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Abstract

A semi-analytical geometrical integrator of guiding center orbits in an axisymmetric tokamak is

described. The integrator preserves all three invariants of motion up to computer accuracy at the

expense of reduced orbit accuracy and it is roughly an order of magnitude more efficient than a

direct solution of the equations of guiding center motion with a standard ODE integrator.
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I. INTRODUCTION

An evaluation of the distribution function and/or its moments by direct modelling of

particle orbits is widely used in plasma physics (see, e.g., codes like EUTERPE1,2 or AS-

COT3). An efficient algorithm for calculation of trajectories of charged particles in complex

(quasi-)stationary magnetic and electric fields is one of the key issues in such codes because

of the high number of test particle orbits required to minimize the statistical error of such

calculations, which scales inversely with the square root of the number of test particles.

This issue is especially important for global transport modelling (e.g., see Ref. 4) where the

profiles of plasma parameters are calculated self-consistently from test particle trajectories,

which have to be traced over the profile relaxation (confinement) time.

Within transport modelling, computation of stochastic test particle orbits5 requires the

solution of guiding center equations6,7, which is usually performed with help of general-

purpose ODE integrators. In case of axisymmetric systems (tokamaks) the guiding center

motion is fully integrable, because there exist three integrals of motion, which fully determine

each orbit in the 5D phase space: The total energy w, magnetic moment µ and the canonical

toroidal angular momentum pϕ, respectively given by

w =
m(v2

⊥ + v2
‖)

2
+ eΦ, µ =

mv2
⊥

2B
, pϕ = mv‖

Bϕ

B
+
e

c
Aϕ, (1)

with electrostatic potential Φ, magnetic field module B, co-variant toroidal component of

the magnetic field Bϕ, co-variant toroidal component of the vector potential Aϕ, speed of

light c, particle charge e, mass m, perpendicular velocity v⊥, and perpendicular velocity

v‖. An accurate conservation of the invariants (1) is of primary importance for transport

modelling while other accuracy requirements related to orbits can be significantly relaxed.

Algorithms with such exact (up to computer accuracy) conservation of invariants are called

geometrical integrators (see, e.g., Ref. 8).

In the following sections we will introduce and study such an integrator suitable for

transport modelling of axisymmetric fusion devices. In a comparison with commonly used

general-purpose ODE integrators one can expect two advantages: First, in numerical ef-

ficiency; and second, such an algorithm should be less sensitive to the accuracy of the

representation of the electromagnetic field allowing also for statistical noise in these data.

2



II. DERIVATION OF THE INTEGRATOR

In general magnetic field geometry, equations of guiding center motion with invariants w

and µ used as velocity space variables are7

ṙ =
v‖B

∗

Bh∗‖
, B∗ = ∇×

(
A +

mcv‖
eB

B
)
, h∗‖ =

B ·B∗

B2
, (2)

where B and A are magnetic field and vector potential, respectively, and v‖ = v‖(r, w, µ) is

determined by the first two Eqs in. (1). In axisymmetric geometry using cylindrical variables

(R,ϕ, Z), equations of motion omitting the symmetry variable ϕ take the form

Ṙ = − 1

Rh∗‖

(
∂Aϕ

∂Z

1

mBϕ

(
pϕ −

e

c
Aϕ

)
+
mcBϕ

2e

∂

∂Z

(v‖
B

)2
)
,

Ż =
1

Rh∗‖

(
∂Aϕ

∂R

1

mBϕ

(
pϕ −

e

c
Aϕ

)
+
mcBϕ

2e

∂

∂R

(v‖
B

)2
)
. (3)

The varying part of Bϕ = Bϕ(ψ) as a function of poloidal flux ψ = −Aϕ is of the order

of plasma beta or of the square of the ratio of the poloidal and toroidal field strengths. In

most tokamaks this variation is only a few percent and can be safely ignored. With this

assumption, Eqs. (3) are rewritten as

Ṙ = − 1

Rh∗‖

∂

∂Z
H, Ż =

1

Rh∗‖

∂

∂R
H, (4)

where a Hamiltonian like function H is

H =
cBϕ

e

(
w

B2
− µ

B
− eΦ

B2

)
− e

2mcBϕ

(
Aϕ −

c

e
pϕ

)2

. (5)

Particle orbits are then determined by the condition H = 0. A numerically efficient low

order approximation of these orbits can be obtained if one uses in (5) a linear interpolation

for the following functions of coordinates x = (x1, x2) ≡ (R,Z),

fA(x) ≡ Aϕ, fB(x) ≡ 1

B
, fΦ(x) ≡ Φ

B2
, (6)

discretized on a triangular mesh. As a result,H (5) becomes a continuous piecewise quadratic

function,

H =
1

2

2∑
i,j=1

aij(x
i − xia)(xj − xja)−

1

2

2∑
i,j=1

aij(x
i
0 − xia)(x

j
0 − xja), (7)
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where the coefficients aij are constant within a given triangle and are determined by initial

values of the particle coordinates x0 and the velocity components v⊥0 and v‖0 in this triangle

as follows,

aij =
1

α

(
v2
⊥0 + v2

‖0 +
2efΦ(x0)

mf 2
B(x0)

)
∂fB
∂xi

∂fB
∂xj
− α∂fA

∂xi
∂fA
∂xj

. (8)

Here, α = e (mcBϕ)−1, and the constants xia are the solution to the following linear equation

set,

2∑
j=1

aij(x
j
0 − xja) = v‖0fB(x0)

∂fA
∂xi

+

(
v2
⊥0 + 2v2

‖0 +
4efΦ(x0)

mf 2
B(x0)

)
fB(x0)

2α

∂fB
∂xi
− e

mα

∂fΦ

∂xi
. (9)

The spatial particle trajectories, H = 0, are then continuous piecewise second order curves.

Due to continuous interpolation of all functions of the coordinates in Eq. (1), orbits are

continuous also in the velocity space where preferable variables are (v⊥, v‖). Those are

more convenient for modelling of collisions and of anomalous transport, both required in

transport simulations. A parametric (time-dependent) form of orbit segments is obtained

from the equations of motion (4), which are further simplified by ignoring the Larmor radius

correction, h∗‖ → 1 and by replacing R with a constant R̄ being the radial coordinate of the

center of mass of a given triangle,

ẋi =
(−1)i

R̄

2∑
j=1

aij
(
xj − xja

)
. (10)

This approximation does not affect the orbit shape. Depending on the sign of the determi-

nant D = det(aij), orbits are either ellipses (D > 0) or hyperbolas D < 0, respectively given

by

xi = xia + xic cos(ω∆t) + xis sin(ω∆t), D > 0,

xi = xia + xic cosh(ω∆t) + xis sinh(ω∆t), D < 0, (11)

where ∆t is the integration time step,

ω =
|D|1/2

R̄
, xic = xi0 − xia, xis =

(−1)i

|D|1/2

2∑
j=1

a3−i,jx
j
c. (12)

The numerical implementation of this integrator is quite straightforward: One follows the

test particle for the time step ∆t (usually determined by collisions or anomalous transport)

using Eqs. (11) and modifies its velocities (v⊥, v‖) according to the conservation laws (1).
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If ∆t exceeds the time to reach a boundary of the triangle, one stops the trajectory at this

point of intersection. Its coordinates, xb, satisfy a quadratic equation, and the corresponding

time can be found from (11) for x = xb. Then one follows the particle in the next triangle

using the point of intersection as a new starting point x0 and its local velocities as new v⊥0

and v‖0.
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FIG. 1: a) – Geometry of an ITER-like configuration and example orbits (squares – D ions; circles

– Fe ions; open symbols – geometrical integrator from Sec. II; filled symbols – odeint9). b) and

c) – magnification of the pertinent zones in a). The arrow points to the starting point of all four

trajectories depicted.
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III. BENCHMARKING

We now compare the results obtained by the geometrical integrator derived in the pre-

vious section and a conventional adaptive ODE integrator, odeint (Ref. 9). The magnetic

configuration we use is ITER-like (the same had been used in Ref. 4) with zero electric field

everywhere.

The triangular mesh required for the geometrical integrator has been produced from an

nearly orthogonal field-aligned quadrangular mesh used for fluid modelling by the B2 code10.

The odeint9 solver has been employed here for the full 3D system of guiding center equations7

in the covariant representation11 for cylindrical coordinates. A very accurate divergence-free

representation of the magnetic field based on 2D spline interpolation (5th order) of the

poloidal flux function has been used for this integrator, which acts as a reference case’.

As an example, a few collisionless trajectories calculated by the geometrical integrator for

trapped deuterium and iron ions are presented in Fig. 1 together with pertinent orbits from

the reference case. In addition, the used triangular mesh is also shown. All orbits almost

coincide in the overview figure (a), but the magnification of the zones (b) and (c) shows a

noticeable difference in some details of the trajectories, especially in the region of the banana

tips shown in (c). This shift is related to the crude representation of the field-related values,

Eq. (6), on the mesh. The integrator preserves all constants of motion exactly, therefore,

an initial error introduced by a linear interpolation at the start point (arrow in Fig. 1, b)

propagates along the whole trajectory. Indeed, if one starts the trajectories near the corner

of a cell (where this error vanishes), the shift between the banana tips vanishes, too. It

should be noted that the B2 mesh is optimized to represent the hydrodynamical plasma

parameters. For transport studies, this interpolation can be essentially improved without

suffering from larger costs.

However, the crucial point is how, if at all, these differences affect the overall transport

properties of the system. To check this, we add collisions to our model according to Ref. 5.

Test particles are started at the same point as before, but with random, evenly distrubuted

pitch parameters v‖0(v2
⊥0 + v2

‖0)−1/2, and are followed for 10 collisional times τcoll. During

this process, the time evolution of the poloidal flux at the particle location is stored. The

variance of the poloidal flux deviation 〈(ψ − ψ0)2〉 (ψ0 is the flux at the start point) serves

as a measure of the neoclassical radial diffusion coefficient of the system. The results of the
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FIG. 2: a) – Variance of the poloidal flux deviation 〈(ψ − ψ0)2〉 normalized to the mass ratio as a

function of normalized time: solid line – D, geometrical integrator, dash-dot line – D, conventional

integrator, dash line – Fe, geometrical integrator, dotted line – Fe, conventional integrator. b) –

the relative error of the variance, (〈(ψ−ψ0)2〉geoint−〈(ψ−ψ0)2〉odeint)/〈(ψ−ψ0)2〉odeint in percent:

solid line – D, dash line – Fe.

Monte Carlo computations of this variance (normalized to the mass ratio for D and Fe),

obtained with help of the geometrical integrator and of the reference case integrator are

presented as functions of time in Fig 2, a). Again, the curves almost coincide. To emphasize

the difference, we plot the relative error, (〈(ψ−ψ0)2〉geoint−〈(ψ−ψ0)2〉odeint)/〈(ψ−ψ0)2〉odeint
in percent, see Fig 2, b). A significant relative difference is present only at the start of the

trajectories, t ≤ τcoll, where the change of ψ due to collisions is small compared to the orbit

width and thus is of no importance. After one collision time the difference converges to an

acceptable value of a few percent. As it was mentioned above, this value can be reduced

further by optimization of the mesh.

The estimation of the relative numerical efficiency of the integrators is a subtle matter:

The systems which are solved are not quite the same. Moreover, the CPU time ratio strongly

depends on details of the implementation of both integrators, even on the realization of the

compiler intrinsic functions (see Eq. (11)). One can estimate the overall effect of our effort

by a rule of thumb comparing the computing times for calculations pertinent to Fig 2 where,

of course, the CPU time spent on collisions was excluded from the measurement. For the

same statistical error, one gains a factor of ten when using the geometrical integrator. This
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value would be even higher if one compares the efficiency for a self-consistent transport

problem, like the one descibed in Ref. 4. A frequently used tool in transport studies is a

so-called track length estimator (see, e.g., the textbook Ref. 12), where the knowledge of the

dwell time of each particle per cell is required. This means, that when using a conventional

integrator also the computations of any intersection of trajectories with cell boundaries are

required. To find all these intersection points makes the usage of the conventional integrator

even more expensive, because those points are already automatically obtained when using

the geometrical integrator.

Another aspect is the quality of the fields entering Eq. (2). The magnetic field used in

these test calculations had been represented very accurately and is smooth, and the electric

field was set to zero – this allows us to use a high-order adaptive integrator, at least for

purposes of this test. However, in a realistic case the electric field should be calculated

self-consistently. This electric field is represented piecewisely by constants within mesh cells

and, therefore, it is discontinuous at cell boundaries. In addition, this field has a significant

numerical noise in case of Monte Carlo modelling and cannot be represented by smooth

dependencies in the whole space. This makes the usage of high-order numerical schemes

problematic and would require filtering of the statistically obtained electric field. This

might introduce artifacts and introduces further CPU expenses. However, the low-order

representation of all field-related values in Eq. (6) allows one to use the noisy field quantities

directly within the geometrical integrator.

IV. SUMMARY

The semi-analytical geometrical integrator described here has roughly an order of mag-

nitude higher efficiency as a conventional method for guiding center orbit integration. Es-

sentially this is due to the fact that all analytical results employed by this integrator are

expressed in terms of elementary functions, which are intrinsic functions of FORTRAN com-

pilers with a pertinent CPU cost of the order of a single algebraic operation. In transport

modelling, the efficiency of this geometrical integrator is even higher because the track length

estimator frequently used for the evaluation of fluid parameter distributions does not require

any additional search of orbit intersections with the given mesh. These data are obtained by

the geometrical integrator as a by-product of orbit tracing. The integrator has been already
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employed in 2D kinetic transport modelling in a tokamak4 and can also be applied for the

modelling of kinetic effects in combination with 2D fluid and neutral transport codes.
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