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Abstract 

This article shows the development of a new kind of real-time disruption 
predictor that is based on detecting anomalies in the data flow. The new predictor 
neither depends on data from past discharges nor is based on signal amplitude 
thresholds. In JET, using only the locked mode signal, the new predictor shows results 
comparable to the JET APODIS predictor but without the need of a training process 
with past data. The predictor has been tested with JET discharges in the range 82460-
87918. This range corresponds to all ITER-like Wall experimental campaigns (2011 – 
2014). The discharge dataset consists of 1738 non-disruptive discharges and all 
unintentional disruptions (566 disruptive shots). The results show 8.98% of false 
alarms, 10.60% of missed alarms, 3.18% of tardy detections, 83.57% of valid alarms, 
2.65% of premature alarms and average anticipation time of 389 ms. These rates are 
compared in the article with the results of the JET APODIS predictor and the JET 
disruption predictor based on crossing a threshold of the locked mode signal amplitude. 

 

1. Introduction 

Disruptions are unavoidable events in present tokamaks. To counteract their 
detrimental effects, mitigation techniques can be envisaged to reduce forces, to alleviate 
heat loads during the thermal quench and to avoid runaway electrons. Examples of 
mitigation methods can be the injection of a significant amount of gases through fast 



valves [1, 2], killer pellets [3, 4] or Electron Cyclotron Resonance Heating injection [5, 
6]. However, disruption mitigation techniques depend crucially on accurate disruption 
predictors, whose alarms have to be triggered with enough anticipation time. 

There are two key expressions in the above paragraph: ‘accurate disruption 
predictors’ and ‘enough anticipation time’. The former has to be understood in terms of 
high success rates (> 95% is required for ITER) and low false alarm rates (<5 % for 
ITER). ‘Enough anticipation time’ stresses the fact that alarms are useful only if the 
anticipation time is greater than the characteristic time of the available mitigation tool. 
This characteristic time is the sum of the time needed to fire technical systems after an 
alarm plus the plasma response time to the mitigation action. For the sake of clarity, the 
‘plasma response time’ has to be understood as the delay between the time in which the 
plasma starts to be ‘perturbed’ by a mitigation method and the time in which the 
mitigation begins to be effective. 

In all tokamaks, a common signal used for disruption prediction is the locked mode 
(LM) amplitude. When macroscopic instabilities start locking to the wall, the LM 
amplitude grows during the slowing down of the plasma rotation (the particular 
implementation of LM measurements in JET can be found in http://users.euro-
fusion.org/pages/mags/equilibrium/eq-coil-loop/saddle-loop/saddle-loop.htm). Usually, 
during a running experiment, if the LM amplitude crosses a certain threshold, which is 
set-up prior to the discharges, an alarm is triggered. This threshold is selected in a 
manual way and it is chosen depending on the characteristics of the experimental 
programme: the LM threshold is set lower or higher depending on the potential danger 
of the possible disruptions. 

Predictors based on general machine learning methods (Support Vector 
Machines (SVM) [7], fuzzy logic (FL) [8] or Artificial Neural Networks (ANN) [9, 10]) 
provide a more intelligent way of recognizing a forthcoming disruption without the 
need of manual selection of thresholds. The price for this is to carry out a generally very 
expensive (in computational terms) training process. This training process splits the 
multi-dimensional operational space into two zones (disruptive and non-disruptive) and 
determines the separation frontier between them (fig. 1). In a running discharge, the 
plasma state is determined on a periodic basis and is represented by a point in the 
operational space. When the point is contained in the non-disruptive zone, the plasma is 
considered to be in a safe mode. However, when the point appears in the disruptive 
zone, an alarm has to be triggered. 

Disruption predictor
decision function

non-disruptive
behaviour

disruptive
behaviour

 



Fig. 1: A disruption predictor is implemented as an automatic classification system. During a discharge, 
data are sent to the classifier on a periodic basis with the objective of determining in which part of the 
separation frontier the plasma is located. 

The experience in the development of disruption predictors based on machine 
learning shows that the choice of a specific algorithm (for example, SVM, FL or ANN) 
is less important than the selection of a set of signal features to properly represent the 
operational space. Typically, the operational space is represented by an M-dimensional 
feature space that is partially mapped by the N samples (or feature vectors) provided in 

the training process: , 1,...,M
j j N∈ =x ℝ . It is clear that the greater N the more 

knowledge about the space can be learnt. However, only a large N does not guarantee a 
good knowledge. The set of N samples has to cover the operational space as much as 
possible to reduce the unexplored zones to a minimum. 

The M components of the feature space have to be of distinctive nature to 
distinguish between disruptive and non-disruptive behaviours. These features are 
usually amplitudes of plasma quantities. However, it has been shown [11, 12] that the 
inclusion of information connected with the frequency domain of the signals improves 
drastically the predictions. In general, each individual feature is a single value that can 
be related to either a plasma quantity, or a control signal or the result of a (perhaps 
complex) data processing (with either physics or control quantities). 

As mentioned, the outcome of the training process is the separation frontier (or 
decision function) between disruptive and non-disruptive behaviours. This frontier is 
expressed in form of a typically complex equation that relates (in a highly non-linear 
way) the components of the operational space. Due to, on the one hand, the complex 
form of the equation and, on the other hand, the potential complexity of the data 
processing to define the individual features, this equation usually is not valid for a direct 
interpretation of physics behaviours. However, during the evolution of the discharges, it 
is extremely useful for the real-time recognition of forthcoming disruptions (although 
the interpretation of the physical reasons why the predictions are correct remains 
problematic). 

In JET, the Advanced Predictor Of DISruptions (APODIS) [13] is a machine 
learning system that outperforms the prediction capability of the Locked Mode 
Predictor based on a Threshold criterion (LMPT). During the JET ITER-like wall (ILW) 
campaigns (September 2011 – October 2014), the APODIS success rate and average 
warning time are about 82% and 274 ms respectively. The equivalent values for the 
LMPT are 67% and 255 ms. The reason for these different results is the exhaustive 
training process carried out for APODIS instead of the manual selection of thresholds 
that is used with the LMPT. It should be noted that APODIS was trained with almost 
10,000 JET discharges with C wall between April 2007 and October 2009, where more 
than 900 h of CPU time in a high performance computer were needed. APODIS is in 
operation with the JET ILW and, so far, no re-training has been necessary. But 



collecting these huge training datasets is not a realistic strategy in the next generation of 
experiments such as ITER or DEMO. 

Trying to avoid the use of huge amount of discharges in the training process, a 
recent alternative has been the development of disruption predictors from scratch [14, 
15]. Disruption predictors from scratch are high learning rate predictors whose learning 
process starts after the first disruption. They are retrained after each missed alarm by 
adding disruptive and non-disruptive examples to the existing training dataset. In JET 
with the ILW, these adaptive predictors show success rates about 83% and average 
warning times of 244 ms [15]. 

It should be emphasized that the ‘learning from scratch’ approach is not only 
relevant for the start of a new device (like ITER or DEMO) but also in the case of 
existing devices, when they experience significant changes in the operational space. 
Examples of this can be JET from the carbon wall to the ITER-like wall operations or 
from DD to DT operations. Such changes may cause a drop in the success rate of more 
traditional predictors but, with continuous learning, systems based on ‘learning from 
scratch’ can recover fairly quickly. 

A more advanced option for disruption prediction would be the use of intelligent 
predictors that start their learning process with each new discharge and without the need 
for previous information from past discharges. The objective is to learn how a safe 
plasma evolution is and to trigger an alarm when an anomalous behaviour appears. Of 
course, the anomaly has to be closely related to a disruption. This is a novel approach 
for disruption prediction [16, 17] that completely avoids, firstly, the requirements of 
having a large database of disruptive and non-disruptive discharges (ITER or DEMO 
cannot wait for hundreds of disruptions to have a reliable predictor) and, secondly, 
carrying out very expensive computational trainings to determine good enough data-
driven models. 

However, it is important to point out that the use of previous knowledge is also 
possible with this type of predictors. There can be additional information gained from 
past experience that can be used to trigger the alarms at proper times. In this article, this 
kind of information is called ‘privileged knowledge’ (PK). The PK can be obtained from 
theoretical models, data-driven models, simple inspection of past discharges or 
whatever sources of information related to the specific implementation of the 
anomalous behaviour recognition. It should be noted that PK can be either available or 
not and if so, it can be used or not. In other words, the concept of predictors based on 
anomaly detection, which is presented in this article, means that these predictors have to 
predict just with the information acquired during each running discharge regardless of 
the existence of privileged knowledge. The PK has to be understood as an additional 
help to improve the predictions performed by the underlying methodology for detecting 
anomalies. 

This article describes a disruption predictor for JET that is based on a locked 
mode signal that does not need previous shots for training purposes. The predictor is 



based on the automatic recognition of changes (anomaly detections) in data streams 
through the identification of outliers in the data flow. Due to this reason, the predictor is 
called Single signal Predictor based on Anomaly Detection (SPAD). In SPAD, the 
locked mode samples are processed in time windows 32 ms long and the outputs of this 
processing form the data flow to be sequentially analysed. Near a disruption, the data 
generating model changes as the data are streamed and this change is detected and used 
to trigger an alarm. 

Section 2 explains the on-line data stream setting used for SPAD. Section 3 
presents a conceptual view of SPAD. Section 4 introduces the locked mode signal as the 
fundamental quantity for the present SPAD version. Section 5 is devoted to describing 
the data processing and section 6 discusses the results in JET. 

 

2. On-line learning during discharge production 

In general, data stream applications have to deal with the changing 
characteristics of the data. As most decision-making tasks rely on the timeliness and 
relevance of their supporting data, the changing nature of the data creates tremendous 
challenges for many learning algorithms and data mining techniques. On the other hand, 
changes in the data may convey interesting time-dependent information and knowledge. 
Problems driven by the changing characteristics of data include change detection 
techniques, quantification of changes and the ability to build accurate models for the 
changing data. Examples of applications for change detection include network 
monitoring, video surveillance, Internet security and anomaly/fraud/intrusion detection. 

Typically, in an on-line data streaming setting, data are observed sequentially 
and a decision on the identification of any kind of change in the data has to be made 
‘on-the-fly’. Focusing the attention on disruption prediction, an anomaly detector 
system has to learn in each new discharge the evolution of a safe behaviour and to fire 
an alarm when changes in the data stream are detected. It is important to note that the 
production of discharges under different scenarios can generate different classes of non-
disruptive plasmas. Therefore, in principle, the safe evolutions have to be learnt in every 
discharge. 

An essential point in the application of anomaly detection to recognize a 
forthcoming disruption is to be sure that the change in the data corresponds to the 
identification of a disruptive event. Otherwise, lots of false alarms would be triggered 
and the development of interesting plasma scenarios would be very cumbersome. 

Also, it is necessary to mention the requirements to be met by a disruption 
predictor based on anomaly detection. First, it is important to note that the sequential 
data are read only once. Second, the delay between a true alarm and its detection has to 
be minimal. Third, it should be noted that the number of both missed alarms and false 
alarms must be minimal. Last but not least, data streams should be handled efficiently 



from a computational point of view, which is crucial for the real-time implementation of 
the predictor. 

 

3. SPAD predictor: conceptual view 

The detection of anomalies can be implemented by detecting outliers in a data 
stream. From a conceptual point of view, the detection of anomalies can be carried out 
through the recognition of changes in the data flow. Fig. 2 shows the conceptual design 
of the anomaly detection used in this article. Let’s assume the real-time acquisition of 

input samples is on a periodic basis with period ∆t. From time 0t , there are n samples 

that follow the same data distribution (unknown, but the same one). From 0t n t+ ⋅∆ , the 

data distribution changes. It should be noted that the distribution is again unknown, but 
it is different from the previous one. The objective is to determine as soon as possible 
when the change has been produced. 

 

Fig. 2: The objective of the anomaly detector is to group all input samples into a single cluster through a 
mapping function f, which has to be determined for every particular implementation of the detector. Only 
when a second cluster appears, an alarm has to be triggered. The alarm is triggered when an outlier is 
identified in the temporal evolution of the distance between each sample and the centroid of all the 
previous ones. 

In general, the samples ( )tx  can be multi-dimensional feature vectors, i.e. 

( ) Mt ∈x ℝ , where M is the number of vector components (or features). The anomaly 

detector maps the input samples into an output space p
ℝ  in such a way that the 

mapping function : M pf →ℝ ℝ  is able to group the output samples ( )( ) pf t ∈x ℝ  into 

two separated clusters (black and red clusters in fig. 2). The first cluster is made up of 



output samples ( )( ) ( )0 0, , 1f t t t t n t∈ + − ⋅∆  x  and the second cluster contains output 

samples ( )( ) 0,f t t t n t≥ + ⋅ ∆x . The detection process has to recognise when the output 

samples start to be far from the initial cluster and then, an alarm is triggered. 

On the one hand, it is important to point out that, typically, there can be a high 
number of mapping functions and, therefore, multiple alternatives can be tested. On the 
other hand, the recognition of output samples far from the initial cluster implies the use 

of distances in the mathematical sense. In other words, the output samples ( )( )f tx  

have to be mapped according to : p
Df →ℝ ℝ , where Df  is a distance. In particular, the 

objective of SPAD is to follow the temporal evolution of the distance between each new 
output sample and the centroid defined by all previous output samples. An anomaly is 
recognised when an outlier appears, i.e. after a sudden rise of the distance (see sample 
number 60 in the top plot of fig. 2). Of course, any SPAD implementation has to 
recognise the anomaly in real-time. 

 

4. SPAD predictor and the locked mode 

There are two main factors in the development of the SPAD predictor: the 
disruption recognition criterion and the temporal resolution of the predictions. The first 
one is the key of the method to maintain low rates of false alarms, low rates of missed 
alarms, low rates of premature alarms, low rates of tardy detections and high rates of 
valid alarms. For the sake of clarity, definitions of the previous concepts for JET were 
provided in [15] and are included in appendix 1. 

With regard to the temporal resolution of the predictions, triggering an alarm as 
soon as possible plays a central role in order to achieve the largest possible warning 
time. 

As mentioned in section 2, it is extremely important that the anomaly detected in 
the data stream really corresponds to an incoming disruption. A single quantity closely 
related to disruptions is the locked mode signal. Therefore, in a first approach, this 
signal will be the only one used for the implementation of a disruption predictor based 
on anomaly detection. 

It should be noted that SPAD has to be different and to perform better than a 
standard LMPT, which is based on triggering an alarm when the locked mode amplitude 
just crosses a threshold. The experience on JET, in the development of disruption 
predictors, reveals the importance of using not only features in the time domain but also 
in the frequency domain [13, 14, 15]. The inclusion of features related to the frequency 
domain implies that the basic element to extract features (in this case from the locked 
mode signal) has to be a time window (characterized by its temporal length) with a 
number of digitized samples (characterized by the sampling rate). Due to the good 
results of APODIS with time windows of 32 ms and sampling rates of 1 kSamples/s, 



SPAD will use the same parameters. However, the resolution of 32 ms to make 
predictions can be improved. To avoid the use of higher sampling rates, a sliding 
window mechanism has been implemented [18]. In the SPAD case, the latest 32 
samples of the locked mode signal are processed every 2 ms (fig. 3). 

 

Fig. 3: Sliding window mechanism to achieve a prediction resolution of 2 ms without increasing the 
sampling rate (1 kSamples/s). 

 

5. SPAD data processing 

From section 3 and fig. 2, the steps for the SPAD implementation are clear. 
Firstly, data collected in time windows 32 ms long have to be processed in such a way 
that during a non-disruptive evolution of a discharge, the output samples of the mapping 

32: pf →ℝ ℝ  form a single cluster. In the presence of an incoming disruption, the 

output samples should appear far from the cluster. 

A possible mapping is to compute the wavelet transform [19] of the 32 samples 
of every time window. The choice of the wavelet transform provides many advantages: 
data compression, computing efficiency and simultaneous time and frequency 
representation. In particular, the Haar wavelet family has been selected. 

Wavelet transforms process data at different resolutions or decomposition levels. 
In each decomposition level, two sets of coefficients are obtained: approximation 
coefficients and detail coefficients. The approximation coefficients are a low pass filter 
of the signal whereas the detail coefficients are a high pass filter (fig. 4). 



 

Fig. 4: Schematic view of the Haar wavelet transform. Each decomposition level reduces by half the 
number of coefficients. 

Taking into account the 32 samples of the locked mode signal in each time 
window, let’s compute the approximation coefficients of a Haar wavelet transform at 

level 4. This means a mapping 32 2:f →ℝ ℝ , or in other words, to compress the 

information into 2 points in each time window. Therefore, every 2 ms, the latest 32 
samples are processed with the Haar wavelet transform and the output samples are 
vectors of dimension 2, where the two components are just the approximation 
coefficients of the transform. Fig. 5a shows the scatterplot of these output samples in a 
JET non-disruptive discharge. It should be noted that in this bi-dimensional space, the 
points remain together in a single cluster. Fig. 5b shows the scatterplot corresponding to 
a disruptive discharge. In this particular discharge, the latest 68 points of the scatterplot 
before the disruption, which correspond to a time of 136 ms, are clearly outside of the 
initial cluster. When this starts to happen, an alarm has to be activated. It should be 
noted that the warning time for this discharge is 136 ms. 



 

Fig. 5: Points are plotted every 2 ms and a compact cluster structure is observed in non-disruptive phases 
of the discharges. This structure is broken in the proximity of a disruption (the first outlier is marked by a 
red arrow in fig. 5b). The Euclidean distance cannot be used to detect outliers: lots of false alarms would 
appear as the Euclidean iso-distance contours are circles (Fig. 5a). 

Fig. 6 shows the plasma current and the locked mode signals of the JET 
discharges that are shown in fig. 5. These shots will be used along this article as 
examples of the SPAD data processing. 



 

Fig. 6: Temporal evolution of the plasma current and the locked mode signals of JET discharges 87411 
(non-disruptive) and 87412 (disruptive). 

Coming back to fig. 5, it should be noted that the alarm must be triggered the 
first time that a point in the bi-dimensional space X1-X2 is far enough from the cluster 
centre. The Euclidean distance does not work to detect this condition because the 
Euclidean iso-distance contours are circles and, therefore, this distance does not take 
into account the pattern of positive covariance that is shown in the scatterplots (figs. 5a 
and 5b). However, the Mahalanobis distance [20] does adjust for covariance (fig. 7) and 
it can be used to recognise anomalous points, i.e. points clearly outside from the 
compact cluster. Therefore, the identification of outliers requires following the temporal 
evolution of the Mahalanobis distance between each new point and the centroid of all 
previous points. When this distance is recognised as an outlier, it means that a 
disruption is approaching and an alarm must be triggered. 



 

Fig. 7: The Mahalanobis distance takes into account the data covariance. The Mahalanobis iso-distance 
contours are ellipses and, therefore, the two blue points have the same distance to the centroid. 

It should be noted that the process of recognising outliers in the Mahalanobis 
distances can be carried out in every discharge without the need of previous information 
from past discharges, which is the objective of this type of predictor. In the particular 
implementation for JET, when the plasma current exceeds the threshold of 750 kA in 
each discharge, the next 100 ms are used to compute the Haar wavelet transform of the 
locked mode signal every 2 ms with the latest 32 samples. In this way, an initial 
compact cluster of 50 points is formed. After the formation of this initial cluster and 
with a period of 2 ms, the latest 32 samples of the locked mode signal are analysed with 
the Haar wavelet transform (level 4 of decomposition). After obtaining each new bi-
dimensional point, the Mahalanobis distance between it and the cluster centroid defined 
by all bi-dimensional points is computed. 

Fig. 8 shows the temporal evolution of the Mahalanobis distance with a time 
resolution of 2 ms in both a non-disruptive discharge (fig. 8a) and a disruptive one (fig. 
8b). First of all, it is important to note the different scales in both discharges. Also, it 
should be emphasized that the different scales are not related to the disruptive or non-
disruptive character of the discharges. This means that just the Mahalanobis distance of 
any point to the cluster centroid is not able to distinguish anomalies in the data flow. 
The anomaly has to be recognised when the Mahalanobis distance is an outlier in 
relation to the distances of the previous points. Therefore, it is necessary to define an 

outlier factor, MK , that identifies outlier distances. To this end, the criterion to identify 

outliers at a time Pt  is related to Mahalanobis distances greater than or equal to MK  

standard deviations from the baseline model of each discharge: 

 
( ) ( )( )

( )( )
.Mahalanobis P Mahalanobis P

M

Mahalanobis P

D t mean D t t
K

std D t t

− ≤
≥

≤
  (1) 

In the present version of SPAD, privileged knowledge (as explained in the 
introduction) has been used. About 20 JET disruptions were analysed to look for a 

proper value for MK . From this analysis, MK  has been set empirically to a value of 10. 



This value allows achieving good success rates simultaneously with low false alarm 

rates. If 10MK < , the false alarm rate increases and if 10MK > , both tardy detections 

and missed alarms increase. 

 

Fig. 8: The Mahalanobis distance is not enough to discriminate anomalous behaviours from regular 
plasma evolution. An outlier factor, eq (1), to recognise outlier distances is necessary. 

Fig. 9 shows the temporal evolution of the outlier factor corresponding to the 
discharges of fig. 8. Fig. 9a shows an outlier factor that remains below the threshold 

10MK =  during the whole discharge and, therefore, no alarm is triggered. However, fig. 

9b plots the temporal evolution of the outlier factor that triggers an alarm 136 ms before 
the disruption. 



 

Fig. 9: Temporal evolution of the outlier factor in two different discharges. 

 

6. SPAD results 

Previous section describes the SPAD data processing for a particular mapping 
32 2:f →ℝ ℝ  defined by the Haar wavelet transform at the level 4 of decomposition. 

However, the same reasoning is valid for decomposition levels 1, 2 or 3, which 

correspond to mappings 32 16:f →ℝ ℝ , 32 8:f →ℝ ℝ  and 32 4:f →ℝ ℝ  respectively. 

In these cases, the compact clusters are made up of output samples with dimensions 16, 
8 and 4 respectively. In all cases, the Mahalanobis distance, as explained in section 5, 
has been used to recognise when an output sample is outside the compact cluster. 

All SPAD results in this section use only the locked mode signal for disruption 
prediction purposes and all executions have been performed by simulating real-time 
conditions. SPAD has been applied to a JET database with all unintentional disruptions 
(566 discharges) and all non-disruptive discharges (1738) in the range 82460-87918 

(ILW experimental campaigns between 2011 and 2014). In all cases, 10MK = . 



Table 1 summarizes the prediction of disruptions by detecting anomalies in the 

Mahalanobis distance evolution for mappings 32: , 2 16pf p→ ≤ ≤ℝ ℝ  based on the 

Haar wavelet transform (approximation coefficients).  

Table 1: Base mapping: Haar wavelet transform (approximation coefficients). FA: false alarms (%). MA: 
missed alarms (%). TD: tardy detections (%). VA: valid alarms (%). PA: premature alarms (%) 

p FA MA TD VA PA 

2 9.84 11.31 3.53 81.98 3.18 

4 9.55 10.95 3.36 82.86 2.83 

8 8.98 10.60 3.18 83.57 2.65 

16 18.24 11.31 3.00 79.68 6.01 

 

Table 2 shows the results of mappings 32: , 2 8pf p→ ≤ ≤ℝ ℝ  based on 

retaining p Fourier components (CC excluded) in the processing of the locked mode 
signal in time windows 32 ms long. 

Table 2: Base mapping: Fast Fourier transform. FA: false alarms (%). MA: missed alarms (%). TD: tardy 
detections (%). VA: valid alarms (%). PA: premature alarms (%) 

p FA MA TD VA PA 

2 12.66 9.36 2.65 81.80 6.18 

4 11.91 9.36 2.83 82.33 5.48 

8 12.31 10.07 2.83 82.69 4.42 

 

Table 3 presents a particular case of mapping 32 2:f →ℝ ℝ , where the two 

components of the output samples are respectively the mean value of the locked mode 
signal in time windows of length 32 ms and the standard deviation of the Fourier 
spectrum (excluding CC component) of the locked mode signal in those windows. It is 
important to note that these components are just the features used by the APODIS 
predictor in JET [13]. 

Table 3: Base mapping: APODIS features. FA: false alarms (%). MA: missed alarms (%). TD: tardy 
detections (%). VA: valid alarms (%). PA: premature alarms (%) 

p FA MA TD VA PA 

2 13.18 9.89 3.53 81.10 5.48 

 

Tables 4, 5 and 6 are particular cases of mappings 32:f →ℝ ℝ . Tables 4 and 5 

use the Haar wavelet transform but compressing the information content of the 
processing time windows into just 1 point (level 5 of decomposition). The first table 
uses the approximation coefficients and the second one the detail coefficients. Table 6 
uses the second feature of APODIS in JET: the standard deviation of the Fourier 
spectrum (excluding CC component). 



Table 4: Base mapping: Haar wavelet transform (approximation coefficients). FA: false alarms (%). MA: 
missed alarms (%). TD: tardy detections (%). VA: valid alarms (%). PA: premature alarms (%) 

p FA MA TD VA PA 

1 2.88 24.91 3.89 69.96 1.24 

 

Table 5: Base mapping: Haar wavelet transform (detail coefficients). FA: false alarms (%). MA: missed 
alarms (%). TD: tardy detections (%). VA: valid alarms (%). PA: premature alarms (%) 

p FA MA TD VA PA 

1 9.21 11.84 3.18 83.04 1.94 

 

Table 6: Base mapping: second APODIS feature. FA: false alarms (%). MA: missed alarms (%). TD: 
tardy detections (%). VA: valid alarms (%). PA: premature alarms (%) 

p FA MA TD VA PA 

1 10.82 8.66 3.00 83.22 5.12 

 

According to the tables it is clear that predictors based on anomaly detections 
can be candidates as disruption predictors in devices like ITER or DEMO. Their main 
advantage is that they do not need data from past discharges for the real-time prediction 
of forthcoming disruptions. However, privilege knowledge can also be used. 

Focusing the attention on the tables, the maximum percentage of valid alarms 
(83.57%) corresponds to map the input data into 8 points with the Haar wavelet 
transform (table 1). The valid alarm rate is a compromise that takes into account the 
relevant parameters related to disruptive discharges: success rate, missed alarms, tardy 
detections and premature alarms. On the other hand, the smallest false alarm rate 
(2.88%) is shown in table 4, but this case provides a reduced rate of valid alarms and, 
therefore, it is not a good balance. Apart from this false alarm rate, the minimum one 
(8.98%) is provided again in table 1 and p = 8. Therefore, the case p = 8 of table 1 
should be considered as the winner of the cases presented in the six tables. 

Fig. 10 and table 7 compare the predictions carried out by SPAD (table 1, p = 8), 
APODIS and the LMPT in JET. The plot covers the whole database taken into account 
(566 unintentional disruptions and 1738 non-disruptive discharges during JET ILW 
discharges). It should be noted that the LMPT obtains the worst results and SPAD has 
slightly better performance than the APODIS predictor. 



 

Fig. 10: Comparison between predictors. TD: tardy detections. VA: valid alarms. PA: premature alarms. 

 

Table 7: Disruption prediction comparison among SPAD, APODIS and LMPT. FA: false alarms (%). 
MA: missed alarms (%). TD: tardy detections (%). VA: valid alarms (%). PA: premature alarms (%) 

 MA TD VA PA 

SPAD 10.60 3.18 83.57 2.65 

APODIS 15.38 2.47 79.15 3.00 

LMPT 30.39 3.00 63.96 2.65 

 

Figs. 11a-11d and table 8 break down JET results corresponding to the latest 
four experimental campaigns with the ILW. It is important to note that SPAD usually 
gives better results than the others, which is very important taking into account that no 
training with past discharges is required. Also, it should be mentioned that APODIS was 
trained with C-wall data and no re-training has been performed. As particular cases, in 
the campaign shown in fig. 11b, neither SPAD nor APODIS show tardy detections. In 
the campaign summarized in fig. 11d (H campaign), only SPAD shows tardy detections 
and the LMPT success rate is extremely low. 



 

Fig. 11: Comparison between predictors in the four latest ILW campaigns of JET. 

 

Table 8: Disruption prediction comparison among SPAD, APODIS and LMPT during the latest four ILW 
experimental campaigns of JET. FA: false alarms (%). MA: missed alarms (%). TD: tardy detections (%). 
VA: valid alarms (%). PA: premature alarms (%) 

 MA TD VA PA 

SPAD (fig. 11a) 9.27 2.65 84.77 3.31 

APODIS (fig. 11a) 9.27 3.31 81.46 5.96 

LMPT (fig. 11a) 22.52 3.31 70.86 3.31 



SPAD (fig. 11b) 15.69 0.00 80.39 3.92 

APODIS (fig. 11b) 15.69 0.00 84.31 0.00 

LMPT (fig. 11b) 47.06 3.92 49.02 0.00 

SPAD (fig. 11c) 11.92 3.31 82.12 2.65 

APODIS (fig. 11c) 19.87 3.31 74.17 2.65 

LMPT (fig. 11c) 26.49 3.31 66.89 3.31 

SPAD (fig. 11d) 13.52 2.70 83.78 0.00 

APODIS (fig. 11d) 13.51 0.00 86.49 0.00 

LMPT (fig. 11d) 86.49 0.00 13.51 0.00 

 

 

7. Conclusions and directions of future work 

Fig. 12 puts together the time traces of a JET disruptive discharge corresponding 
to IP, LM, Mahalanobis distance and KM. The plots of fig. 12 are to be compared with 
the ones of Fig. 13, which show the temporal evolution of the same signals for a non-
disruptive discharge. The figures try to emphasize the fact that SPAD is sensible to 
anomalies in the temporal evolution of the locked mode signal. According to the results 
reported along the paper, it is clear that the simultaneous use of both the time domain 
and the frequency domain, even with a single quantity, provides an essential benefit 
versus the simple utilization of the signal amplitude (time domain). The results prove 
that predictors based on anomaly detections present performances which make them 
good candidates for devices like ITER. Indeed, in global term, they are not far from 
meeting the requirements of the next generation of devices. On the other hand, they 
present the main advantage that they do not need data from past discharges for the real-
time prediction of forthcoming disruptions. However, privilege knowledge can also be 
used if available. Certainly, it should be noted that PK has been used in this work to 
empirically determine a good enough value of the outlier factor. However, work in 
progress is trying to determine critical outlier factors on-the-fly to trigger an alarm 
without using privilege knowledge. To this end, the framework of conformal predictors 
[21] is being used. An alarm will be fired when ‘strange’ Mahalanobis distances appear 
in a discharge. The concept of ‘strange’ means how conformal a Mahalanobis distance 
at a certain time is in relation to the distances at earlier times in the discharge. Also, 
different types of metric, such as geodesic, could be tested to see whether they can 
improve the success rate, as they did in some applications in the past [22]. 



 

Fig. 12: Temporal evolution of the quantities used to detect anomalies in a disruptive discharge. 

The other main direction of research consists of using more features as input to 
the classifier. Indeed the present version basically uses a single signal, the locked mode. 
A significant improvement in the performance is to be expected once other important 
quantities, such as the radiated fraction or the internal inductance were also included.  A 
systematic investigation of the most adequate combination of signals for anomaly 
detection is also considered a prerequisite to the development of multi-machine 
predictors based on the proposed approach. 



 

Fig. 13: Temporal evolution of the quantities used to detect anomalies in a non-disruptive discharge. 

 

Appendix 1 

False alarm: alarm triggered in a non-disruptive discharge. 

Missed alarm: no alarm triggered before the disruption in a disruptive discharge. 

Premature alarm: alarm triggered with a warning time greater than 1.5 s in a disruptive 
discharge. 



Tardy detection: alarm triggered with a warning time less than 10 ms in a disruptive 
discharge. 

Valid alarm: alarm triggered with a warning time between 10 ms and 1.5 s in a 
disruptive discharge. 
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