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As a followup on the drift-kinetic study of the non-local bootstrap current in steep

edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)],

a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic

electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic

treatment, a fully nonlinear Fokker-Planck collision operator – that conserves mass,

momentum and energy – is used instead of Koh et al.’s linearized collision operator in

consideration of the possibility that the ion distribution function is non-Maxwellian

in the steep pedestal. An inaccuracy in Koh et al.’s result is found in the steep edge

pedestal that originated from a small error in the collisional momentum conservation.

The present study concludes that 1) the gyrokinetic ions do not make a noticeable

difference in the bootstrap current from the drift-kinetic ion results, 2) the bootstrap

current in the steep edge pedestal is generally smaller than what has been predicted

from the small banana-width (local) approximation [e.g., O. Sauter et al., Phys. Plas-

mas 6, 2834 (1999) and E. Belly et al., Plasma Phys. Controlled Fusion [50], 095010

(2008)], 3) the plasma flow evaluated from the local approximation can significantly

deviate from the non-local results, and 4) the bootstrap current in the edge pedestal,

where the passing particle region is small, can be dominantly carried by the trapped

particles in a broad trapped boundary layer. A new analytic formula based on nu-

merous gyrokinetic simulations using various magnetic equilibria and plasma profiles

with self-consistent Grad-Shafranov solutions is constructed.
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I. INTRODUCTION

The important role of the bootstrap current in magnetic fusion plasma has been well

recognized1–15. Since the bootstrap current profile is a difficult quantity to measure in exper-

iments, analytic formulas or numerical codes have been used for its prediction and analysis.

Among the analytic formulas found in the literature, the so-called “Sauter formula”14 has

been popular in the modeling and experimental communities. The Sauter formula was de-

veloped based on numerous drift-kinetic simulations under various Grad-Shafranov tokamak

plasma conditions using an approximate linearized collision operator in the limit of small ba-

nana orbit width compared to the radial plasma gradient length (called the “local regime”).

Recently, the importance of the bootstrap current has been re-emphasized by its critical role

in the stability, equilibrium, and turbulence in the steep edge pedestal plasma16–18, where the

ion banana width is similar to the pressure gradient scale length (called “non-local regime”).

Due to the largeness of the bootstrap current density in the steep pressure gradient region,

a small inaccuracy in the prediction for its magnitude and profile can sensitively affect the

physics of the edge pedestal. Most of the previous theoretical and numerical studies, and

analytic formulas for the bootstrap current, including the Sauter formula14 and Belli et al.’s

numerical study15, have been focused on the core plasma with small trapped-particle fraction

and/or using the local limit, and do not guarantee accuracy in the steep edge pedestal. A

more accurate evaluation of the bootstrap current profile in the steep edge pedestal region

of tokamak plasma has been in need.

Besides the local approximation, Sauter et al ’s simulations14 and their fitting formula

have been known to be less accurate at higher electron collisionality19, νe,∗ > 1, mainly due

to the approximate electron-ion collision operator used in the simulation and also due to the

simplified fitting formula used at high collision frequency that does not produce the correct

asymptotic behavior. Reference [20] studied an ion contribution to the bootstrap current

that arises from the interaction of finite ion banana width with the strong radial electric

field occurring in a pedestal plasma, however, still in the large aspect ratio limit. Koh et

al.21 used a previous version of the XGC0 global drift-kinetic code22, which was equipped

with an approximate linear collision operator, to study the finite banana orbit effect on the

bootstrap current in the steep edge pedestal together with the magnetic separatrix effect,

and they suggested a new analytic formula by adding corrections to the Sauter formula.
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Belli et al.15 compared Sauter et al.’s and Koh et al.’s analytic bootstrap current models

with results of the local neoclassical code NEO23,24, and found some disagreement of the

NEO results with both formulas. Landreman et al.25 investigated the bootstrap current

using their new global neoclassical code PERFECT allowing for the density gradient scale

length to be on the order of the ion banana width ρb, but the ion temperature gradient scale

length was still assumed to be much larger than ρb. Inaccuracy of the Sauter formula at

high collisionality has also been a part of the reports of the PERFECT and NEO studies in

the local regime.

Due to the importance of the problem and some disagreement with the NEO code, we

have re-examined Koh et al.’s results using the more advanced, non-local, gyrokinetic neo-

classical code XGCa, which uses a fully nonlinear Fokker-Planck collision operator with

highly accurate conservation of energy, momentum, and mass. The electrons in XGCa are

still drift-kinetic since the electron gyroradius is negligibly small compared to the pressure

gradient scale length even in the pedestal. The use of a fully nonlinear and conserving col-

lision operator removes potential uncertainties due to non-Maxwellian components of the

ion distribution function in the steep pedestal and due to a possible inaccuracy from the

linearized Coulomb collision operator used in XGC0. A gyrokinetic neoclassical code also

removes the uncertainty of the analytic gyroviscosity model in steep edge pedestal plasma,

where the ion gyroradius ρi is a non-negligible fraction of the pressure gradient scale length

LP (ρi ∼ 10−1LP ). The XGCa results are compared with the local Sauter formula and

with the results from the local drift-kinetic solver NEO in their respective validity regimes,

showing negligible differences. In the validity regime of the Sauter formula (local and weakly

collisional νe,∗ < 1), all three results agree well; while in the extended validity regime of NEO

(local and collisional), NEO and XGCa agree well while the Sauter formula gives higher boot-

strap current. In the process of cross-verification between XGCa and the previous version

XGC0, it was discovered that XGC0 had a small inaccuracy in the total momentum con-

servation from the approximate linearized Monte-Carlo collision operator. Even though the

inaccuracy in the momentum conservation was small when compared to the ion momentum

– hence the accuracy of the ion neoclassical physics was not affected – it was enough to raise

the electron bootstrap current somewhat, which accounted for the discrepancy of the XGC0

results with XGCa, and with NEO in NEO’s validity regime15. After fixing the inaccuracy in

the XGC0 collision operator, the improved version XGC0 agrees with XGCa in all regimes,
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and with NEO in NEO’s validity regime. Thus, one takeaway from the present study, as far

as the bootstrap current is concerned, is that the gyrokinetic nature of the ion dynamics in

XGCa does not make a noticeable difference from the drift-kinetic ions used in XGC0.

Another physics finding from this study that has not been discussed in the literature is the

dominant contribution of trapped electrons to the bootstrap current in the edge pedestal in

contrast to the central core plasma, where most of the previous theoretical studies have been

performed. In the edge pedestal of conventional aspect-ratio or tight aspect-ratio tokamaks,

the passing particle population is much smaller than the trapped particle population. In

this case, it is found that the bootstrap current penetrates into the trapped particle regime

through a broadened boundary layer. In the large aspect ratio limit, the usual “passing

particle dominance” of the bootstrap current is recovered.

Numerous XGCa simulation results under various Grad-Shafranov plasma and magnetic

equilibrium conditions led us to construct a new analytic formula – again based on the

Sauter formula – by improving the accuracy of collisional physics and adding non-local

effects. The new formula represents the XGCa results (and the NEO results in the local

regime) much more accurately than the Sauter formula does for all the cases studied, and

can be implemented easily into a modeling or analysis code as a simple modification to the

Sauter formula. By using a different type of fitting, the discontinuity in Koh et al.’s formula

at the inverse aspect ratio ϵ = 0.44 has also been removed, which was intentionally located

in Koh et al.’s formula at an inverse aspect ratio where there is no operational tokamak at

the present time or unlikely to be in the future.

In this work, we assume that the ion charge number dependence of the bootstrap current

given in Sauter et al.14 is acceptable, and we consider the improvement of the analytic

formula in the limit of singly charged ions. When there are impurity particles in the plasma,

the charge number Z in the ion contribution to the bootstrap current can be identified by

using the description given in Koh et al.21,

Z =
(
Z2
αZ̄Zeff

)1/4
, (1)

where Zα = 1 for the main ion species, Z̄ = ne/ni, and Zeff =
∑

β nβZ
2
β/ne with β being

the ion species index. For the electron bootstrap current term, Z = Zeff as usual. The

Z-dependence will be investigated using the gyrokinetic XGCa code in the future and our

new formula will be updated if there is any significant difference.
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The remainder of the paper is organized as follows: Section II is a brief description of the

XGCa code and the computational setup. We also discuss how a small inaccuracy in the

momentum conservation in the previous version of XGC0’s collision operator affected Koh

et al.’s results, and how XGC0 results changed with corrected momentum conservation.

Results from a cross-verification between XGCa, XGC0, and NEO are discussed in Sec.

IIIA. Section III B contains a description of how collisions in the pedestal increase the

trapped electron fraction of the bootstrap current. The relation of this increased trapped

particle contribution to conventional neoclassical theory at high aspect ratio is explained

in Sec. III C. Section IIID is dedicated to the discussion of finite orbit-width effects. Our

improvement to the Sauter formula is discussed in Sec. IV. Section V contains summary

and discussion.

II. THE XGCa CODE AND THE BASIC SIMULATION CONDITIONS

The main code used for the present study is the new non-local total-f gyrokinetic neo-

classical code XGCa. We will present a brief description of XGCa in this section. A more

detailed description of XGCa will be presented in a separate report. The global total-f drift-

kinetic neoclassical code XGC0 is also used in the present work for comparison with the

previous work by Koh et al.21, who used an older version XGC021,22,26,27. We also use the

perturbative drift-kinetic code NEO, which was developed for local physics in the plasma

away from the magnetic separatrix, for cross-verification in NEO’s validity regime. Detailed

description of NEO can be found in Refs. [23 and 24].

XGCa is an axisymmetric version of the global total-f gyrokinetic particle-in-cell code

XGC128, which includes gyrokinetic ions, drift-kinetic electrons and neutral particles. The

axisymmetric Poisson solver in XGCa removes the turbulence solution but keeps the poloidal

variation of the electrostatic potential that was missing in XGC0. XGCa uses a non-linear

multi-species Fokker-Planck-Landau collision operator with the real electron-to-ion mass

ratio29, which has been generalized from the single species operator developed by Yoon

and Chang30. Since the gyro-averaging is performed explicitly in XGCa using the usual

4-point averaging technique31, there is no need for an ad-hoc gyro-averaging model (such as

gyro-viscosity) like the one used in XGC0 for the steep edge pedestal physics.

XGCa results converge well at approximately 10,000 particles per configuration space
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grid vertex. The simulation time needed to reach a quasi-steady state is approximately 2

pedestal ion collision times corresponding to 5000 ion time steps or 10 ion toroidal transit

times. A quasi-steady state is defined in the present work as a state in which all the physical

quantities including the radial and poloidal electric field, toroidal and poloidal flows, and

plasma profiles are out of the initial transient state and evolve on the neoclassical transport

time scale. The implicit, non-linear collision operation in XGCa exhibits good convergence

behavior if the collision operation is performed approximately at every electron collision time

(or more frequently) corresponding to 1-5 time steps depending on the minimum temperature

of ions and electrons. A typical wall-clock time to reach a quasi-steady neoclassical state is

half a day on the IBM BlueGeneQ System Mira using 16384 compute nodes and the real

electron mass.

Because of the importance of the accuracy of the collision operation (especially the ac-

curacy of momentum conservation) in calculating the bootstrap current, we discuss some

details of the conservation properties of the nonlinear collision operator here. For a more

complete description, we refer the readers to Refs. [29] and [30]. The nonlinear collision

operation in XGCa and XGC1 is performed on a two-dimensional velocity grid with the

marker particle velocity distribution from each configuration space vertex being mapped to

the velocity grid. After each collision operation, the collision result is mapped back to the

marker particles’ weights. The velocity grids for ions and electrons are normalized to the

respective thermal velocity, and have identical size and resolution in normalized velocity

units. In this work, we use 40× 40 cells with a high cut-off at 4 times the thermal velocity.

We examine the conservation properties of the nonlinear collision operator in a simple,

but well designed, comprehensive test in order to demonstrate the accuracy needed for the

bootstrap current calculation. The test presented here is the relaxation of temperature

and flow to the thermal equilibrium (see Ref. [29] for more comprehensive verification).

The solution of each implicit collision operation is iterated until the relative errors of mass,

momentum, and energy per time step are less than 10−6. The marker particles in this

collision accuracy test are not time-advanced in the equation of motion; only the right hand

side of the Boltzmann equation is solved. Thus, the Monte-Carlo and the particle-mesh

interpolation errors are not considered in this test of the collision operator, but they are

examined through convergence studies in particle number and grid size in complete XGCa

simulations. The initial electron and ion temperatures have both, isotropic difference and
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individual anisotropy: Te,⊥,0 = 390 eV, Te,∥,0 = 300 eV, Ti,⊥,0 = 260 eV, and Ti,∥,0 =

200 eV. The initial parallel ion and electron flows are ue,0 = 59.9 km/s and ui,0 = 1.3

km/s, representing a typical level of electron and ion flows in the edge pedestal with the

relations ui,0 ∼ (me/mi)
1/2ue,0 and ue,0 ∼ vt,i/2, where vt,i is the ion thermal velocity.

The errors in energy and momentum conservation are normalized relative to the initial

energy and momentum. The energy and momentum conservation accuracy observed in the

relaxation test is illustrated in Fig. 1. It can be seen that the time-accumulated relative

energy conservation error is at the 10−6 level and the time-accumulated relative momentum

conservation error is at the 10−5 level after 60 ion collision times, which is a much longer

simulation time than the time needed (∼ 2 ion collision times) for measuring the bootstrap

current or any other neoclassical quantities. Moreover, the energy and momentum errors

saturate after after the initial transient state. In other words, a maximum conservation error

set to be 10−6 per collision operation is sufficient to keep the accumulated conservation error

to be around 10−5 relative to the initial condition. It is found, in general, that the energy

conservation error is smaller than the momentum conservation error.

Since the momentum in the electrons is smaller than that in the ions by (me/mi)
1/2,

an error of less than 10−2 in the electron bootstrap current requires a relative error of less

than 10−2(me/mi)
1/2 = 1.6 · 10−4 in the total momentum. In the real XGCa simulations,

though, it is found that the relative error in the electron bootstrap current is less than this

simple estimate since the small deviation δjb,e away from the equilibrium is damped by the

collisional friction with ions. Its influence on the ions is smaller by (me/mi)
1/2. When the

conservation accuracy in complete XGCa simulations is reduced from 10−6 to 10−8 per time

step as part of the convergence studies, the same result for the bootstrap current is found.

The low noise ratio in XGCa enables us to use a single time slice of the distribution

function to evaluate the bootstrap current. No time averaging is necessary as in case of

XGC0. Therefore, the choice of a time slice in quasi-steady state has little influence on the

result as demonstrated in Fig. 2. This figure shows the time evolution of the bootstrap

current at the location of its maximum in the pedestal from an XGCa simulation using the

JET geometry along with the currents predicted by the Sauter formula, and an improved

formula to be presented in Sec. IV. The time evolution of the bootstrap current as given

by the formulas is due to the evolution of the plasma profiles.

The plasma and magnetic configurations we use in this report include circular limiter ge-

7



a)

0.001 0.01 0.1 1 10 100
Time/ν

i

10-8

10-7

10-6

10-5
E
(t
)/
E
(0
)-
1

b)

0.001 0.01 0.1 1 10 100
Time/ν

i

10-7

10-6

10-5

10-4

10-3

10-2

p
(t
)/
p
(0
)-
1

FIG. 1. Conservation properties of the non-linear collision operator in XGCa during a comprehen-

sive relaxation test starting from Te,⊥,0 = 390 eV, Te,∥,0 = 300 eV, Ti,⊥,0 = 260 eV, Ti,∥,0 = 200 eV,

ue,0 = 59.9 km/s, and ui,0 = 1.3 km/s): a) Relative error of total energy and b) relative error of

total momentum. Time is normalized to the ion collision time. The errors are normalized relative

to the initial energy and momentum.
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FIG. 2. Time evolution of the bootstrap current at the radial location of the maximum of the

bootstrap current profile (ψN = 0.93) shown in Fig. 8 a). Time is normalized to the local ion

collision time. After an initial transient phase of approximately one ion collision time, the bootstrap

current evolves only slowly in time. Comparison with the Sauter formula and the modified formula

to be presented in Sec. IV demonstrates that the slow time variation is due to the slow variation

of the plasma profiles caused by neoclassical transport. This indicates that the system has reached

a quasi-steady state.
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ometries that were generated by the equilibrium solvers ISOLVER32 and FLOW33, as well as

realistic tokamak magnetic configurations for C-Mod (discharge 1120803014)34, DIII-D ge-

ometry (similar to discharge 96333)28, JET (similar to discharge 8540735), ASDEX-Upgrade

(discharge 28093)36, and NSTX (discharges 12801337,38 and 13254339) (all devices are de-

scribed in Ref. [40]). In case of the limiter configurations, the simulation domain includes

only the closed field line region. In case of the divertor configurations, it includes the whole

volume. Note that in this article, we do not study the separatrix effect discussed by Koh et

al.21 in detail since the effect is relatively small. As a matter of fact, the improved formula

we propose in Sec. IV achieves good accuracy without Koh et al.’s separatrix correction.

The circular limiter configurations are used to study the fundamental physics effects without

the complication introduced by the separatrix and scrape-off layer. The circular limiter con-

figurations also facilitate comparison of the XGC results with other neoclassical codes that

are unable to treat the open field line region. Due to the interplay of background gradients

and collisionality, the peak of the bootstrap current profile usually lies between the pedestal

top and the pedestal center, i.e. not at the point of maximal plasma gradient.

When using the local neoclassical drift-kinetic code NEO away from the magnetic sepa-

ratrix for cross-verification with XGCa in the local limit, the following simulation conditions

have been set in NEO. We used 25 grid points per flux-surface in the poloidal direction (33

for NSTX), 17 basis function in pitch-angle, and 9 basis functions in energy space. As in all

XGCa simulations, we used the real electron mass in NEO. The density and temperature

profiles from a selected time slice (in quasi-steady state) of the corresponding XGCa simu-

lation were used as input to NEO. Since NEO cannot solve for the radial electric field, we

used the gradient of the flux-surface averaged potential, d⟨ϕ⟩/dψ from XGCa as input for

the zeroth order radial electric field. While this is merely a shift of the reference frame in

the local code NEO, it enables us to compare the ion and electron contributions between

NEO and XGCa in the laboratory frame.
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FIG. 3. Density and temperature profiles for case CIRC1.

III. NUMERICAL RESULTS

A. Cross-verification of XGCa, XGC0, and NEO in the local regime

In order to test if the global neoclassical simulations performed with XGCa and XGC0

agree with the local NEO simulations and the local analytic formula by Sauter et al. in a

mild gradient case (local regime), we performed a cross-verification between XGCa, XGC0,

NEO and the Sauter formula. Here, we define the inverse aspect ratio ϵ as the ratio of the

mean minor radius Rmin ≡ (R+ − R−)/2 to the geometrical center Rc ≡ (R+ + R−)/2 of a

flux-surface, where R+ and R− are the major radii at the outer- and inner-most points of a

flux-surface. Thus, ϵ ≡ (R+−R−)/(R++R−). The three simulation cases we discuss in this

subsection cover all the representative aspect ratio regimes: a conventional aspect ratio (with

a realistic tokamak equilibrium), a tight aspect ratio (circular, ϵm = 0.63at the location of

the maximal bootstrap current), and an in-between aspect ratio (circular, ϵm = 0.51) case.

The tight aspect ratio case CIRC1 is a Grad-Shafranov equilibrium with circular plasma

boundary. The inverse aspect ratio at the outer boundary ψN = 1 is ϵa = 0.84, where ψN

is the poloidal flux normalized to its value at the separatrix. The density and temperature

profiles (Fig. 3) are taken to be simple tanh-type pedestals. At the maximum location of

the bootstrap current profile, ϵm = 0.63 and the electron collisionality νe∗ is 0.9.

The case CIRC2 is a Grad-Shafranov equilibrium with circular boundary as well, but the

inverse aspect ratio is ϵm = 0.51 and νe∗ = 3.0 at the maximum location of the bootstrap

current. At the outer boundary ψN = 1, the inverse aspect ratio is ϵa = 0.88. The density
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FIG. 4. Density and Temperature profiles for case CIRC2.
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FIG. 5. Density and Temperature profiles for JET. The pedestal width is widened to satisfy the

local approximation

and temperature profiles (Fig. 4) for CIRC2 consist of a tanh-type pedestal and increase

linearly from the pedestal top towards the magnetic axis. Around ψN = 0 and ψN = 1, the

profiles are flattened.

Finally, for the conventional aspect ratio case we use the EFIT41 magnetic equilibrium

of the JET H-mode discharge 85407, however, with an artificially broadened pedestal width

(as shown in Fig. 5) in order to satisfy the local approximation. Thus, the plasma profile is

not completely consistent with the Grad-Shafranov magnetic equilibrium. At the location

of the maximum of the bootstrap current, ϵm = 0.29, νe∗ = 1.7. Unlike the two circular

cases, the JET simulation includes the scrape-off layer.

We quantify the non-locality of the density and ion temperature profiles using the ratio

of the ion orbit-width scale length ρb (half the maximal thermal ion orbit width) to the scale
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lengths of the corresponding gradients measured at the outer midplane. The orbit width was

determined numerically using the conservation of the canonical toroidal angular momentum

R2∇φ · (mv + eA) = mRvT − eψ = const. (2)

where R is the major radius, φ the geometric toroidal angle, m the particle mass, v the

particle’s velocity, A the vector potential, vT the particle’s toroidal velocity and ψ the

poloidal magnetic flux. Usually, the velocity vT consists of the toroidal components of

parallel velocity, magnetic inhomogeneity drifts, and E×B drift. However, to get a simpler

and more practical estimate of ρb, we retain only the parallel velocity and neglect the orbit-

squeezing effect from the E × B shear. Then, the maximal half-width δψ of the orbit of a

thermal ion with v∥ = 0 at the minimum of the magnetic field at ψ = ψ0 becomes

δψ = ψ − ψ0 ≈
miRBφ

eBmin(ψ0)

√
1− Bmin(ψ0)

Bmax(ψ0)
,

⇒ ρb(ψ0) =
r(ψ0 + δψ)− r(ψ0 − δψ)

2
, (3)

where r = R+ −Rc is the outer midplane radius.

The bootstrap current obtained for case CIRC1 is shown in Fig. 6 a). Due to the effect

of inaccurate momentum conservation discussed earlier in Sec. II, the previous version of

XGC0 with an approximate linear collision operator yields higher current than XGCa and

NEO. With the improved collision operator, the new version of XGC0 agrees very well

with XGCa. The local simulation result from NEO agrees reasonably with the results of

the global simulations with XGCa. At the peak of the current profile at ψN ≈ 0.89, the

difference between XGCa and NEO is 3.7% with the non-locality parameter ρb/LTi ≈ 0.14.

Since νe∗ < 1, the Sauter formula also reproduces the XGCa result reasonably well. The

non-locality parameters of density and ion temperature are shown in Fig. 6 b). They are

well below 1 so that the small orbit width expansion used in NEO is approximately valid.

Reasonable agreement between XGCa and NEO is found also for CIRC2 and JET. The

corresponding bootstrap current profiles and non-locality parameters are shown in Figs. 7

and 8. The Sauter formula over-predicts the bootstrap current in these cases. However, given

that νe∗ > 1 is outside of the accuracy range of the Sauter formula, this is not surprising

and in line with similar findings in Refs. [21] and [25].
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FIG. 6. a) Bootstrap current profile for the CIRC1 case, a circular limiter configuration with tight

aspect ratio and lower plasma collisionality. XGC0 with inaccurate momentum conservation gives

higher bootstrap current than the other codes and the Sauter formula. With accurate momentum

conservation, XGC0 agrees well with XGCa and NEO. At the maximum location of the bootstrap

current, NEO deviates from XGCa by 3.7%. The Sauter formula also reproduces the XGCa results

well. b) The ratios of ion orbit width ρb to density and ion temperature gradient scale lengths are

small enough to consider this case to be in the local regime.

B. Collisional suppression of the passing electron current in the edge pedestal

In order to elucidate the role of trapped and passing particles, and the collision effect in

carrying the bootstrap current, we analyze the guiding center distribution functions obtained

from our XGCa simulations. Some of the simulations discussed in this section are in the

non-local regime with pedestal widths comparable to the ion orbit width. However, we

will show that part of the difference we find between XGCa and the Sauter formula in the

collisional edge can be explained without invoking finite orbit-width effects.

The reduction of the bootstrap current compared to the Sauter formula observed in the

CIRC2 case and the modified JET case [see Figs. 7 a) and 8 a)] is a robust feature in the

plateau-collisional regime. The bootstrap current profiles obtained from XGCa, NEO, and

the Sauter formula for C-Mod (discharge 1120803014) and NSTX (discharge 132543) shown

in Figs. 9 a) and c) are further proof. The simulations for C-Mod and NSTX were initialized

with the experimentally measured density and temperature profiles shown in Figs. 10 a) and

b). At the maximum location of the respective bootstrap current profiles as obtained from

XGCa, the inverse aspect ratio and collisionality are ϵm = 0.31 and 0.69, and νe∗ = 3.7 and
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FIG. 7. a) Bootstrap current profile for the CIRC2 case, a circular limiter configuration with a

moderately small aspect ratio and high collisionality. XGCa and NEO show good agreement while

the Sauter formula over-estimates the bootstrap current. b) The ratios of ion orbit width ρb to

density and ion temperature gradient scale lengths show that this case is in the local regime.
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FIG. 8. a) Bootstrap current profile for the modified JET case (discharge 85407 with an artificially

broadened plasma profile to avoid finite orbit width effects). XGCa and NEO agree very well. b)

Ratio of the ion orbit width ρb to the density and ion temperature gradient scale lengths.

2.9, respectively. The pedestal widths in the C-Mod and NSTX simulations are comparable

to the ion orbit width, which means that local neoclassical theory and simulations are no

longer valid.

While NEO and XGCa agree well at radial locations in the local regime, the current

densities obtained from NEO for the realistic profiles used in the C-Mod and NSTX cases

(Fig. 9) tend to be higher than the results found from XGCa in the steep pedestal region.

However, NEO results still reproduce at least a large part of the reduction of jb compared
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FIG. 9. Bootstrap current profiles for a) C-Mod (discharge 1120803014) and c) NSTX (discharge

132543). The XGCa simulations were initialized with experimental density and temperature pro-

files. The corresponding ratios of ion orbit width to gradient scale lengths are shown in b) and

d). The C-Mod and NSTX pedestals are in the non-local regime. While XGCa and NEO agree

very well in the local regime at smaller ψN , away from the pedestal, the two codes differ in the

non-local regime in the pedestal by 5.5% in C-Mod and 9% in NSTX, respectively, when comparing

the respective maxima of the bootstrap current. The Sauter formula over-estimates the bootstrap

current when compared to XGCa.

to Sauter shown in Figs. 7 a), 8 a), and 9 a), in which the pedestal collisionality is high.

Therefore, the local neoclassical theory may also contain physics that explain at least some

of the reduction. This is the focus of this section. Finite orbit width effects will be discussed

in Sec. IIID.

The following analysis of the behavior of trapped and passing particles will prove that the

observed difference between the Sauter model and the results of our numerical simulations

are in part due to collisional suppression of the passing electron contribution to jb. Here,
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FIG. 10. Density and temperature profiles for a) C-Mod (discharge 1120803014) and b) NSTX

(discharge 132543).

we utilize a feature common to all the XGCa simulations (and the NEO simulations in the

local regime), namely that the ion contribution to the bootstrap current (measured in the

laboratory frame) is small to negligible on most flux-surfaces. This is shown in Fig. 11

using the example of the circular limiter case CIRC2 (local regime, discussed in Sec. IIIA).

This case was chosen because it demonstrates the good agreement of the ion and electron

contributions to the bootstrap current in the local regime obtained with XGCa and NEO.

Therefore, we concentrate on the electron distribution function in the following analysis

while suppressing the species indices.

The electron distribution function f is measured in XGCa on each vertex of the configu-

ration space mesh as function of the perpendicular velocity v⊥ and the parallel velocity v∥.

For the calculation of the bootstrap current, we write f = fM + δf . Since the Maxwellian

distribution fM has no mean flow, it is sufficient to evaluate jb using δf .

However, δf itself is not yet useful for the analysis of the bootstrap current in velocity

space because it contains the Pfirsch-Schlüter current, which has to be removed by evaluating

the orbit-average of the parallel flow moment of δf . The electron bootstrap current is given

by

jb =

⟨
j ·B
B0

⟩
= −e

⟨
B

B0

∫
d3v v∥δf

⟩
, (4)

where e is the elementary charge. The flux surface average removes the Pfirsch-Schlüter

currents. To identify the contributions to jb from trapped and passing particles, we need to

invert the order of the configuration and velocity space integrals. We follow the derivation

in Refs. [42 and 43] and use the velocity coordinates ε = (m/2)(v/vth)
2 + qδϕ/(eT ) and
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FIG. 11. Ion and electron contributions to the total bootstrap current for the case CIRC2, a

circular limiter configuration in the local regime. The ion contribution to the bootstrap current is

noticeable only at the pedestal foot (ψN > 0.6). The maximum of the ion flow at ψN ≈ 0.67 has

important consequences for the passing electron flow [cf. Fig. 12 c)]. XGCa and NEO show good

agreement.

λ = µ/ε, where vth =
√
eT/m is the thermal velocity with the temperature T in eV, µ is

the magnetic moment, and δϕ = ϕ− ⟨ϕ⟩ is the poloidal variation of the electric potential.

In the following, all velocities are normalized to the thermal velocity vth, δϕ is normalized

to the temperature, the particle charge to the elementary charge, and the magnetic field B

to its minimum Bmin on each flux-surface. Since the result of Eq. (4) cannot depend

on a constant ϕ0 added to δϕ, we choose ϕ0 such that q(δϕ + ϕ0) ≥ 0 and use the gauge

δϕ→ δϕ+ϕ0. With σ being the direction of the parallel velocity, the corresponding Jacobian

is ∫
d3v = 2πv3thB

∑
σ

∫ ∞

0

dε ε

∫ λmax

0

σdλ

|v∥|
. (5)

The flux-surface average can be written as

⟨A⟩ =
∮
dθJA∮
dθJ

=

∮
dθJA
V ′ (6)

with an appropriate Jacobian J . When evaluating the flux-surface average numerically, the

Jacobian is given by the volume of the Voronoi cells around the vertices of the configuration

space mesh. By exchanging the order of the velocity and configuration space integrations in

Eq. (4), one obtains

jb = −2eπv4thBmin

∫ ∞

0

dε

∫ λmax

0

dλ ε

[∑
σ

1

V ′

∫
dθJB2δf

]
. (7)
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The boundaries of the integrals over θ are the bounce points ±θb defined by ϵ(1−λB)−qδϕ =

0 for trapped electrons and ±π for passing electrons. In the new velocity space coordinates,

the parallel and perpendicular velocities can be written as

v⊥ =
√
2ελB,

v∥ =
√

2[ε (1− λB)− qδϕ]. (8)

The definition of the bounce points follows immediately from the expression for v∥. Note

that the position of the bounce points depends on the potential. Therefore, particle trapping

may be modified significantly if qδϕ ∼ 1. This has been investigated by Chang in Ref. [44].

The boundaries of the λ integration are also energy dependent. Since we chose a gauge that

ensures qδϕ ≥ 0, the lower boundary is always 0. The upper boundary is given by

λmax ≡ max

(
0,

1

B

(
1− qδϕ

ε

))
(9)

at each vertex of the configuration space mesh. The trapped-passing boundary λc is the

minimum of λmax on each flux-surface. We now define

{δf} ≡ −2eπv4thBminε

[∑
σ

σ∫
dθJ

∫
dθJB2δf

]
, (10)

and use this quantity rather than δf to analyze the velocity space properties of the bootstrap

current. The same analysis could be performed for the ion distribution function, but is not

shown here. While the resulting ion current is correct, the trapped-passing boundary defined

above is only approximate because the ion orbit width is finite.

We begin with the analysis of the contributions from trapped and passing electrons in

the edge pedestal, which are obtained by evaluating the velocity space integral in Eq. (7)

with the proper boundaries. It has been known from the large aspect-ratio theories that

the passing particles carry most of the current. However, we find that this is not true at

low aspect ratio, where the passing particle fraction is small. Figures 12 a)-c) show the

contributions of trapped and passing particles to the electron current in the edge pedestals

of C-Mod, NSTX, and the circular case CIRC2. C-Mod has the lowest inverse aspect ratio

(ϵ = 0.31 at ψN ≈ 0.96) among these cases and, thus, the smallest but still significant trapped

particle region (ft = 0.67) in the edge pedestal. At the peak of the electron bootstrap

current, already one fourth of the total current is carried by trapped particles in the C-

Mod pedestal. At ψN ≳ 0.98 in the C-Mod case, the trapped particle contribution survives
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while the passing particle current plummets with increasing collisionality. In NSTX, the

trapped particle current dominates in the whole pedestal region because of the high trapped

particle fraction (ϵ = 0.68, ft = 0.86 at ψN = 0.954). The density and temperature profiles

become steeper towards the separatrix [cf. Fig. 9 d)], providing a stronger bootstrap current

drive. The passing particle contribution is reduced further toward the separatrix due to the

increased collisional friction.

It is interesting to note that the passing particle current in case CIRC2 [Fig. 12 c)] is

even inverted. Comparison with Fig. 11 shows that the minimum of the passing electron

current at ψN ≈ 0.67 coincides with a maximum of the ion current. Note that the opposite

signs of the ion and electron current mean that the ion and electron flows have the same

direction. This suggests that the drag due to the friction with the ion flow inverts only the

passing electron flow whereas friction cancels on average for trapped electrons.

By evaluating the integral in Eq. (7) only over the energy ε, one obtains the bootstrap

current as a function of ψN and λ, denoted by j̃b(ψN , λ), which allows for a more detailed

analysis of the trapped and passing particle currents. Figure 13 a) shows j̃(ψN , λ) at ψN =

0.49 (νe∗ = 1.7), ψN = 0.58 (νe∗ = 3.2), and ψN = 0.63 (νe∗ = 6.0) for case CIRC2. The

respective trapped-passing boundaries are indicated by vertical dotted lines. The trapped

and passing particle contributions to the bootstrap current are given by the area under the

curves of j̃ in the trapped and passing region. Two important observations can be made

immediately in Fig. 13 a). First, at small aspect ratio, the bootstrap current contribution

from the trapped region is not sharply concentrated around the trapped-passing boundary

λc as in case of large aspect ratio but rather exhibits a long tail deep into the trapped

region (In pitch-angle space ξ = v∥/v = (1− λ)1/2, the tail decays faster towards the deeply

trapped region). Naturally, the current must vanish towards λ = 1 because the deeply

trapped particles with bounce angles close to the outer midplane cannot carry current. Due

to the slower decay in the trapped region, the trapped particle current becomes significant at

small aspect ratio. Second, while the transition between the trapped and passing regions is

relatively smooth at ψN = 0.49 (where the electron collisionality is relatively low, νe∗ ∼ 1.7),

a sudden drop centered around λ = λc develops at ψN > 0.58 and ψN = 0.63, where

the electron collisionality is higher. The passing particle current even changes its sign at

ψN = 0.63 (νe∗ = 6.0). This phenomenon is due to the drag on the passing electrons exerted

by the oppositely flowing ions as shown in Fig. 12 c). Other simulations analyzed for the
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FIG. 12. Trapped and passing particle contributions to the (electron component of the) bootstrap

current for a) C-Mod (discharge 1120803014), b) NSTX (discharge 132543), and c) the circular

limiter case CIRC2. The trapped particle current is negligible only in the large aspect ratio limit.

Even in C-Mod, approximately 25% of the total electron current are provided by trapped electrons

at ψN ≈ 0.96. Due to the large trapped particle fraction in spherical tokamaks, trapped particles

dominate the bootstrap current in the pedestal region of NSTX. In case CIRC2, passing particles

dominate the bootstrap current in the core but trapped particles dominate at the maximum of the

current profile.

present work display analogous features.

In order to make certain that the decrease of the passing current fraction with the colli-

sionality is a universal phenomenon in different magnetic geometries, we evaluate the ratio of

the amplitudes αp ≡ j̃b(λ < λc) and αt = max[j̃b(λ > λc)], which are related to the trapped
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FIG. 13. a) Pitch-angle (λ) dependence of the electron component of the bootstrap current for

the circular limiter case CIRC2 on three different flux-surfaces. Vertical dotted lines mark the

boundary between passing (λ < λc) and trapped regions (λ > λc). Horizontal and diagonal dotted

lines indicate the mean amplitudes αp and αt in the passing and trapped regions that are connected

to the passing and trapped currents via Eq. (11). With increasing collisionality, the ratio αp/αt

decreases; αp becomes negative. b) αp/αt for various XGCa simulations of circular limiter and

realistic tokamak configurations. The plateau at small ν̂e = νe∗ϵ
3/2 indicates that the role of

trapped and passing particles is determined mainly by the sizes of the trapped and passing regions

in phase space. Decreasing αp/αt with increasing ν̂ indicates that collisions reduce the relative

importance of the passing electrons for the bootstrap current.

and passing particle currents via

jp = αpλc,

jt ≈
1

2
αt (1− λc) . (11)

Notice here that the trapped current is approximated as a triangle in λ-space. Dividing αp

by αt removes the dependence on the plasma gradients. Figure 13 b) shows a plot of αp/αt

versus ν̂e = νe∗ϵ
3/2, combining data from cases CIRC1, CIRC2, JET (cf. Sec. IIIA), C-Mod,

NSTX (this section), DIII-D (Sec. IIID) and ASDEX-Upgrade. For this plot, we used only

data points in the vicinity of the pedestal. This shows that collisions reduce the relative

contribution of the passing electrons to the bootstrap current in addition to the effect from

the sizes of the trapped and passing regions.
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C. Role of trapped and passing particles at large aspect ratio

In order to demonstrate the connection of our results to the conventional neoclassical

theories, we analyze the ratio jt/jp, and the width of the collisional boundary layer between

trapped and passing electrons using the XGCa simulation in JET geometry. In particular,

we verify the XGCa results against two results from local neoclassical theory in the large

aspect ratio limit. It is well known4, that, in the limit of large aspect ratio, the bootstrap

current is carried predominantly by the passing particles. The small contribution from the

trapped particles originates from a boundary layer between the passing and trapped region

in velocity space, which is due to collisional mixing. The width of this boundary layer is

approximately δξ ≈ (νe∗ϵ
3/2)1/3 (Ref. [4]), where ξ = (1 − λ)1/2 is a more commonly used

pitch angle variable. The trapped particle contribution to the bootstrap current is a factor

of ϵ smaller than the one from the passing particles4.

The pitch angle dependence of the bootstrap current, j̃b(ψN , ξ) is shown in Fig. 14

a) for the flux-surface ψN = 0.08, where ϵ = 0.08 and νe = 0.26. The trapped-passing

boundary is located at ξc = 0.38 ≈ (2ϵ)1/2, and the collisional boundary width is estimated

to be δξ ≈ 0.18. The estimated width of the boundary layer agrees reasonably with the

decay length of j̃b(ψN , ξ) in the trapped region. Figure 14 b) shows the ratio of trapped-to-

passing electron bootstrap current. In agreement with local neoclassical theory, jt/jp ≈ ϵ to

reasonable accuracy up to ψN ≈ 0.5 or ϵ ≈ 0.2. At ψN > 0.5, jt/jp becomes greater than

ϵ as the width of the collisional boundary layer becomes comparable to the width of the

passing particle region, δξp ≈ 1− (2ϵ)1/2.

D. Finite orbit width effects

In the edge pedestal of a tokamak, the ion orbit width ρb can easily be comparable to the

density and temperature gradient scale lengths Ln and LTi. When this happens, the small

orbit-width approximation used by local neoclassical codes and by analytic theories breaks

down and their accuracy becomes questionable. In the simulations using the C-Mod and

NSTX geometries that were discussed in the previous section, we found differences between

local and global simulations. Therefore, we address the importance of finite orbit-width

effects for the pedestal bootstrap current in this section.
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FIG. 14. a) Pitch-angle (ξ = (1 − λ)1/2) dependence of the electron component of the bootstrap

current for the modified JET case at ψN = 0.08, where ϵ = 0.08 and νe∗ = 0.26. The red vertical

dotted line marks the boundary between passing (ξ > ξc) and trapped regions (ξ < ξc), the blue

dotted line indicates the approximate extent of the collisional boundary layer into the trapped

region according to Ref. [4]. b) Ratio of trapped to passing electron current, jt/jp. At ψN < 0.5,

jt/jp ≈ ϵ can be seen, in agreement with the local neoclassical theories4. At ψN > 0.5, the width

of the collisional boundary layer becomes comparable to the width of the passing particle region

leading to deviations of jt/jp from ϵ.

In the previous section, we noted that the ion contribution to the bootstrap current is

small compared to the electron contribution. Due to the smallness of the electron orbit

width, one might be tempted to conclude from the absence of a sizable ion contribution to

jb that finite orbit-width effects cannot be important. We will show, however, that finite

orbit-width effects enter the electron flow indirectly via the radial electric field Er.

If one considers the source of the bootstrap current, it may seem peculiar at first sight

that the ion current is much smaller than the electron current. Since the electron orbit width

is a factor of (me/mi)
1/2 smaller than the ion orbit width but their thermal velocity is a

factor of (mi/me)
1/2 larger, the current drive of ions and electrons for given gradient appears

to be comparable when Ti ≈ Te. However, this argument does not hold in the presence of

a radial electric field Er, which is a direct consequence of the ion orbit motion, needed to

keep the plasma quasi-neutral. Since it is a radial force, the electric field drives a parallel

flow in the same way as a pressure gradient does. Because Er is in the same direction as

the pressure gradient, the radial electric field counteracts the ion parallel flow from ∇p but
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adds to the ∇p drive for electrons. This can be seen from the local neoclassical expression

for the parallel ion flow4

nu∥i = − I

mΩi

(
d⟨pi⟩
dψ

+ en
d⟨ϕ⟩
dψ

)
+K(ψ)B, (12)

where Ωi is the ion cyclotron frequency, pi is the ion pressure, and ϕ is the electrostatic

potential. Usually, the pressure and potential gradient terms – the ion diamagnetic and

E × B flows – tend to cancel, resulting in Er being in the same direction as the pressure

gradient. A similar expression can be derived for the electron flow but with the opposite sign

for the radial electric field term due to the negative electron charge. Therefore, the radial

electric field terms cancel in the local regime when the ion and electron flows are added to

calculate the current. This cancellation is exact only if the ion orbit width is small compared

to the gradient scale lengths. If ρb/LP ∼ 1, the orbit-averaged electric fields experienced by

ions and electrons differ, and the electric field term does not cancel any longer. Thus, the

finite orbit-width effects influence the bootstrap current indirectly via the electron current

due to the incomplete cancellation of the Er-drive terms.

Figure 15 illustrates the consequence of the electric field effect. It shows the ion and

electron contributions to the bootstrap current obtained from XGCa and NEO for the C-

Mod case that was discussed in Sec. III B [cf. Fig. 9 a) and b)]. At ψn < 0.94 (where

ρb/LTi ≈ ρb/Ln < 0.2), local neoclassical physics are valid. The ion and electron currents

of the local NEO and the global XGCa simulation agree very well. At ψN > 0.94, large

differences between XGCa and NEO arise although the radial electric field obtained with

XGCa was used as input for NEO. This is because, in contrast to a global code, the same

electric field acts on ions and electrons in a local neoclassical code regardless of the ion

orbit width. As a consequence, a local simulation cannot reproduce the ion and electron

currents of a global simulation when ρb/LP ∼ 1 as can be seen in Fig. 15. The plasma flow

calculation performed in a local code in an edge pedestal would be incorrect.

There is another finite orbit-width effect that can affect the ion flow directly. It can be

understood using the finite orbit-width expression for the ion thermal conductivity derived

by Chang45. Since ions experience different collision frequencies and safety factors on the

inner and outer legs of their orbits, the finite orbit width correction is proportional to

∆ψ

(
ν−1 dν

dψ
+ q−1 dq

dψ

)
,
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FIG. 15. Ion and electron contributions to the total bootstrap current for C-Mod (discharge

112080301434, non-local regime). The ion contribution to the bootstrap current found from XGCa

is small throughout the pedestal. At ψN > 0.94 ion and electron currents obtained from NEO

deviate significantly from XGCa. This deviation demonstrates the limit of local neoclassical theory

and simulation. At ψN > 0.95, the ratio of ion orbit width to the gradient scale lengths exceeds

0.5.

where ν is the ion collision frequency and ∆ψ the ion orbit width ρb in units of poloidal flux.

This correction is applied to the analytic fitting formula introduced in Sec. IV.

1. Assessment of the finite orbit-width effect from density and ion

temperature pedestals

We study the impact of the non-locality from the density and the ion temperature gra-

dients using a circular limiter configuration. The magnetic field geometry is identical to

the case CIRC2 discussed in Secs. III A and III B, but the density and temperature profiles

are chosen differently (still as tanh-type pedestals). In the cases CIRC2a and CIRC2b, the

bootstrap current is driven mainly by the ion temperature gradient while the density gra-

dient is sub-dominant (ρb/LTi ≈ 0.23, ρb/Ln < 0.03, ϵ = 0.49, νe∗ = 2.6 at ψN = 0.55

for CIRC2a, and ρb/LTi ≈ 0.28, ρb/Ln ≪ 1, ϵ = 0.42, νe∗ = 1.6 at ψN = 0.43 or

CIRC2b). The CIRC2b case examines a stronger ion temperature non-locality than the

CIRC2a case. In contrast, the density gradient dominates the current drive in the case

CIRC2c (ρb/LTi ≈ 0.05, ρb/Ln ≈ 1.3, ϵ = 0.55, νe∗ = 0.24 at ψN = 0.65). The current

profiles and the non-locality parameters ρb/Ln and ρb/LTi for cases CIRC2a, CIRC2b, and
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CIRC2c are shown in Figs. 16, 18, and 20.

The case CIRC2a exhibits a similar collisional reduction of the bootstrap current com-

pared to the Sauter formula as discussed in Sec. III B. Around the maximum of ρb/LT i

at ψN ≈ 0.5, the current measured in XGCa is lower than the current obtained from NEO

by approximately 10% of the maximum XGCa bootstrap current. Where the profiles are

in the local regime, XGCa and NEO agree well. For case CIRC2b, the deviation between

XGCa and NEO is up to 40% of the maximum XGCa current at the maximum of ρb/LT i

at ψN ≈ 0.47. In contrast, in the CIRC2c case, XGCa and NEO show good agreement with

a deviation of only 4% of the maximum XGCa current even at the maximum of ρb/LN in

spite of the very narrow density pedestal. There are large differences between the ion flows

from XGCa and NEO due to finite orbit-width effects (not shown). But because the ion

flow is significantly smaller than the electron flow, its influence on the total current is small.

Since the collisionality is low in case CIRC2c, the Sauter formula agrees with the XGCa

simulations as well.

Based on the findings in the cases CIRC2a, CIRC2b, and CIRC2c, we conclude that one

prerequisite for the occurrence of finite orbit-width effects in the bootstrap current is the

existence of a non-local ion temperature gradient. This observation shares commonalities

with Landreman et al.25, who found a finite orbit width correction to the bootstrap current

that is proportional to the product of density and ion temperature gradient in the case

ρb/Ln ∼ 1 and ρb/LT i ≪ 1.

2. Assessment of the finite orbit-width effect at different collisionality

In order to investigate the collisionality dependence of the finite orbit-width effect on the

bootstrap current, we ran three simulations using the geometry of DIII-D discharge 9633328

with artificial temperature profiles (all with tanh-type edge pedestals) that are shown in

Fig. 22 a). The pedestal top temperatures are 250, 500, and 1,000 eV. Ion (electron)

collisionalities νi∗ (νe∗) at the peaks of the corresponding bootstrap current profiles decrease

with increasing pedestal height and are approximately 3.7 (5.2), 1.4 (2.0), 0.5 (0.9). The

corresponding aspect ratios at the maximum bootstrap current are ϵm =0.36, 0.36 and 0.35.

As shown in Fig. 22 b), the case with the highest collisionality has the lowest bootstrap

current, and the one with the lowest collisionality has the largest bootstrap current. All
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FIG. 16. a) Bootstrap current profile in the mildly non-local ion temperature pedestal of case

CIRC2a, which uses the same magnetic field data as the circular limiter case CIRC2 (Fig. 7),

but the ion temperature pedestal is narrower. b) Ratio of the ion orbit width to the density and

ion temperature gradient scale lengths. As long as ρb/LTi ≲ 0.2, XGCa and NEO show good

agreement. The deviation between XGCa and NEO at ψN ≈ 0.5 is approximately 10% of the

maximum of the XGC bootstrap current.
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FIG. 17. Density and temperature profiles for the circular case CIRC2a.

three XGCa simulations exhibit much lower current than predicted by the Sauter formula.

The local simulations with NEO can account for some of that difference but still yield larger

current than XGCa, with the difference increasing as νe∗ decreases. The relative difference

between XGCa and NEO at Ti,top = 1 keV is 12.3% at ψN = 0.968. In contrast, the relative

difference between XGCa and NEO at Ti,top = 250 eV is only 5.3% at ψN = 0.982. Since

the non-local effect should become weaker at higher collisionality as the ion orbits become

narrower and are interrupted more frequently, this behavior is expected.
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FIG. 18. a) Bootstrap current profile in the stronger non-local ion temperature pedestal of the case

CIRC2b, which uses the same magnetic field data as the circular limiter case CIRC2 (Fig. 7). The

ion temperature pedestal was made narrower than in the case CIRC2a to enhance finite orbit-width

effects. b) Ratio of the ion orbit width to the density and ion temperature gradient scale lengths.

The ion temperature gradient is dominant at the density pedestal top. The deviation between

XGCa and NEO at ψN ≈ 0.47 is approximately 40% of the maximum of the XGCa bootstrap

current.
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FIG. 19. Density and temperature profiles for the circular case CIRC2b, which exhibits a stronger

non-locality in the ion temperature gradient than the case CIRC2a.

IV. IMPROVEMENT OF THE SAUTER FORMULA

We use the results of our XGCa simulations to improve Sauter’s formula for non-local

edge pedestals by introducing a few correction factors. The first correction is constructed

such as to reproduce the collisional damping of the passing electron current discussed in
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FIG. 20. a) Bootstrap current profile in the strongly non-local density pedestal of the case CIRC2c,

which uses the same magnetic field data as the circular limiter case CIRC2 (Fig. 7), however, with

stronger current drive from the density gradient than the ion temperature gradient. b) Ratio of the

ion orbit width to the density and ion temperature gradient scale lengths. The ion temperature

gradient is very small compared to the density gradient. Despite the narrow density pedestal, the

deviation between XGCa and NEO at ψN ≈ 0.65 is only approximately 4% of the maximum of

the current profile. The result implies that the finite orbit width-effect is mostly caused by the ion

temperature gradient.
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FIG. 21. Density and temperature profiles for the circular case CIRC2c with the density gradient

dominating the bootstrap current drive.

Sec. III B. The second correction accounts for the finite orbit-width effects as seen in Sec.

IIID. Finally, the third correction is to restore the correct asymptotic behavior in the limit

νe∗ ≫ 1.

Our modifications are based on the Sauter formula14, which expresses the bootstrap
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FIG. 22. Collisionality scan using DIII-D geometry. a) Assumed density and temperature profiles

in DIII-D geometry with pedestal top temperatures of Ti,top ≈250, 500, 1,000 eV. b) Correspond-

ing bootstrap current profiles. With increasing pedestal height and decreasing collisionality, the

difference between the bootstrap currents obtained with XGCa and NEO increases due to the less

frequent interruptions of the ion orbits. The relative differences between the maxima of the XGCa

and NEO bootstrap current profiles are 5.3% for Ti,top ≈ 250 eV, 6.3% for Ti,top ≈ 500 eV, and

12.3% for Ti,top ≈ 1,000 eV. The reduction of jb compared to the Sauter formula can no longer be

explained by the local collisional effect alone as discussed in Sec. III B.

current jb as

jb ≡
⟨
j ·B
B0

⟩
= −Ipe

B0

(
L31

P

pe

d lnP

dψ
+ L32

d lnTe
dψ

+ L34αi
Ti
ZTe

d lnTi
dψ

)
. (13)

In this formula, ψ is the poloidal magnetic flux, I(ψ) = RBφ, B0 is the magnetic field on the

magnetic axis, Z is the ion charge number, Ti/e are the ion and electron temperatures, pe is

the electron pressure, and P is the total pressure. The coefficients L3j and αi are defined in

App. A.

A. Collisional correction in the local regime

For the correction of the Sauter formula at practical edge collisionalities (νe∗ < 100), we

multiply Eq. (13) by a Padé term of the form

βcol ≡
1 + c1c2ν

2
e∗

1 + c1ν2e∗
. (14)

In the limit of infinite collisionality, βcol → c2. For simplicity, we choose c2 to be a constant.

Therefore c1 must depend on the aspect ratio or, alternatively, the trapped particle fraction:
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hence, c1 = c1(ϵ). By examining the collisional XGCa simulation results, c2 ≈ 0.15 was

identified as initial guess. For convenience, we divide the XGCa data set into four aspect

ratio bins covering the simulation data from C-Mod and ASDEX-Upgrade (0.28 ≤ ϵ ≤

0.322), modified DIII-D (0.352 ≤ ϵ ≤ 0.362, circular cases (0.4 ≤ ϵ ≤ 0.55), and NSTX

(0.6 ≤ ϵ ≤ 0.72). For each of the bins, we varied c1 using Newton’s method to minimize

the difference between the modified formula and the XGCa data. Reasonable agreement

between the modified formula and XGCa is obtained for collisional cases by describing the

aspect ratio dependence of c1 using two hyperbolic tangent functions

c1(ϵ) = 0.5

{[
(a1 − b1) tanh

(
2(ϵ− ϵc,1)

w1

)
+ (a1 + b1)

]
−
[
(a2 − b2) tanh

(
2(ϵ− ϵc,2)

w2

)
+ (a2 − b2)

]}
(15)

with a1 = a2 = 0.044, b1 = 0, b2 = 0.006, ϵc,1 = 0.15, ϵc,2 = 0.51, w1 = 0.1, w2 = 0.15, and

c2 = 0.15 as initial guess. Note that the ϵ-dependence of c1 for ϵ < 0.28 is heuristic, chosen

to ensure that βcol becomes 1 in the limit of high aspect ratio. After all the corrections

mentioned above are added to the Sauter formula, these coefficients are readjusted using the

values described here as initial guess.

B. Finite orbit-width corrections

During the numerous attempts to fit an analytic expression to the XGCa bootstrap cur-

rent data in the non-local regime, we found that the finite orbit-width corrections associated

with steep ion temperature pedestals need to be added at two different places. One correc-

tion factor damps the overall strength of the bootstrap current in addition to the collisional

damping factor βcol. Therefore, we define βdamp = βcol + β∇Ti . The second correction factor

modifies the transport coefficient L34.

The best fit to the XGCa bootstrap current data is found for β∇Ti in the form

β∇Ti ≡ − Λ1νi∗
1 + Λ2ν2i∗ + Λ3ν4i∗

(1− ϵ)Λ4∆Λ5
R

∆ψ

Ti

∣∣∣∣dTidψ

∣∣∣∣ , (16)

where ∆R ≡ dRc/dRmin is the Shafranov shift, and ∆ψ is the ion orbit width ρb in units of

poloidal flux. The Shafranov shift reflects the dependence of the flow shear on ∇ψ at the

outer midplane, and the aspect ratio term accounts for the observation that the deviations

between XGCa and the Sauter formula becomes smaller with decreasing aspect ratio. A
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more detailed study, which is not discussed here, shows that the physical origin of Eq. (16)

is the viscous damping of the ion flow due to finite ion orbit-width. Again, the coefficients

Λi will be determined by a fitting procedure after all the corrections have been added to Eq.

(13).

The finite orbit-width correction to L34 is found to be similar to the correction of the

neoclassical heat conductivity derived by Chang45. It is proportional to

∆ψ

(
ν−1 dν

dψ
+ q−1 dq

dψ

)
dTi
dψ

. (17)

This correction reflects the different collision frequencies and safety factors, that ions expe-

rience between the inner and outer legs of the ion orbits. We modify the L34 term in Eq.

(13) as follows:

L34αi
1

ZTe

dTi
dψ

→ L∆b
34 αi

1

ZTe

dTi
dψ

=

L34αi
1

ZTe

dTi
dψ

{
1− 2∆ψ

(
−3

2
L−1
Ti + L−1

n + L−1
q

)}
. (18)

Here, L−1
X ≡ X−1dX/dψ is the gradient scale length of X in units of poloidal flux.

C. Correction of the asymptotic behavior in the collisional limit

A closer look at the polynomial dependence of the coefficients L3j defined in Eq. (A8) on

the trapped particle fractions f 3j
t,eff reveals a minor weakness of the Sauter formula. Accord-

ing to Hinton and Hazeltine4, and other theories, the coefficients L3j must be proportional

to ν−2
e∗ in the collisional regime νe∗ ≫ 1. But the leading order term in Eq. (A8) decays

as ν−1
e∗ in the limit νe∗ ≫ 1. Therefore, the Sauter formula will always yield systematically

too high predictions for the bootstrap current in the strongly collisional limit. We note here

that Sauter’s coefficients were fitted to the results of numerical simulations for a practical

range of collisionalities and were not intended for impractically high νe∗.

In order to correct the asymptotic behavior of the Sauter formula in the strongly col-

lisional limit, we blend the Sauter formula with a bootstrap current formula by Helander

and Sigmar46 – in the following referred to as “Helander formula” – using the viscosity co-

efficients for the collisional regime by Hirshman and Sigmar47. The Helander formula was

derived for arbitrary aspect ratio and has the correct asymptotic behavior. Neglecting the
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loop voltage (E∥ = 0), Eq. (12.51) in Ref. [46] can be expressed as

jb ≡
⟨
j ·B
B0

⟩
= −Ipe

B0

(
L
(h)
31

P

pe

d lnP

dψ
+ L

(h)
32

d lnTe
dψ

+ L
(h)
31 α

(h)
i

Ti
ZTe

d lnTi
dψ

)
(19)

with the coefficients L
(h)
31 , L

(h)
32 , and α

(h)
i defined in App. B. Notice that L

(h)
34 = L

(h)
31 .

In order to avoid confusion, we will denote the coefficients L3j in the original Sauter

formula by L
(s)
3j in the remainder of this section. In the limit of infinite collisionality, the

leading order terms in L
(h)
31 and L

(h)
32 are indeed O(ν−2

e∗ ) as predicted in Ref. [4]. In order to

correct the asymptotic behavior of coefficients of the Sauter formula, we multiply them by

a Padé factor of the form

γ3j =
1 + c3νe∗
1 + c4ν2e∗

. (20)

For νe∗ ≫ 1, γ3j becomes c3/(c4νe∗). If we denote the leading order terms of the coefficients

L3j in the collisional limit as L
(1)
3j and L

(2)
3j for terms O(ν−1

e∗ ) and O(ν−2
e∗ ), respectively, the

obvious choice of c3 and c4 is

c3 = 1,

c4 =
L
(s,1)
3j νe∗

L
(h,2)
3j ν2e∗

. (21)

However, this choice does not control at which νe∗ the bootstrap current coefficients switch

to the asymptotic behavior of Helander’s coefficients. Therefore, we multiply c3 and c4 by a

common factor c5, which cancels in the collisional limit, but makes sure that c4c5ν
2
e∗,c = 1 at

the critical collisionality at which we wish to place the transition to Helander’s coefficients.

Since the correction terms βcol, β∇Ti , and L
∆b
34 improve the accuracy of the Sauter formula

sufficiently, we place the transition between the Sauter and the Helander formula at colli-

sionalities higher than those in our simulations, where the leading order term L
(h,2)
31 becomes

dominant, i.e. |L(h,4)
31 |/L(h,2)

31 = 10−2. Thus, the correct asymptotic behavior is ensured by

the substitution L
(s)
3j → γ3jL

(s)
3j . The final interpolation coefficients are

γ3j =
1 + c5νe∗

1 + c5(L
(s,1)
3j /L

(h,2)
3j )νe∗

,

c5 =
L

(h,2)
31 (νe∗,c)

L
(s,1)
31 (νe∗,c)νe∗,c

. (22)

The ion flow coefficient αi is a constant in the strongly collisional limit. Therefore, the
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interpolation coefficient for αi is defined as

γα =
1 + c5ν

2
i∗

1 + c5(α
(s,0)
i /α

(h,0)
i )ν2i∗

. (23)

Explicit expressions for L
(s,1)
3j , L

(h,2)
3j , α

(s/h,0)
i , and νe∗,c are given in App. B.

One further complication in this interpolation is a singularity in L
(s,1)
31 arising from this

coefficient’s dependence on the collisionless trapped particle fraction [cf. Eq. (A9)]. The

denominator of f 31
t,eff contains the term (1− ft)νe∗/Z, which vanishes for ft = 1 and makes

L
(s)
31 of order ν

−1/2
e∗ instead of ν−1

e∗ . This causes a singularity in L
(s,1)
31 . To avoid this singularity,

we choose to modify f 31
t,eff slightly to

f 31
t,eff =

ft
1 + (1− 0.1ft)

√
νe∗ + 0.5(1− 0.99ft)(νe,∗/Z)

. (24)

The deviation of the resulting L
(s)
31 from the original definitions in Eqs. (A8)-(A9) is largest

at Z = 1 and high collisionality. However, for νe∗ as high as 50, it is less than 3%. This

is perfectly acceptable taking into account the fact that the correction factor γ31 starts to

become dominant at this collisionality.

D. Improved bootstrap current formula

Combining all of our modifications, the modified Sauter formula becomes

jb =− βdamp
Ipe
B0

{
γ31L31

P

pe

dP

dψ
+
γ32L32

Te

dTe
dψ

+ (γ34L34)(γααi)
1

ZTe
{1− 2∆ψ

(
−3

2
L−1
Ti + L−1

n + L−1
q

)}
dTi
dψ

}
. (25)

To optimize the agreement of this modified formula with XGCa, we adjusted the free pa-

rameters in βdamp [Eqs. (14) and (16)] using a genetic algorithm optimization. The goal

of this process is to minimize the deviation of the bootstrap current predicted by Eq. (25)

from the XGCa results. We define this deviation as

δj ≡ j
(formula)
b − j

(XGCa)
b

j
(XGCa)
b

. (26)

The fitness function used to quantify the quality of a given parameter set was chosen to be

Γ =
√

Var(δj)
(
1 + 10 δj

)
, (27)
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where δj is the arithmetic mean of δj. The inclusion of the mean error in the fitness function

ensures that the optimization routine prefers parameter sets with lower mean error over those

with higher mean error if their standard deviations are identical. In order to exclude small

values of jb from the optimization, all the data points with jb < max(jb)ped/2 are discarded.

The fitting procedure converged to the following parameters:

c2 = 0.2947, a1 = a2 = 0.0488, b1 = 0, b2 = 0.0086,

ϵc,1 = 0.15, ϵ2,c = 0.5099, w1 = 0.1, w2 = 0.15,

Λ1 = 19.1702, Λ2 = 1.9056, Λ3 = 0.0106, Λ4 = 2.994, Λ5 = 0.9958. (28)

The new formula Eq. (25) reproduces the numerical results from XGCa much better

than the original Sauter formula, Eq. (13), or Koh et al.’s formula21. Comparisons between

XGCa results, NEO results, Eq. (13), and Eq. (25) are shown in Figs. 7-9, and Figs. 16-20.

The improved quality of our modified formula is illustrated also in Figs. 23 a) and b), which

show the bootstrap currents from the Sauter and the modified Sauter formula plotted versus

the numerical result from XGCa. Large deviations from the diagonal line, which marks the

line of exact agreement, can be observed for the Sauter formula. The average relative error

of the original Sauter formula is δj = 23.8% with a standard deviation of σ = 26.1%. The

modified formula deviates from the numerical results on average by only δj = 1.4 ·10−3 with

σ = 4.5%.

V. SUMMARY AND CONCLUSIONS

The present numerical study elucidates the mechanisms that determine the bootstrap

current in the steep edge pedestal plasma conditions. Using the numerical data obtained

with the neoclassical codes XGC0, XGCa, and NEO, we analyzed the contributions from

ions and electrons, and from trapped and passing particles. We investigated the non-local

effects introduced by edge pedestal widths being comparable to the ion orbit width, and we

studied the limits of local neoclassical theory. Based on the numerical results of XGCa, we

modified the Sauter formula14 to improve its accuracy significantly for parameters relevant

to present day tokamak experiments.

Koh et al.’s modification of the Sauter formula21 needed to be re-investigated because a

benchmark of the old version of XGC0 that was used to develop that formula and the newly
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FIG. 23. Statistical accuracy of Eqs. (13) and (25) as compared to the XGCa result. The horizontal

axis represents the results from XGCa, the vertical axis is the result of the bootstrap formulas.

The dotted lines indicate the σ and 3σ intervals. Our modified formula fits the numerical results

obtained with XGCa significantly better than the Sauter formula.

developed gyrokinetic neoclassical code XGCa identified a small inaccuracy in the momen-

tum conservation of the XGC0 collision operator. Even though the degree of inaccuracy

was small, it had a noticeable impact on the electron current due to the smallness of the

electron mass. Since this inaccuracy increased the bootstrap current, the enhancement of

jb in spherical tokamaks reported by Koh et al. disappeared in XGC0 simulations after the

collision operator had been corrected. Cross-verification of XGCa, new XGC0, and NEO

[Figs. 6-8] in the local regime (ρb ≪ L∇) demonstrated excellent agreement in the bootstrap

current.

In the collisional regime, the Sauter formula has been found to overestimate the bootstrap

current significantly even in the local regime, similar to reports in Refs. [15 and 21]. A

detailed analysis of the velocity-space properties of the bootstrap current in Sec. III B

revealed that this deviation is caused by friction of the passing electron current with the

ions at collisionalities νe∗ > 1. As a result of this friction, the passing electron current

is reduced, and the trapped electrons carry the majority of the total bootstrap current in

the pedestal. At high enough collisionality this phenomenon occurs even in the edge of

conventional aspect ratio tokamaks. Most of the current is usually carried by electrons

rather than ions. We observe non-negligible ion contributions only in the steepest part of

the edge pedestal when the diamagnetic and E ×B flows do not cancel. In these cases, the

flow of the passing electrons may even be opposite to the total bootstrap current.
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The width of the edge pedestal in H-mode can become comparable to the ion orbit

width, and the approximations upon which the local neoclassical analyses are based break

down. Therefore, we investigated the non-local effects in the tokamak edge by comparing

results from local (NEO) and global (XGCa) calculations for narrow edge pedestals in Sec.

IIID. While agreement between the local and global simulations is excellent in the local

regime, differences appear in the non-local regime. Usually, the current measured in the

local simulation is larger than the one from the global simulation in the steep edge pedestal.

The radial electric field is key to understanding how the non-locality affects the bootstrap

current. In the local regime, the effect of Er on the ions and electrons is the same and

cancels in the bootstrap current. Moreover, ions experience quite different forces (from ∇p,

Er, friction, etc.) on the inner and outer legs of their orbits when the ion orbit width

is comparable to the gradient scale lengths. In the end, the orbit average of those forces

determines the kinetic equilibrium. Thus, the plasma flow calculated from a local equation

is inaccurate in the edge pedestal as demonstrated in Fig. 15. Most of the finite orbit-width

effects in the bootstrap current arise from steep ion temperature gradients and not from

steep density gradients.

Based on the results of the XGCa simulations discussed in this work and the insights

gained from the analysis of collisional and non-local effects, we developed a new modification

to the Sauter formula that reproduces our numerical results for C-Mod, DIII-D, ASDEX-

Upgrade, JET, and NSTX geometry with much higher accuracy than the original Sauter

formula. In addition, we corrected the asymptotic behavior of the Sauter formula in the fluid

limit. In the steep edge pedestal, the local NEO results overestimate the bootstrap current

by up to 15% when compared to the XGCa results. The Sauter formula over-estimates the

bootstrap current much more.

Possible deleterious effects of using a linearized collision operator in the steep edge

pedestal has not been investigated in the present work.
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Appendix A: Coefficients of the Sauter bootstrap current formula

The factor αi in Eq. (13) in the term proportional to the ion temperature gradient is

given by

αi ≡
[
α0 + 0.25(1− f 2

t )
√
νi∗

1 + 0.5
√
νi∗

+ 0.315ν2i∗f
6
t

]
1

1 + 0.15ν2i∗f
6
t

(A1)

α0 ≡ − 1.17 (1− ft)

1− 0.22ft − 0.19f 2
t

. (A2)

The collisionless trapped particle fraction ft is defined by

ft ≡ 1− 3

4

⟨
B2
⟩ ∫ 1/Bmax

0

λdλ⟨√
1− λB

⟩ , (A3)

and the ion and electron collisionalities by

νi∗ =
e2

12π3/2ϵ20

qRniZ
4 ln Λii

T 2
i ϵ

3/2
, (A4)

νe∗ =

√
2e2

12π3/2ϵ20

qRneZ ln Λe
T 2
e ϵ

3/2
, (A5)
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where q is the safety factor, ni/e are the ion and electron densities, ϵ is the inverse aspect

ratio, and temperatures are in eV. The Coulomb logarithms in Eqs. (A4) and (A5) are

lnΛii = 30− ln

(
Z3

√
ni

T
3/2
i

)
, (A6)

lnΛe = 31.3− ln

(√
ne
Te

)
. (A7)

The coefficients L31, L32, and L34 are14

L31 = F31

(
X = f 31

t,eff

)
=

(
1 +

1.4

Z + 1

)
X − 1.9

Z + 1
X2 +

0.3

Z + 1
X3 +

0.2

Z + 1
X4,

L32 = F32,ee

(
X = f 32,ee

t,eff

)
+ F32,ei

(
Y = f 32,ei

t,eff

)
,

F32,ee(X) =
0.05 + 0.62Z

Z(1 + 0.44Z)

(
X −X4

)
+

1

1 + 0.22Z

[
X2 −X4 − 1.2

(
X3 −X4

)]
+

1.2

1 + 0.5Z
X4,

F32,ei(Y ) =
0.56 + 1.93Z

Z(1 + 0.44Z)

(
Y − Y 4

)
+

4.95

1 + 2.48Z

[
Y 2 − Y 4 − 0.55

(
Y 3 − Y 4

)]
+

1.2

1 + 0.5Z
Y 4,

L34 = F31

(
X = f 34

t,eff

)
(A8)

with the effective collisional trapped particle fractions f 3j
t,eff (j = 1, 2, 4)

f 31
t,eff =

ft
1 + (1− 0.1ft)

√
νe∗ + 0.5(1− ft)(νe,∗/Z)

,

f 32,ee
t,eff =

ft

1 + 0.26(1− ft)
√
νe∗ + 0.18(1− 0.37ft)(νe∗/

√
Z)
,

f 32,ei
t,eff =

ft
1 + (1− 0.6ft)

√
νe∗ + 0.85(1− 0.37ft)νe∗(1 + Z)

,

f 34
t,eff =

ft
1 + (1− 0.1ft)

√
νe∗ + 0.5(1− 0.5ft)(νe,∗/Z)

. (A9)

Appendix B: Coefficients for the improved bootstrap current formula

By comparing the definition of the Helander formula from Eq. (12.51) in Ref. [46] to

our definition in Eq. (19), one can identify L
(h)
31 = d1/D and L

(h)
32 = d2/D. The friction

coefficients lij are given in the appendix of Ref. [46]. They are evaluated using the approx-

imation me/mi → 0. To evaluate L
(h)
31 , L

(h)
32 and α

(h)
i , we use the viscosity coefficients µsj
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for the collisional regime calculated by Hirshman and Sigmar47, given by Eqs. (4.20)-(4.22)

and (4.31)-(4.40) therein. We express the viscosity coefficients as

µij = cijniTiτii, µej = cej(Zni)Teτee, (B1)

where j = 1, 2, 3, and the collision frequencies are defined in Eq. (4.7) in Ref. [47]:

1

τss′
=

√
2ns′Z

2
sZ

2
s′e

4 ln(Λ)

12π3/2ϵ20
√
ms(eTs)3/2

. (B2)

The comparison of Eqs. (A4) and (A5) with Eq. (B2) yields the ion and electron collision

times

τii =
qR

νi∗ϵ(3/2)
√

2eTi/mi

, τee =
qRZ

νe∗ϵ(3/2)
√
eTe/me

. (B3)

Also in the limit of me/mi → 0, the coefficients csj are

ci1 = 1.357,

ci2 = 2.192,

ci3 = 6.919,

ce1 =
(10Z3/12)(408 + 289.914Z3)

192 + 425.678Z3 + 178Z6
,

ce2 =
(10Z3/12)(912 + 468.105Z3)

192 + 425.678Z3 + 178Z6
,

ce3 =
(10Z3/12)(2592 + 1477.85Z3)

192 + 425.678Z3 + 178Z6
.

Following Ref. [46], we define the geometry coefficient cB by

µ̂sj =
3⟨(b · ∇B)2⟩

⟨B2⟩
µsj = cBµsj. (B4)

After substituting these coefficients in Helander’s formula and evaluating the limit νs∗ ≫ 1,

we obtain the leading terms

L
(h,2)
31 =

cBq
2R2

0Z
2((4

√
2 + 13Z)ce1 + 6Zce2)

4(
√
2 + Z)ϵ3ν2e∗

,

L
(h,2)
32 =

cBq
2R2

0Z
2((4

√
2 + 13Z)ce2 + 6Zce3)

4(
√
2 + Z)ϵ3ν2e∗

,

α
(h,0)
i =

ci2
ci1
. (B5)
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Using the effective trapped particle fraction from Eqs. (A9) and (24), the leading order

terms of L
(s)
3j become

L
(s,1)
31 =

2ftZ(2.4 + Z)

(1 + Z)(1− 0.99ft)νe∗
,

L
(s,1)
32 =

ft

(
0.05+0.62Z

0.18−0.0666ft

√
Z − 0.56+1.93Z

(0.85−0.3145ft)(1+Z)

)
(1 + 0.44Z)Zνe∗

,

L
(s,1)
34 =

ftZ(2.4 + Z)

(1 + Z)(0.5− 0.25ft)νe∗
,

α
(s,0)
i = 2.1. (B6)

The critical collisionality νe∗,c needed for the interpolation factors γ
(s)
3j is obtained from

the relation |L(h,4)
31 |/L(h,2)

31 = 10−2, which yields

νe∗,c =
5
√
cBqR0Z

ϵ3/2

√
a

b
,

a = 32c2e1 + 8
√
2
(
13c2e1 + 9ce1ce2 + 2c2e2

)
Z

+
[
(13ce1 + 9ce2)

2 + 7c2e2 + 6ce3 (6ce1 + 4ce2)
]
Z2,

b = 6ce2Z
(√

2 + Z
)
+ ce1

(
8 + 17

√
2Z + 13Z2

)
. (B7)
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