density jLH and the total CD, ICD =0.23MA.  
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Validation of the FP solver  

The RT code and the relativistic FP solver were verified against experimentally validated 

LH deposition profiles. The LH wave power depositions for the two pulses, #77609 and 

#77612, were studied experimentally at JET by applying modulated LH power [43] as 

well as analysing the emission of the supra-thermal electrons [44]. In both cases it was 

concluded that the deposition is off-axis and very broad. These experimentally verified 

power deposition profiles are now compared to the results from JRT. 

In figure 6 results of the LH power deposition profiles from JRT (solid line) and 

experimentally verified ones for JET pulse #77609 are shown. The experimental profiles 

were determined from modulation experiments (dash-dotted line) and alternatively from 

the EC emission of the supra-thermal electrons (dashed line). The JRT code also predicts 

broad off-axis deposition in this case. Although the code predicts more ragged profile, the 

calculations are in a very good agreement with experimental data. This kind of direct 

comparison between calculated and experimentally assessed power deposition from the 

ECE measurements is reported for the first time in the literature on the LH waves. One 

area of improvement is the missing deposition at the periphery as the code predicts no LH 

power for >0.63, while there is experimental evidence that LH power is absorbed for up 

to =0.8-0.9. The code also overestimates the absorbed power at ~0.5. Despite these 

discrepancies the total absorbed power, PLH, from JRT is 1.8MW and is in an excellent 

agreement with the actual value of about 1.9MW. The total driven current in this case has 

been assessed of the order of 𝐼𝐿𝐻 ≈ 0.14𝑀𝐴, figure 5a. 

 

 

Figure 6: LH wave power deposition profiles of JET 3.4T/1.5MA low density pulse #77609. The JRT profile 

of pLH (solid cyan line) was derived for a radial mesh of 21 points and with 2D fully relativistic, bounced-

averaged FP and Te0=1keV. The experimental profiles were determined from modulation experiments (dash-

dotted black line) [43] and alternatively from the ECE of the supra-thermal electrons (dashed blue line) [44]. 

The total amount of experimentally assessed and calculated absorbed power, PLH, in shown in the legends for 

all three cases.  

 

The discrepancies between the experimental and theoretical power deposition profiles for 

0.6<<0.85 is a typical feature of the so called spectral gap problem related to the 

modelling the LH waves absorption and CD [3], [7], [50]. Indeed, damping of LH waves 
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with N||  2 in this cold region, Te  1keV, would require either a significant fraction of 

supra-thermal electrons with v > 10 vt or up-shift in N|| spectrum. A number of plausible 

physical mechanisms have been proposed to explain the bridging of the spectral gap: 

wave scattering from density fluctuations [50], [51], wave diffraction, and parametric 

decay instabilities [52]. A spectral tail model as discussed in [50] with N|| extended up to 

about 2.5 has been tested with JRT for the case shown in figure 6. The results of this test 

show broader power deposition profile with substantial LH wave absorption up to 0.7, 

which is more consistent with experimental observations.  

JRT code was also tested at higher density JET 3.4T/1.8MA pulse #77612. As in the 

previous case the code provides more ragged power deposition profile, figure 7. 

Significant amount of power is predicted in the very core, while between >0.1 and 

<0.5 the code results in about twice higher power. As with the previous case, the 

deposition at the periphery is not matched: the code predicts no LH power for >0.7, 

while there is experimental evidence that LH power is absorbed for up to =0.8. The total 

absorbed power from JRT is 1.7MW, which is in a good agreement with the actual 

launched power of about 1.8MW. The total driven current has been assessed of order of 

𝐼𝐿𝐻 ≈ 0.12𝑀𝐴, figure 5b.  

 

 

Figure 7: LH wave power deposition of JET pulse #77612 at 3.4T/1.8MA and 𝑛̅𝑒 ≈ 3 × 1019 𝑚−3, 𝑇𝑒0 ≈
3.5𝑘𝑒𝑉. The JRT profile of pLH (solid line) was derived for a radial mesh of 21 points and with fully 

relativistic, bounced averaged FP. The experimental profiles were determined from modulation experiments 

(dash-dotted line) only. The total driven current is assessed of order of 0.18MA. 

 

From the two comparisons one can conclude that while the JRT code provides very 

consistent power deposition profiles as lower density, matching the experimental 

observations at higher density is more challenging. The good agreement observed at the 

lower density case indicates that the raytracing and FP codes are restricted to lower 

density cases only. The failure of the RT/FP codes at higher density is a well-known fact, 

[3].   
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Case study: LHCD during the preheat for JET AT scenario  

Further to our studies the JRT code was successfully applied to study the LH power 

deposition and CD during the pre-heat phase of AT scenario 2.4T/1.5MA JET pulse 

#86814 [45], [46]. In this case ~1MW of LH power with spectrum peaked at N||=1.83 was 

applied early in the current ramp-up phase in order to slow down the current penetration 

thus modifying the q-profile evolution. The results for five time-slices during the pre-heat 

simulations are shown in figures 8-10. 

Time traces of pulse #86814 are shown in figure 8. LH power of about 1MW is applied at 

1.5s after the breakdown up to 4.2s. The current and the density rise until about 2.5s. The 

electron temperature from the ECE, figure 8 bottom, shows typical fast electrons feature 

at the edge, RA=3.8m, which intensity decreases with density increase. 

 

Figure 8: Time traces of AT scenario 2.4T/1.5MA JET pulse #86814 showing LHCD power at the top, plasma 

current, Ip, and line-integrated density, ne, middle graph and electron temperature, Te, evolution in the core 

(RA=3m), mid radius (RA=3.4m) and at the edge (RA=3.8m) at the bottom graph. Five time slices at which the 

profiles are taken and LH deposition and CD are studied are shown in black (1.9s), red (2.3s), green (2.7s), 

blue (3.1s) and cyan (3.9) vertical dashed lines. 

 

The electron density and temperature profiles for the selected 5 colour coded time slices 

are shown in figure 9 a) and b). Electron density, figure 9 a), at the very first instant, 1.9s, 

is slightly hollow in the core, then it flattens at 2.3s and later it peaks with central values 

of about 310
19

m
-3

. Electron temperature, figure 9 b), almost does not change inside 

<0.6. The EC emission due to the fast electrons’ tails seen as a specific jump in the Te 

profiles at the periphery and at the edge in all time slices have been neglected in the 

simulations as Te profiles have been smoothed in this region. 
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a) 

b) 

Figure 9: a) Electron density a), ne, and temperature b), Te, profiles and of five time slices shown in figure 8. 

The time instants are colour coded in the legend. 

 

The power deposition and CD profiles calculated by JRT code with 2D relativistic 

bounce averaged FP are shown in figure 10 a) and b). Both the deposition and CD 

profiles are off-axis, relatively narrow and peaked at about =0.55, in the first two 

instances, 1.9s and 2.3s, which correspond to slightly hollowed and flat density profiles. 

In the lowest density case the LH power is absorbed up to 0.73 and the code does not 

predict absorption at the cold plasma periphery, i.e. for >0.8. The power deposition 

profiles have not been analysed experimentally in this case; however, it is unlikely large 

amount of microwave power to be absorbed at low temperature, Te<250eV.  
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a)                                                             b) 

Figure 10: a) Power deposition profiles from the new code JRT with 3D relativistic FP with trapped particles 

results at the five time intervals; b) LH current drive for JRT. The total driven current at the five time slices is 

provided for comparison. 

 

The power deposition and driven current peaks up and moves inward towards the core 

while density peaking increases from 2.7s to 3.9s, figure 10 a) and b). This observation is 

in quantitative agreement with observed supra-thermal emission from ECE as shown in 

figure 9 b). Indeed, by shifting the power deposition inwards the EC emission by the 

generated fast electrons becomes more effectively screened by the optically thick plasma. 

The coupled microwave power of about 1MW is absorbed almost 100% as the total 

amount of deposited power has been calculated between 0.93MW and 0.95MW. 

The total driven current is 0.07MA and does not change throughout the simulation. The 

1D FP code predicts CD of about 0.1MA, i.e. this approach overestimates the current by 

50%. 

CONCLUSIONS 

A new RT/FP code was developed at JET to account for the complex plasma geometry 

and various N|| spectra that can be launched from the antenna. RT code has been validated 

and coupled to three different FP solvers: 1D, 2D relativistic and 2D relativistic bounce 

averaged.  

The solutions from the three codes were compared for a pair of low- and high-density 

plasmas and it was found that while the power depositions were consistent, the CD 

predicted by 1D code was about twice as high. The difference in power absorption and 

CD profile between 2D relativistic and 2D relativistic bounce averaged FP was 

negligible. The power deposition profiles were then compared to the experimentally 

assessed ones and it was concluded that in low density regime the RT/FP code reproduces 

well the experimental data. At high density the code predicts more on-axis deposition, 

while a broader profile has been observed from the ECE analysis. 

The code was also used to study LH wave absorption and CD in SS scenario at JET 

where LHCD was applied during the low density pre-heat phase. It was found that LH 

deposition and CD are at the beginning off-axis and narrow and moves towards the core 

and broadens as density increases. A total current drive of about 70kA was calculated and 

it is lower than the results from 1D FP code. 
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Although the code was only discussed in terms of LH wave absorption and CD it can be 

also used to calculate the power deposition and CD by ECRH waves as well. 
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