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Abstract

This article shows the development of a new kindredl-time disruption
predictor that is based on detecting anomalieshén data flow. The new predictor
neither depends on data from past discharges ndrased on signal amplitude
thresholds. In JET, using only the locked mode aigtie new predictor shows results
comparable to the JET APODIS predictor but withthe need of a training process
with past data. The predictor has been tested Jth discharges in the range 82460-
87918. This range corresponds to all ITER-like Weadperimental campaigns (2011 —
2014). The discharge dataset consists of 1738 mopdive discharges and all
unintentional disruptions (566 disruptive shotsheTresults show 8.98% of false
alarms, 10.60% of missed alarms, 3.18% of tardediens, 83.57% of valid alarms,
2.65% of premature alarms and average anticipdiine of 389 ms. These rates are
compared in the article with the results of the JEHODIS predictor and the JET
disruption predictor based on crossing a thresbbttle locked mode signal amplitude.

1. Introduction

Disruptions are unavoidable events in present takamTo counteract their
detrimental effects, mitigation techniques can mndsaged to reduce forces, to alleviate
heat loads during the thermal quench and to avanhway electrons. Examples of
mitigation methods can be the injection of a sigaifit amount of gases through fast



valves [1, 2], killer pellets [3, 4] or Electron €gtron Resonance Heating injection [5,
6]. However, disruption mitigation techniques dep@nucially on accurate disruption
predictors, whose alarms have to be triggered anttugh anticipation time.

There are two key expressions in the above parhgrapcurate disruption
predictors’ and ‘enough anticipation time'. The former has to be understood in terms of
high success rates (> 95% is required for ITER) lamd false alarm rates (<5 % for
ITER). ‘Enough anticipation time' stresses the fact that alarms are useful onthef
anticipation time is greater than the characterigthe of the available mitigation tool.
This characteristic time is the sum of the timedsekto fire technical systems after an
alarm plus the plasma response time to the mitigadction. For the sake of clarity, the
‘plasma response time’ has to be understood adelag between the time in which the
plasma starts to be ‘perturbed’ by a mitigation hodt and the time in which the
mitigation begins to be effective.

In all tokamaks, a common signal used for disrupfwediction is the locked mode
(LM) amplitude. When macroscopic instabilities sthcking to the wall, the LM
amplitude grows during the slowing down of the piasrotation (the particular
implementation of LM measurements in JET can bendoun http://users.euro-
fusion.org/pages/mags/equilibrium/eg-coil-loop/daddop/saddle-loop.htm). Usually,
during a running experiment, if the LM amplitud®@sses a certain threshold, which is
set-up prior to the discharges, an alarm is triggeiThis threshold is selected in a
manual way and it is chosen depending on the ctearsiics of the experimental
programme: the LM threshold is set lower or higtiepending on the potential danger
of the possible disruptions.

Predictors based on general machine learning meth@upport Vector
Machines (SVM) [7], fuzzy logic (FL) [8] or Artifi@al Neural Networks (ANN) [9, 10])
provide a more intelligent way of recognizing ati@oming disruption without the
need of manual selection of thresholds. The pocéhis is to carry out a generally very
expensive (in computational terms) training proc@dss training process splits the
multi-dimensional operational space into two zoftksruptive and non-disruptive) and
determines the separation frontier between theq f). In a running discharge, the
plasma state is determined on a periodic basisiamdpresented by a point in the
operational space. When the point is containetiembn-disruptive zone, the plasma is
considered to be in a safe mode. However, wherptiet appears in the disruptive
zone, an alarm has to be triggered.
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Fig. 1: A disruption predictor is implemented asaatomatic classification system. During a disckarg
data are sent to the classifier on a periodic bagls the objective of determining in which part thie
separation frontier the plasma is located.

The experience in the development of disruptiordigters based on machine
learning shows that the choice of a specific atbari(for example, SVM, FL or ANN)
is less important than the selection of a set giali features to properly represent the
operational space. Typically, the operational spagepresented by an M-dimensional
feature space that is partially mapped by the Npsasn(or feature vectors) provided in

the training processx ORM,j=1,...N. It is clear that the greater N the more

knowledge about the space can be learnt. Howenér,aolarge N does not guarantee a
good knowledge. The set of N samples has to cdwveeoperational space as much as
possible to reduce the unexplored zones to a mmimu

The M components of the feature space have to bdistihctive nature to
distinguish between disruptive and non-disruptivehdviours. These features are
usually amplitudes of plasma quantities. Howeviehas been shown [11, 12] that the
inclusion of information connected with the freqogmomain of the signals improves
drastically the predictions. In general, each irdiial feature is a single value that can
be related to either a plasma quantity, or a corsignal or the result of a (perhaps
complex) data processing (with either physics ati@d quantities).

As mentioned, the outcome of the training proceshe separation frontier (or
decision function) between disruptive and non-giie behaviours. This frontier is
expressed in form of a typically complex equatibattrelates (in a highly non-linear
way) the components of the operational space. buert the one hand, the complex
form of the equation and, on the other hand, theerg@al complexity of the data
processing to define the individual features, #ggation usually is not valid for a direct
interpretation of physics behaviours. However, nigithe evolution of the discharges, it
is extremely useful for the real-time recognitionfarthcoming disruptions (although
the interpretation of the physical reasons why pinedictions are correct remains
problematic).

In JET, the Advanced Predictor Of DISruptions (ARSPD[13] is a machine
learning system that outperforms the predictionabdjty of the Locked Mode
Predictor based on a Threshold criterion (LMPT)ribgithe JET ITER-like wall (ILW)
campaigns (September 2011 — October 2014), the ABQDccess rate and average
warning time are about 82% and 274 ms respectividig equivalent values for the
LMPT are 67% and 255 ms. The reason for theserdifferesults is the exhaustive
training process carried out for APODIS insteadh&f manual selection of thresholds
that is used with the LMPT. It should be noted tARIODIS was trained with almost
10,000 JET discharges with C wall between April 2@@d October 2009, where more
than 900 h of CPU time in a high performance computere needed. APODIS is in
operation with the JET ILW and, so far, no re-tmragn has been necessary. But



collecting these huge training datasets is noahste strategy in the next generation of
experiments such as ITER or DEMO.

Trying to avoid the use of huge amount of dischsiigethe training process, a
recent alternative has been the development ofigtion predictors from scratch [14,
15]. Disruption predictors from scratch are higarteng rate predictors whose learning
process starts after the first disruption. They raeteained after each missed alarm by
adding disruptive and non-disruptive examples ®® éRisting training dataset. In JET
with the ILW, these adaptive predictors show susaedes about 83% and average
warning times of 244 ms [15].

It should be emphasized that tHearning from scratch’ approach is not only
relevant for the start of a new device (like ITERREMO) but also in the case of
existing devices, when they experience significelminges in the operational space.
Examples of this can be JET from the carbon watho ITER-like wall operations or
from DD to DT operations. Such changes may caud®p in the success rate of more
traditional predictors but, with continuous leagirsystems based ofearning from
scratch’ can recover fairly quickly.

A more advanced option for disruption predictionubbe the use of intelligent
predictors that start their learning process wébhenew discharge and without the need
for previous information from past discharges. Tigective is to learn how a safe
plasma evolution is and to trigger an alarm wheramomalous behaviour appears. Of
course, the anomaly has to be closely relateddisraption. This is a novel approach
for disruption prediction [16, 17] that completadyoids, firstly, the requirements of
having a large database of disruptive and non-plisrel discharges (ITER or DEMO
cannot wait for hundreds of disruptions to haveekalble predictor) and, secondly,
carrying out very expensive computational trainingsdetermine good enough data-
driven models.

However, it is important to point out that the wuserevious knowledge is also
possible with this type of predictors. There canaldditional information gained from
past experience that can be used to trigger tlimalat proper times. In this article, this
kind of information is calledgrivileged knowledge' (PK). The PK can be obtained from
theoretical models, data-driven models, simple ecipn of past discharges or
whatever sources of information related to the ifigeemplementation of the
anomalous behaviour recognition. It should be noibedtl PK can be either available or
not and if so, it can be used or not. In other 8ptte concept of predictors based on
anomaly detection, which is presented in this ltimeans that these predictors have to
predict just with the information acquired duringch running discharge regardless of
the existence of privileged knowledge. The PK lmbd understood as an additional
help to improve the predictions performed by thdeartying methodology for detecting
anomalies.

This article describes a disruption predictor f&T Jthat is based on a locked
mode signal that does not need previous shotsrdoriig purposes. The predictor is



based on the automatic recognition of changes (alyonetections) in data streams
through the identification of outliers in the déitav. Due to this reason, the predictor is
called Single signal Predictor based on Anomalyeb@in (SPAD). In SPAD, the
locked mode samples are processed in time wind@was3long and the outputs of this
processing form the data flow to be sequentiallglysed. Near a disruption, the data
generating model changes as the data are streamddtlia change is detected and used
to trigger an alarm.

Section 2 explains the on-line data stream settisgd for SPAD. Section 3
presents a conceptual view of SPAD. Section 4 dhices the locked mode signal as the
fundamental quantity for the present SPAD versiection 5 is devoted to describing
the data processing and section 6 discusses thiésrasJET.

2. On-linelearning during dischar ge production

In general, data stream applications have to dedh whe changing
characteristics of the data. As most decision-npkasks rely on the timeliness and
relevance of their supporting data, the changingreaof the data creates tremendous
challenges for many learning algorithms and datsingitechniques. On the other hand,
changes in the data may convey interesting timelégnt information and knowledge.
Problems driven by the changing characteristicsdata include change detection
techniques, quantification of changes and the tglidi build accurate models for the
changing data. Examples of applications for chamiggection include network
monitoring, video surveillance, Internet securitganomaly/fraud/intrusion detection.

Typically, in an on-line data streaming settingtadare observed sequentially
and a decision on the identification of any kindcbfinge in the data has to be made
‘on-the-fly’. Focusing the attention on disruption predictican anomaly detector
system has to learn in each new discharge the iwolaf a safe behaviour and to fire
an alarm when changes in the data stream are éetdtis important to note that the
production of discharges under different scenacas generate different classes of non-
disruptive plasmas. Therefore, in principle, thie ®volutions have to be learnt in every
discharge.

An essential point in the application of anomalyteddon to recognize a
forthcoming disruption is to be sure that the cleamy the data corresponds to the
identification of a disruptive event. Otherwisetslof false alarms would be triggered
and the development of interesting plasma scenamosd be very cumbersome.

Also, it is necessary to mention the requirementde met by a disruption
predictor based on anomaly detection. First, itriportant to note that the sequential
data are read only once. Second, the delay betaémre alarm and its detection has to
be minimal. Third, it should be noted that the nembf both missed alarms and false
alarms must be minimal. Last but not least, datasts should be handled efficiently



from a computational point of view, which is crddier the real-time implementation of
the predictor.

3. SPAD predictor: conceptual view

The detection of anomalies can be implemented lbgctieg outliers in a data
stream. From a conceptual point of view, the detradf anomalies can be carried out
through the recognition of changes in the data flig. 2 shows the conceptual design
of the anomaly detection used in this article. $etssume the real-time acquisition of

input samples is on a periodic basis with pedddFrom timet,, there aren samples

that follow the same data distribution (unknownt the same one). Frofg + n[At, the

data distribution changes. It should be noted titdistribution is again unknown, but
it is different from the previous one. The objeeti¢ to determine as soon as possible
when the change has been produced.
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Fig. 2: The objective of the anomaly detector igitoup all input samples into a single cluster tigio a
mapping functiorf, which has to be determined for every particutaplementation of the detector. Only
when a second cluster appears, an alarm has teggered. The alarm is triggered when an outlier is
identified in the temporal evolution of the distanbetween each sample and the centroid of all the
previous ones.

In general, the samples(t) can be multi-dimensional feature vectors,
x(t)D}RM , whereM is the number of vector components (or featur€se anomaly

detector maps the input samples into an outputesf@t in such a way that the
mapping functionf :R" — R is able to group the output sampléegx (t)) OR® into
two separated clusters (black and red clustergyir2j. The first cluster is made up of



output samplesf (x(t)), t0[t,.t,+(n-1)[At] and the second cluster contains output

samplesf (x(t)) ,t>t, +n[At. The detection process has to recognise whentipeio
samples start to ar from the initial cluster and then, an alarm iggered.

On the one hand, it is important to point out thwgically, there can be a high
number of mapping functions and, therefore, mudtiglternatives can be tested. On the
other hand, the recognition of output sampéesrom the initial cluster implies the use
of distances in the mathematical sense. In other words, th@uutamplesf (x(t))

have to be mapped accordingtg: R? - R, where f; is a distance. In particular, the

objective of SPAD is to follow the temporal evoartiof the distance between each new
output sample and the centroid defined by all mesioutput samples. An anomaly is
recognised when an outlier appears, after a sudden rise of the distance (see sample
number 60 in the top plot of fig. 2). Of courseyad@PAD implementation has to
recognise the anomaly in real-time.

4. SPAD predictor and the locked mode

There are two main factors in the development e 8PAD predictor: the
disruption recognition criterion and the temporsdaiution of the predictions. The first
one is the key of the method to maintain low ratefalse alarms, low rates ofmissed
alarms, low rates ofpremature alarms, low rates oftardy detections and high rates of
valid alarms. For the sake of clarity, definitions of the pi@s concepts for JET were
provided in [15] and are included in appendix 1.

With regard to the temporal resolution of the pcadns, triggering an alarm as
soon as possible plays a central role in orderctoeze the largest possible warning
time.

As mentioned in section 2, it is extremely impottdmat the anomaly detected in
the data stream really corresponds to an incomisigigtion. A single quantity closely
related to disruptions is the locked mode signdler&fore, in a first approach, this
signal will be the only one used for the impleméntaof a disruption predictor based
on anomaly detection.

It should be noted that SPAD has to be differemt emperform better than a
standard LMPT, which is based on triggering anmalathen the locked mode amplitude
just crosses a threshold. The experience on JEThandevelopment of disruption
predictors, reveals the importance of using noy éedtures in the time domain but also
in the frequency domain [13, 14, 15]. The inclustdrieatures related to the frequency
domain implies that the basic element to extraatuiees (in this case from the locked
mode signal) has to be a time window (characterizgdts temporal length) with a
number of digitized samples (characterized by the@ing rate). Due to the good
results of APODIS with time windows of 32 ms andngéing rates of 1 kSamples/s,



SPAD will use the same parameters. However, thelugsn of 32 ms to make
predictions can be improved. To avoid the use ghéi sampling rates, a sliding
window mechanism has been implemented [18]. In $RAD case, the latest 32
samples of the locked mode signal are processeag 2vas (fig. 3).

32 samples
[ Iy
to
|
32 samples
I Ii to+ 2 ms
32 samples
| ]
i to +4 ms
32 samples
I y to + 6 ms

Fig. 3: Sliding window mechanism to achieve a prgdn resolution of 2 ms without increasing the
sampling rate (1 kSamples/s).

5. SPAD data processing

From section 3 and fig. 2, the steps for the SPAIpIementation are clear.
Firstly, data collected in time windows 32 ms Idraye to be processed in such a way
that during a non-disruptive evolution of a disg&rthe output samples of the mapping

f :R*¥ - RP form a single cluster. In the presence of an iringndisruption, the
output samples should appear far from the cluster.

A possible mapping is to compute the wavelet tramsf[19] of the 32 samples
of every time window. The choice of the wavelengf@rm provides many advantages:
data compression, computing efficiency and simelbars time and frequency
representation. In particular, the Haar waveletifighas been selected.

Wavelet transforms process data at different réisoisi or decomposition levels.
In each decomposition level, two sets of coeffitseare obtained: approximation
coefficients and detail coefficients. The approxioa coefficients are a low pass filter
of the signal whereas the detail coefficients anégh pass filter (fig. 4).
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Fig. 4: Schematic view of the Haar wavelet transfoEach decomposition level reduces by half the
number of coefficients.

Taking into account the 32 samples of the lockediensignal in each time
window, let's compute the approximation coefficertf a Haar wavelet transform at

level 4. This means a mappinfj:R* - R?, or in other words, to compress the

information into 2 points in each time window. Téfere, every 2 ms, the latest 32
samples are processed with the Haar wavelet tnansémd the output samples are
vectors of dimension 2, where the two components jast the approximation
coefficients of the transform. Fig. 5a shows thattecplot of these output samples in a
JET non-disruptive discharge. It should be noted th this bi-dimensional space, the
points remain together in a single cluster. Figsbbws the scatterplot corresponding to
a disruptive discharge. In this particular disclearie latest 68 points of the scatterplot
before the disruption, which correspond to a tirh&36 ms, are clearly outside of the
initial cluster. When this starts to happen, amrmalhas to be activated. It should be
noted that the warning time for this discharge36é ins.
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Fig. 5: Points are plotted every 2 ms and a comglaster structure is observed in non-disruptivagas
of the discharges. This structure is broken ingfeximity of a disruption (the first outlier is niad by a
red arrow in fig. 5b). The Euclidean distance cdro®used to detect outliers: lots of false alawosid
appear as the Euclidean iso-distance contoursiraiec(Fig. 5a).

Fig. 6 shows the plasma current and the locked nwigeals of the JET
discharges that are shown in fig. 5. These sholls b&i used along this article as
examples of the SPAD data processing.
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Fig. 6: Temporal evolution of the plasma currend #me locked mode signals of JET discharges 87411
(non-disruptive) and 87412 (disruptive).

Coming back to fig. 5, it should be noted that #ierm must be triggered the
first time that a point in the bi-dimensional spaceX; is far enough from the cluster
centre. The Euclidean distance does not work tectiehis condition because the
Euclidean iso-distance contours are circles anetefbre, this distance does not take
into account the pattern of positive covariance thahown in the scatterplots (figs. 5a
and 5b). However, the Mahalanobis distance [205dagust for covariance (fig. 7) and
it can be used to recognise anomalous poings,points clearly outside from the
compact cluster. Therefore, the identification ofliers requires following the temporal
evolution of the Mahalanobis distance between eemh point and the centroid of all
previous points. When this distance is recognisedaa outlier, it means that a
disruption is approaching and an alarm must bgeried.
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Fig. 7: The Mahalanobis distance takes into acctiuntdata covariance. The Mahalanobis iso-distance
contours are ellipses and, therefore, the two pbiets have the same distance to the centroid.

It should be noted that the process of recognisuijers in the Mahalanobis
distances can be carried out in every dischargeowitthe need of previous information
from past discharges, which is the objective of tiype of predictor. In the particular
implementation for JET, when the plasma curreneesls the threshold of 750 kA in
each discharge, the next 100 ms are used to corttptdaar wavelet transform of the
locked mode signal every 2 ms with the latest 3@pas. In this way, an initial
compact cluster of 50 points is formed. After tloenfation of this initial cluster and
with a period of 2 ms, the latest 32 samples ofdbked mode signal are analysed with
the Haar wavelet transform (level 4 of decomposijticAfter obtaining each new bi-
dimensional point, the Mahalanobis distance betwieand the cluster centroid defined
by all bi-dimensional points is computed.

Fig. 8 shows the temporal evolution of the Mahasalistance with a time
resolution of 2 ms in both a non-disruptive disgfeaffig. 8a) and a disruptive one (fig.
8b). First of all, it is important to note the @ifént scales in both discharges. Also, it
should be emphasized that the different scales@treelated to the disruptive or non-
disruptive character of the discharges. This méaaisjust the Mahalanobis distance of
any point to the cluster centroid is not able tstidguish anomalies in the data flow.
The anomaly has to be recognised when the Mahakrthstance is an outlier in
relation to the distances of the previous pointser&fore, it is necessary to define an

outlier factor, K,, , that identifies outlier distances. To this erigg triterion to identify

outliers at a timet, is related to Mahalanobis distances greater thhaeqoal to K,
standard deviations from the baseline model of elstharge:

| D Y— (tP) —mean ( Daraancss (t = tp))| =K, . 1)
gd (DMahaJanobis (t S tP )) ‘ "

In the present version of SPAD, privileged knowled@s explained in the
introduction) has been used. About 20 JET disragtiwwere analysed to look for a

proper value forK,, . From this analysisK,, has been set empirically to a value of 10.



This value allows achieving good success rates Ilamepusly with low false alarm
rates. If K,, < 1Q the false alarm rate increases an&|f > , bhOth tardy detections

and missed alarms increase.
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Fig. 8: The Mahalanobis distance is not enough isgrithinate anomalous behaviours from regular
plasma evolution. An outlier factor, eq (1), toagnise outlier distances is necessary.

Fig. 9 shows the temporal evolution of the outf@tor corresponding to the
discharges of fig. 8. Fig. 9a shows an outlierdat¢hat remains below the threshold

Ky =10 during the whole discharge and, therefore, naralartriggered. However, fig.
9b plots the temporal evolution of the outlier tadhat triggers an alarm 136 ms before
the disruption.
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Fig. 9: Temporal evolution of the outlier factortimo different discharges.

6. SPAD results

Previous section describes the SPAD data proce$sing particular mapping
f :R* _ R? defined by the Haar wavelet transform at the levelf decomposition.
However, the same reasoning is valid for decomjpositevels 1, 2 or 3, which
correspond to mapping$ : R* - R, f:R* _ R? and f :R* - R* respectively.
In these cases, the compact clusters are made aygmit samples with dimensions 16,

8 and 4 respectively. In all cases, the Mahalandisance, as explained in section 5,
has been used to recognise when an output sampulésisle the compact cluster.

All SPAD results in this section use only the logkaode signal for disruption
prediction purposes and all executions have beeforpged by simulating real-time
conditions. SPAD has been applied to a JET databdkeall unintentional disruptions
(566 discharges) and all non-disruptive dischardé88) in the range 82460-87918

(ILW experimental campaigns between 2011 and 204\l casesK,, =10.



Table 1 summarizes the prediction of disruptiongdbtecting anomalies in the
Mahalanobis distance evolution for mappin§sR* - RP, 2< p<16 based on the
Haar wavelet transform (approximation coefficients)

Table 1: Base mapping: Haar wavelet transform @ppration coefficients). FA: false alarms (%). MA:
missed alarms (%). TD: tardy detections (%). VAidralarms (%). PA: premature alarms (%)

p FA MA | TD VA PA

2 9.84 | 11.31] 353 8198 3.18
4 9.55 | 10.95| 3.3¢6 8286 2.83
8 8.98 | 10.60| 3.18 83.5Y 2.65
16 | 18.24| 11.31 3.0p 79.68 6.01

Table 2 shows the results of mappinds:R* - RP,2< p<8 based on

retainingp Fourier components (CC excluded) in the processinthe locked mode
signal in time windows 32 ms long.

Table 2: Base mapping: Fast Fourier transform. flalse alarms (%). MA: missed alarms (%). TD: tardy
detections (%). VA: valid alarms (%). PA: prematatarms (%)

FA MA | TD VA PA
12.66| 9.36| 2.6% 8180 6.18
1191 9.36| 2.83 82383 548
12.31| 10.07] 2.83 82.6p 4.42

Q| A~ NT

Table 3 presents a particular case of mappingR* — R? where the two

components of the output samples are respectiielyrtean value of the locked mode
signal in time windows of length 32 ms and the déad deviation of the Fourier
spectrum (excluding CC component) of the locked ensignal in those windows. It is
important to note that these components are justféhtures used by the APODIS
predictor in JET [13].

Table 3: Base mapping: APODIS features. FA: falsenas (%). MA: missed alarms (%). TD: tardy
detections (%). VA: valid alarms (%). PA: prematatarms (%)

p| FA MA | TD VA PA
2| 13.18| 9.89| 3.53 81.1p 548

Tables 4, 5 and 6 are particular cases of mappingg* — R. Tables 4 and 5

use the Haar wavelet transform but compressing itfiemation content of the

processing time windows into just 1 point (levebfdecomposition). The first table
uses the approximation coefficients and the secmedthe detail coefficients. Table 6
uses the second feature of APODIS in JET: the atahdeviation of the Fourier
spectrum (excluding CC component).



Table 4: Base mapping: Haar wavelet transform @ppration coefficients). FA: false alarms (%). MA:
missed alarms (%). TD: tardy detections (%). VAidrialarms (%). PA: premature alarms (%)

p| FA MA | TD VA PA
1| 2.88| 2491 3.89 69.96 1.24

Table 5: Base mapping: Haar wavelet transform (detefficients). FA: false alarms (%). MA: missed
alarms (%). TD: tardy detections (%). VA: valid me (%). PA: premature alarms (%)

p| FA MA | TD VA PA
1] 921 | 11.84] 3.18 83.04 194

Table 6: Base mapping: second APODIS feature. Bfsefalarms (%). MA: missed alarms (%). TD:
tardy detections (%). VA: valid alarms (%). PA: mr&ure alarms (%)

p| FA MA | TD VA PA
1| 1082 8.66| 3.00 8322 512

According to the tables it is clear that predictbesed on anomaly detections
can be candidates as disruption predictors in deviike ITER or DEMO. Their main
advantage is that they do not need data from psshatrges for the real-time prediction
of forthcoming disruptions. However, privilege krledge can also be used.

Focusing the attention on the tables, the maximencgntage of valid alarms
(83.57%) corresponds to map the input data intooBitp with the Haar wavelet
transform (table 1). The valid alarm rate is a coompse that takes into account the
relevant parameters related to disruptive disclsargieccess rate, missed alarms, tardy
detections and premature alarms. On the other htwedsmallest false alarm rate
(2.88%) is shown in table 4, but this case providesduced rate of valid alarms and,
therefore, it is not a good balance. Apart frons tfailse alarm rate, the minimum one
(8.98%) is provided again in table 1 apd= 8. Therefore, the cage= 8 of table 1
should be considered as the winner of the casesmied in the six tables.

Fig. 10 and table 7 compare the predictions caoigdy SPAD (table Iy = 8),
APODIS and the LMPT in JET. The plot covers the lghdatabase taken into account
(566 unintentional disruptions and 1738 non-disugptdischarges during JET ILW
discharges). It should be noted that the LMPT woistéine worst results and SPAD has
slightly better performance than the APODIS praatict
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Table 7: Disruption prediction comparison among BPAPODIS and LMPT. FA: false alarms (%).
MA: missed alarms (%). TD: tardy detections (%).:MAlid alarms (%). PA: premature alarms (%)

MA | TD VA PA
SPAD 10.60| 3.18 83.57 2.65
APODIS | 15.38| 2.47 79.1% 3.90
LMPT 30.39| 3.00| 63.96 2.6b

Figs. 11a-11d and table 8 break down JET resuliesoonding to the latest
four experimental campaigns with the ILW. It is ion@ant to note that SPAD usually
gives better results than the others, which is w@gortant taking into account that no
training with past discharges is required. Alsghibuld be mentioned that APODIS was
trained with C-wall data and no re-training hasrbperformed. As particular cases, in
the campaign shown in fig. 11b, neither SPAD noOBRS show tardy detections. In
the campaign summarized in fig. 11d (H campaignly 8PAD shows tardy detections
and the LMPT success rate is extremely low.



Shots 84442-85355

100

»x

60

40

Accumulative fraction of
detected disruptions

20

— S P

AD
----- APODIS

Shots 85359-85978

Accumulative fraction of
detected disruptions

|

SPAD
---- APODIS

Shots 86452-87583

60

40

Accumulative fraction of
detected disruptions

20

I

w—SPAD
""" APODIS
........... L \1[)'

L S

(©

Shots 87586-87944

80

60

40

SPAD
_____ APODIS
........... LMPT

Accumulative fraction of
detected disruptions

20

(@)

0
0.001 0.01

0.1

1

Warning time (s)

10

Fig. 11: Comparison between predictors in the fatast ILW campaigns of JET.

Table 8: Disruption prediction comparison among BPAPODIS and LMPT during the latest four ILW
experimental campaigns of JET. FA: false alarms (@##): missed alarms (%). TD: tardy detections (%).
VA: valid alarms (%). PA: premature alarms (%)

MA | 1D | VA | PA
SPAD (fig. 11a) 9.27| 265 8477 3.31
APODIS (fig. 11a) | 9.27| 3.31] 8146 5.96
LMPT (fig. 11a) 2252 3.31] 70.86 3.31




SPAD (fig. 11b) | 15.69| 0.00 | 80.39 | 3.92
APODIS (fig. 11b) | 15.69 | 0.00 | 84.31 | 0.00
LMPT (fig. 11b) | 47.06 | 3.92 | 49.02 | 0.00

SPAD (fig. 11c) 11.92] 3.31 8212 2.65
APODIS (fig. 11c) | 19.87] 3.31] 7417 2.65
LMPT (fig. 11c) 26.49| 3.31] 66.89 3.d1

SPAD (fig. 11d) | 13.52| 2.70 | 83.78 | 0.00
APODIS (fig. 11d) | 13.51| 0.00 | 86.49 | 0.00
LMPT (fig. 11d) | 86.49| 0.00 | 13.51 | 0.00

7. Conclusions and directions of futurework

Fig. 12 puts together the time traces of a JETugisre discharge corresponding
to Ip, LM, Mahalanobis distance amd,. The plots of fig. 12 are to be compared with
the ones of Fig. 13, which show the temporal evatubf the same signals for a non-
disruptive discharge. The figures try to emphagiee fact that SPAD is sensible to
anomalies in the temporal evolution of the lockeatdmsignal. According to the results
reported along the paper, it is clear that the Kanaous use of both the time domain
and the frequency domain, even with a single qtianprovides an essential benefit
versus the simple utilization of the signal ampléu(time domain). The results prove
that predictors based on anomaly detections prgsemidrmances which make them
good candidates for devices like ITER. Indeed, lobgl term, they are not far from
meeting the requirements of the next generatiodevices. On the other hand, they
present the main advantage that they do not netedfrden past discharges for the real-
time prediction of forthcoming disruptions. Howeyprivilege knowledge can also be
used if available. Certainly, it should be notedttRK has been used in this work to
empirically determine a good enough value of thdierufactor. However, work in
progress is trying to determine critical outliect@s on-the-fly to trigger an alarm
without using privilege knowledge. To this end, trmework of conformal predictors
[21] is being used. An alarm will be fired whestrange' Mahalanobis distances appear
in a discharge. The concept sfrange’ means how conformal a Mahalanobis distance
at a certain time is in relation to the distancegalier times in the discharge. Also,
different types of metric, such as geodesic, cdaddtested to see whether they can
improve the success rate, as they did in someaghiglns in the past [22].
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The other main direction of research consists ofgumore features as input to
the classifier. Indeed the present version bagicales a single signal, the locked mode.
A significant improvement in the performance isb® expected once other important
guantities, such as the radiated fraction or therival inductance were also included. A
systematic investigation of the most adequate coatimn of signals for anomaly
detection is also considered a prerequisite to dbeelopment of multi-machine
predictors based on the proposed approach.
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Appendix 1
False alarm: alarm triggered in a non-disruptive discharge.
Missed alarm: no alarm triggered before the disruption in auisive discharge.

Premature alarm: alarm triggered with a warning time greater thah s in a disruptive
discharge.



Tardy detection: alarm triggered with a warning time less thanm$ in a disruptive
discharge.

Valid alarm: alarm triggered with a warning time between 10 amsl 1.5 s in a
disruptive discharge.
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