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Abstract

In this paper we propose a novel model of the ripple produced in different contexts involving switching power electronics. The
novelty of this model is that the nonsmooth waveform characterizing the ripple is captured by a suitable hybrid dynamics
performing state jumps at the switching instants. In addition to showing that this model is effective at representing the
ripple waveform, we propose two hybrid schemes ensuring asymptotic observation of the ripple waveform, one of them using
knowledge of the switching instants and a second one without knowledge of the switching instants. Simulation results illustrate
the effectiveness of the proposed hybrid observation laws.

Key words: hybrid dynamical system, hybrid observer, power system, Tokamak plasma, ripple

1 Introduction

Many engineering applications require power electronics
in their actuators and often these power electronics are
equipped with converters from AC to DC power supply.
These converters typically arise from switching electron-
ics that automatically select the maximum voltage dif-
ference among the available alternating waveforms, so
to obtain an almost direct current at the output (see,
e.g., the description in Section 2). Similarly, DC motors
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are often equipped with split ring commutators on their
shaft, so that the maximum available torque is gener-
ated by the rotor coils that are instantaneously (almost)
orthogonal to the stator magnetic field. In both these
cases, the desired constant output is affected by a pe-
culiar periodic nonsmooth disturbance, typically called
“ripple”, whose nonsmooth points correspond to the in-
stants of commutation of the electronic components.

Ripple disturbances may have damaging effects on con-
trol design, not only because they affect the actuation
signal (like in a DC motor), but also because they often
affect the power supply, thus possibly affecting all sensor
measurements due to the magnetic coupling. This phe-
nomenon is especially seen in high-power applications
such as Tokamak plasmas control [1]. One of the impor-
tant features of this disturbance is that the frequency of
the ripple is typically a known parameter with little un-
certainty, because it is a multiple of the utility frequency
in the electrical power grid, which is in turn tuned very
finely to the values of either 50 or 60 Hz. Due to this fact,
it appears natural to address the problem of ripple esti-

Preprint submitted to Automatica



mation and rejection using linear [2] or nonlinear [3, Ch.
8] regulation theory.

The peculiar non-smoothness of ripple disturbances
however makes it less prone to be addressed with clas-
sical continuous-time approaches and makes it an in-
teresting problem to be tackled using hybrid regulation
theory (see, e.g., the preliminary work in [4] and the
more recent results in [5–8] and references therein).
Those works, as well as the approach that we adopt
here, are based on the novel framework for the descrip-
tion of nonlinear hybrid dynamical systems in [9, 10].
The peculiarity of hybrid regulation theory is that, as
extensively discussed in the above cited works, the state
of the exosystem experiences jumps, therefore the hy-
brid internal model implemented in the regulator (or
in the observer, as in our case) must jump at suitable
times. Two main approaches naturally arise: that one
of the situation where the jump times (or the clock as
mentioned in [11]) is available for measurement – which
in our case would correspond to having access to the
switching instants of the power electronics – and that
one where the jump times are not available. Based on
these two main situations we give here two solutions
to the estimation of the ripple signal, by introducing
suitable hybrid observation laws. Our approach is much
inspired by the recent results in [12] and the machinery
given in [13, Thm 2] (also reported in [14, Lemma 1]
with a notation that resembles more closely the situa-
tion addressed here). We would also like to emphasize
that a hybrid approach to tackle this problem is not
compulsory, because the ripple disturbance is indeed an
absolutely continuous function and one may find ways
to generate with a nonsmooth continuous time approach
(see, e.g., the results in [15] where a continuous-time
exosystem is built that generates the absolute value of
a cosine waveform). Our results are also close in nature
to those reported in [5, §4.2], where a hybrid exosystem
generates the absolute value of a cosine waveform. How-
ever, as compared to that result, we focus here on ripple
signals that perform commutations at phases different
from ±π/2. A preliminary version of this paper was
presented in [16]. Here, as compared to [16], we give the
proofs of our two main theorems, and we discuss the
application of the proposed scheme to the experimental
signals of the JET Tokamak, whereas only simulation
results were given in [16].

The paper is organized as follows: in Section 2 we in-
troduce the hybrid model for the ripple generation and
present the estimation problem under consideration. In
Sections 3 and 4 we illustrate the two proposed estima-
tion schemes and state and prove their desirable proper-
ties. Finally, in Section 5 we illustrate the effectiveness
of our schemes by simulations.

2 A hybrid model for the ripple-induced noise
in measurement signals

In this section we will deal with the modelling of the
ripple through a hybrid system.

Let us consider a simple physical example where the
ripple arises, i.e. the three phase diode bridge rectifier
depicted in Figure 1. This device converts a three-phase
voltage to a mono-phase almost direct voltage, which
can be then applied, for example, to a load resistor. The
resulting voltage is almost direct because the logic of
conversion, which we are going to explain, is such that a
non smooth waveform, the ripple, is superposed to the
ideal direct voltage.

vAG

vBG

vCG

A

B

C

vP

vN

vo
LOAD

G

Figure 1. A three phase diode bridge rectifier for conversion
from AC to DC, which results in a waveform affected by a
ripple.

The valves in Figure 1 are ideal diodes, and the three
phase voltages have the form:

vAG = vA − vG = Vf sin
(
ωt+ θ0

)
vBG = vB − vG = Vf sin

(
ωt+ θ0 −

2π

3

)
vCG = vC − vG = Vf sin

(
ωt+ θ0 −

4π

3

)
,

(1)

whereG stands for ground. The following lemma is easily
derived.

Lemma 1 Given the supply in (1), the output voltage of
the converter in Figure 1 is

vo =
√

3Vf max
i∈Z

cos
(
ωt+ θ0 − i

π

3

)
. (2)

Proof. Without loss of generality, we can set θ0 = 0
in (1). Then, vo = vP − vN = vPG − vNG can
be determined using the known rules in electron-
ics that establish which diode is conducting among
more than one connected at cathode or anode. We
get then from standard results in circuit theory:
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vo = vPG − vNG =

= max
i∈Z

{
Vf sin

(
ωt− i2π

3

)}
−min

j∈Z

{
Vf sin

(
ωt− j 2π

3

)}
= max
i,j∈Z

{
Vf sin

(
ωt− i2π

3

)
− Vf sin

(
ωt− j 2π

3

)}
= Vf max

i,j∈Z

{
2 cos

(
ωt− (i+ j)

π

3

)
sin
(

(j − i)π
3

)}
=
√

3Vf max
i∈Z

{
cos
(
ωt− (2i+ 1)

π

3

)
︸ ︷︷ ︸

j−i=1

, cos
(
ωt− (2i+ 2)

π

3︸ ︷︷ ︸
j−i=2

)
,

− cos
(
ωt− (2i− 1)

π

3

)
︸ ︷︷ ︸

j−i=−1

,− cos
(
ωt− (2i− 2)

π

3

)
︸ ︷︷ ︸

j−i=−2

}

=
√

3Vf max
i∈Z

cos
(
ωt− iπ

3

)
,

where the last step can be carried out via graphical in-
spection. �

Remark 1 In Figure 2 we depicted the three line-to-
line voltages and their opposites in sign. The maximum
among the six voltages is then exactly the expression vo
in (2) and is represented in Figure 2 by a bold dashed
line. y
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Figure 2. Line-to-line voltages in a three-phase diode bridge
rectifier.

We propose below a different characterization of the rip-
ple, based on a hybrid model. We will notice in Propo-
sition 1 how this formulation can represent the physical
example that we have just introduced. Consider the fol-
lowing hybrid model:

ẋr =

[
0 −ω
ω 0

][
xr1

xr2

]
= Arxr

˙̄b = 0,

(xr, b̄) ∈ C (3a)


x+
r =

[
1 0

0 −1

][
xr1

xr2

]
= Jrxr

b̄+ = b̄,

(xr, b̄) ∈ D, (3b)

where sets C and D are specified below, and we use the
following output equations:

yr = xr1 + b̄ =
[
1 0
]
xr + b̄ = Crxr + b̄ (4a)

θ = ∠(xr). (4b)

Output yr in (4a) is the measured signal and θ is not
available for measurement (even though we may assume
knowledge of its transition times). Function ∠(·) returns
the phase of the vector at the argument, namely for each
xr 6= 0 it is the only angle θ ∈ [−π, π) satisfying xr =

|xr|
[

cos(θ)
sin(θ)

]
, which is well defined for all xr satisfying

|xr| 6= 0. Note that function ∠(·) resembles the well
known function atan2(·, ·) used in the robotics context.

The jump and flow sets in (3) are defined as:

K = {(xr, b̄) : δ ≤ |xr| ≤ ∆, |b̄| ≤ ∆ with ∆ ≥ δ > 0}
(5a)

C = {(xr, b̄) : − π/6 ≤ θ ≤ π/6} ∩ K (5b)

D = {(xr, b̄) : θ = π/6} ∩ K (5c)

and are depicted in Figure 3, where we added a possible
solution to (3) flowing in C and jumping when it reaches
D. In C and D, we impose the intersection with set K in
order to exclude two extreme situations. (i) We choose
δ strictly positive, which may be arbitrarily small, be-
cause we need to ensure that the function in (4b) be well
defined; the case δ = 0 corresponds to no ripple at all.
(ii) We choose ∆ as a finite upper bound, which may
be arbitrarily large, because we assume the ripple to be
bounded. This allows us to deal with compact sets in
our design and to rely on useful results from [9, Ch. 7].
Nowhere in our design the knowledge of the values of δ
and ∆ is required.

xr2

xr1

∆

δ

D

K

C

Figure 3. Flow set, jump set and quantities δ, ∆ of set K. A
possible trajectory is depicted, with solid arrow for the flow
and dashed arrow for a jump.

Remark 2 If the ripple was not generated by a three
phase system, we would consider a different angle in
(5b) and (5c) instead of π/6. For example, for a 6-phase
or a 12-phase system the angle would be respectively
π/12 or π/24. y
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The following straightforward result motivates the study
carried out in this paper and hybrid model (3). Notice
that we constrain θ0 to be in the set [−π/6, π/6] because
any other value of θ0 could be shifted to this interval
without changing the resulting value of vo in (2).

Proposition 1 For any value of θ0 ∈ [−π/6, π/6] and
Vf > 0 in (2), there exist initial conditions xr(0, 0) =√

3Vf
[

cos θ0
sin θ0

]
and b̄(0, 0) = 0 such that the unique so-

lution to (3)–(5) has unbounded domain in the ordi-
nary time direction and satisfies yr(t, j) = vo(t), for all
(t, j) ∈ dom(yr).

Proof. We carry out the proof in polar coordinates that
are globally defined in C ∪D. First note that from stan-
dard polar coordinates representation of linear oscilla-
tors, output θ in (4b) evolves along flows according to

relation θ̇ = ω. Moreover, notice that the definition of
jump set in (5) and the jump law in (3b) ensures that as
soon as θ = π/6, one has (in polar coordinates):

(
|xr|

[
cos(π/6)

sin(π/6)

])+

= Jr|xr|
[

cos(π/6)

sin(π/6)

]

= |xr|
[

cos(−π/6)

sin(−π/6)

]
,

showing that |xr| remains constant and θ changes sign
across jumps. Therefore, each pair of consecutive jumps
witnesses a dwell time of exactly π/(3ω) which is the
time for θ to flow again from −π/6 to π/6. This shows
dwell time of all solutions and proves that the domain of
all solutions is unbounded in the ordinary time direction.
Uniqueness of solution follows from the fact that along
flows and across jumps, the flow and jump maps are
Lipschitz single valued functions, in addition to the fact
that no flow is possible from the jump set because the
flow map θ̇ = ω points out of C ∪ D (more formally, its
intersection with the tangent cone to C ∪ D is empty –
see [9, Prop. 6.10]).

Moreover, one easily gets that d
dt |xr| = 0 along flows.

Combining this relation with the fact that θ keeps revolv-
ing in the set [−π/6, π/6], where cos(θ) assumes its max-
imum, we get that all solutions starting from b(0, 0) = 0
satisfy:

yr(t, j)=xr1(t, j) = |xr(t, j)| cos(θ(t, j))

= |xr(0, 0)|max
i∈Z

cos
(
θ(0, 0) + ωt− iπ

3

)
.

(6)

Then it is readily seen from (6) that choosing the initial

conditions xr(0, 0) =
√

3Vf
[

cos θ0
sin θ0

]
and b̄(0, 0) = 0, the

(unique) solution to (3)–(5) satisfies the claim. �

In light of Proposition 1, the goal of this paper can be
formulated as that of asymptotic rejection of the zero-
mean disturbance

d(t) = vo(t)−
ω

2π

∫ 2π
ω

0

vo(τ)dτ = vo(t)−
3
√

3Vf
π

= yr(t, j)− b̄(t, j)−
3

π
|xr(t, j)|

so that

d(t) = xr1(t, j)− 3

π
|xr(t, j)|, (7)

where for the integral we used that ω
2π

∫ 2π
ω

0
vo(τ)dτ =

6ω
2π

∫ 2π
12ω−

θ0
ω

− 2π
12ω−

θ0
ω

√
3Vf cos(ωτ + θ0)dτ =

3
√

3Vf
π . The intro-

duction of a constant bias b̄ in in (3) and (4) serves the
purpose of modeling the situation where the measure-
ment yr(t) of a desirable signal σ(t) is affected by a dis-
turbance d(t), t ≥ 0. Then equation (7) shows that in
our hybrid ripple model, σ is represented by the con-
stant DC component b̄ + 3

π |xr| while the disturbance d

is the zero mean signal xr1 − 3
π |xr|. In particular, we

may assume signal σ to be slowly varying as compared
to the time-scale of d in (7), so that it can be consid-
ered as constant in our analysis, based on the observa-
tions of [10, Corollary 7.27]. We are using precisely this
robustness result in Section 5 when we are considering
JET experimental measurements where a ripple-shaped
disturbance is superimposed to a low frequency signal.

In the next two sections we propose two hybrid schemes
to estimate the disturbance d in (7) from the measure-
ment of yr. The first scheme addresses the simplified set-
ting where the switching instants of the hybrid model
are known and the second one relies on an estimator of
the output θ to remove this assumption.

3 Ripple estimation with knowledge of switch-
ing instants

If the switching instants of the ripple generator in (3)–(5)
are known, it is possible to design an estimator consist-
ing in a suitable Luenberger observer during flows and
that performs simultaneous jumps with the ripple gener-
ator (namely, the jump and flow sets remain unchanged
and do not depend on the observer states). This corre-
sponds to a simplified setting for the observer design.
The architecture of the proposed solution is sketched in
Figure 4.

The assumption that the switching instants of the hybrid
ripple generator are available to the ripple observer may
be verified, for example, if the observation algorithm
is somehow connected to the circuitry commanding the
switches of the rectifier in Figure 1, so that the switching
times are known. Another case is that of a torque ripple
generated by a DC motor where one may assume to
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Band-pass
filter

xr -
generator

b̄
yr

ŷr

ef

Signal with
ripple disturbance

er

Switching instants

Estimation
of xr d̂ = x̂r1 − |x̂r| 3π

Ripple estimate

Figure 4. Scheme with generator, filter and hybrid observer
of xr when the switching instants are known.

measure the shaft angle and then compute the switching
times based on the position of the split ring commutator.

Let us introduce the elements of Figure 4. The block
“Signal with ripple disturbance” corresponds to hybrid
system (3)–(5). To eliminate the effect of the bias from
yr, we introduce the band-pass filter:

F (s) =
s
ω(

1 + s
ω

)2 , (8)

with a double pole at the ripple frequency ω/(2π) that
helps isolating the dominant modes of the (nonsmooth)
signal to be estimated from the constant bias and the
high-frequency noise.

For the following derivations we use a state-space form
for filter (8), with matrices:

Af Bf
Cf

 =


0 1 0

−ω2 −2ω 1

0 ω

 . (9)

Then we augment equations (3) with the following flow
and jump equations comprising the observer and filter
dynamics.{

ẋf = Afxf +Bf (yr − ŷr)
˙̂xr = Arx̂r + Lef ,

(xr, b̄) ∈ C (10a){
x+
f = xf

x̂+
r = Jrx̂r,

(xr, b̄) ∈ D, (10b)

where the Luenberger gain is L = [ `0 ] and scalar ` is
a positive design parameter. We augment equation (4a)
with the other output equations:

ef = Cfxf
ŷr = Crx̂r

d̂ = x̂r1 − |x̂r|
3

π
,

(11)

where d̂ is the zero-mean estimate of the ripple signal
(7). Notice that the flow and jump sets are unchanged

and only depend on output θ in (4b). We emphasize that
to implement hybrid observer (10) no measurement of
θ is necessary, but it is necessary to know the switching
times, that is the times when the observer state x̂r should
jump.

To suitably analyze the overall system (3)-(5), (9), (10),
(11), let us introduce the error variable

e :=

[
x̃r

x̃f

]
:=

[
xr − x̂r

xf +A−1
f Bf b̄

]
, (12)

where x̃r is the error related to the ripple generation and
x̃f is a coordinate transformation of the state variables
of the filter chosen to satisfy Af x̃f = Afxf + Bf b̄. The
output equation

d− d̂ =
[
1 0 0 0

]
e+

3

π
(|x̂r| − |xr|), (13)

corresponding to the disturbance estimation error, read-
ily follows from expressions (7), (11) and (12).

It can be readily checked that the (hybrid) error dynam-
ics corresponds to

ė =

[
Ar −LCf
BfCr Af

]
e = Aee, (xr, b̄) ∈ C (14a)

e+ =

[
Jr 0

0 I2

]
e = Jee, (xr, b̄) ∈ D (14b)

thanks to the fact that ˙̄b = 0 and CfA
−1
f Bf = 0. Then

we can state the next result.

Lemma 2 Given dynamics (3)-(5), (9), (10), (11), and
the error dynamics (14), for any ` > 0, the selection
L = [ `0 ] in (10a) and (14a) is such that there exist P =
PT > 0 andH ∈ R1×4 such that (H,Ae) is an observable
pair and function

V (e) = eTPe (15)

satisfies

〈∇V (e), Aee〉 ≤ −eTHTHe, (xr, b̄) ∈ C (16a)

V (Jee)− V (e) = 0, (xr, b̄) ∈ D. (16b)

Proof. Consider the diagonal selection P =

[
1 0 0 0
0 1 0 0
0 0 ω3` 0
0 0 0 ω`

]
.

From condition ` > 0 it clearly follows P = PT > 0.
Moreover, using Ae in (14a), one obtains He(PAe) =

5



[
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −4ω2`

]
= −HTH, and H = [ 0 0 0 2ω

√
` ]. Then

(16a) readily follows. Regarding matrix H, observability
of pair (Ae, H) can be easily checked by computing the

observability matrix O = [HT (HAe)
T (HA2

e)
T (HA3

e)
T ]
T
,

whose determinant is −16ω9`2. Finally, equation (16b)
can be checked as follows:

V + − V = V (e+)− V (e) = V (Jee)− V (e)

= eTJTe PJee− eTPe

= eT


JTr Jr 0

0
p3 0

0 p4

 e− eTPe = 0

because JTr Jr = I2. �

Remark 3 Notice that the proof of Lemma 2 applies for
any selection of the jump instants. Therefore the scheme
in Figure 4 is effective at estimating ripple yr also when
the jump set D is empty, which boils down to a standard
linear disturbance rejection problem with an internal
model. Due to this fact, our scheme can be seen as a
generalization of the last one, much related to the recent
works in [5–8] and references therein. y

Based on the Lyapunov construction of Lemma 2 we can
now state our first main result establishing asymptotic
estimation of the ripple signal.

Theorem 1 For any ` > 0, the selection L = [ `0 ] in
(10a) and in (14a) guarantees that the compact attractor

A = {(xr, b̄, x̂r, xf ) : e = 0 and (xr, b̄) ∈ K},

is uniformly globally exponentially stable for the closed-
loop dynamics (3)-(5), (9), (10), (11).

Proof. The result is a direct consequence of [13, Thm
2] (see also [14, Lemma 1] where a parallel formula-
tion to this one is used) with the Lyapunov function of
Lemma 2. �

Remark 4 Note that in light of the output equation
(13), Theorem 1 implies that for any positive choice of

the scalar parameter `, the estimate d̂ uniformly and
exponentially converges to the ripple disturbance d.
Smaller selections of ` lead to slower convergence but
are less sensitive to noise, whereas larger selections of
` lead to faster convergence but larger noise sensitivity
should be expected. y

4 Ripple estimation without knowledge of
switching instants

In most practical cases it is not easy if not impossible to
know the switching instants and the scheme of the previ-
ous section cannot be implemented. To address this sit-
uation, we present here an enhanced estimation scheme,
whose structure is represented in Figure 5. In this new
scheme, we estimate the switching instants by building

an estimate θ̂ of the unavailable output θ in (4b).

Band-pass
filter

xr -
generator

b̄
yr

ŷr

ef

Signal with
ripple disturbance

er

Switching
instantsEstimation

Ripple observer

of θ

Estimation
of xrd̂ = x̂r1 − |x̂r| 3π

Ripple
estimate

Figure 5. Scheme with generator, estimation of the switching
instants, filter and hybrid observer of xr when the switching
instants are not known.

Remark 5 In the sequel, to keep the notation simple,
we will introduce several coupled dynamical systems
comprising different components of the proposed scheme
and having different jump and flow sets. These jump and
flow sets will be specified in terms of only some state
variables, implicitly meaning that the other state vari-
ables may assume any value in the specified set. With
this simplified notation we refer to the hybrid system
constructed having flow set corresponding to the inter-
section of all the specified flow sets, flow map arising
from stacking up all the specified flow equations (no flow
equations will be repeated thus generating no ambigu-
ity), jump set corresponding to the union of all the jump
sets and jump map corresponding to the union of all the
specified jump maps. y

Using the simplified notation mentioned in Remark 5,
we preserve the main dynamics in (10) by using a jump

rule triggered by the new state θ̂:
ẋf = Afxf +Bf (yr − ŷr)
˙̂xr = Arx̂r + Lef
˙̂
θ = ω,

θ̂ ∈
[
−π

3
,
π

6

]
(17a)


x+
f = xf

x̂+
r = Jrx̂r

θ̂+ = θ̂ − π/3,
θ̂ ∈

[π
6
,
π

3

]
(17b)

and preserve the same output equations (11). Note that

the lower bound on θ̂ in (17a) and the upper bound in
(17b) are coarser than those in (5), because we want to

leave some margin for suitable adaptation of θ̂.
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Clearly, dynamics (17) converges to the right estimate

when θ̂ = θ. The scheme is then completed by inserting

an additional logic performing periodic updates on θ̂ in
such a way that it converges to θ. Such convergence will
be established based on the Lyapunov function:

i∗ := argmin
i∈Z

(
θ − θ̂ + i

π

3

)2

, (18)

θ̃ := θ − θ̂ + i∗
π

3
, (19)

Vθ(θ, θ̂) := min
i∈Z

(
θ − θ̂ + i

π

3

)2

= θ̃2. (20)

In particular, the following lemma will be fundamental
to achieve this convergence property.

Lemma 3 Consider any hybrid solution to (3)–(5),

(17). The output θ̃ defined in (19) and the Lyapunov
function Vθ in (20) both remain constant along flows
and across jumps.

Moreover, defining 4 for each t ≥ 0 the function j∗(t) =
max

(t,j)∈domθ
j, the next identity holds:

∫ t+ π
3ω

t

θ̂(τ, j∗(τ))d(τ, j∗(τ))dτ = −|xr(0, 0)|ρ(θ̃), (21)

where ρ is such that ρ(θ̃)θ̃ is a positive definite function

in the interval θ̃ ∈ (−π/6, π/6) and d is the output at the
third line of (7), corresponding to d = |xr| cos(θ)− 3

π |xr|.

π
6

π
6

−π
6

−π
6

θ
θ̂

θ̃

π
6

π
6

−π
6

−π
6

θ

θ̂
θ̃

−π
6 + θ̃

d d

π
6 + θ̃

Figure 6. Graphical proof for θ̃ > 0 (left) and θ̃ < 0 (right).

Proof. The fact that θ̃ and Vθ remain constant along

solutions is readily verified by checking that θ̇− ˙̂
θ = ω−

ω = 0 along flows and that θ+ = θ− π
3 (and similarly for

θ̂+) so that quantity i∗ in (18) changes but the minimum
in (20) does not change across jumps.

4 Note that the definition of j∗(t) is valid for all t ≥ 0
because all solutions have unbounded domain in the ordinary
time direction, as established in Proposition 1.

Regarding integral (21), we compute it by dividing the
analysis in the two cases shown in Figure 6. After some
calculations, essentially splitting each integral in two
parts, it is shown that

ρ(θ̃) =

{
− 1

6ω

(
π − 6θ̃ − 2π sin

(
π
6 − θ̃

))
= ρp(θ̃) θ̃ ≥ 0

−ρp(−θ̃) θ̃ < 0

so that ρ(θ̃)θ̃ is positive definite in (−π/6, π/6), as to
be proven. �

Remark 6 Note that, as graphically illustrated in Fig-
ure 6, scalar θ̃ characterized in Lemma 3 is the difference

between θ and θ̂ modulo π/3, that is, recognizing that

both θ and θ̂ revolve in the set [−π/6, π/6] one measures
their distance ignoring the jumps so that this distance
remains constant despite the jumps of the two variables.

y

Based on the preliminary result of Lemma 3, we can
now complete the hybrid observer with an additional
dynamics implementing integral (21) and imposing suit-

able jump rules on θ̂ to ensure its convergence to θ. Let
us consider

˙̄yr = 0

˙̄yrI = yr − ȳr
η̇ = θ̂(yr − ȳr)
τ̇ = 1,

τ ≤ π

3ω
(22a)



ȳ+
r = ȳr + kav

3ω

π
yrI

ȳ+
rI = 0

η+ = 0

τ+ = 0

θ̂+ = θ̂ − satπ
6

(kθη),

τ =
π

3ω
, (22b)

where kav ∈ (0, 1] and kθ > 0 are two positive gains
to be tuned, and function satπ

6
is the scalar symmet-

ric saturation function whose output is limited within

[−π/6, π/6]. Note that this limitation ensures that θ̂+

will always belong to the set [−π/3, π/3], where dynam-
ics (17) ensures existence of solutions.

In (22), state τ is a periodic timer ensuring that inte-
gral (21) is computed periodically; state ȳrI integrates
output yr to estimate its average value, whose estimate
is stored in ȳr (updated at each jump based on the lat-
est estimate) and finally η implements integral (21) by
subtracting the (estimated) average value ȳr from mea-

surement yr and multiplying it by θ̂.

The overall ripple estimation scheme corresponds to
plant (3)–(5), the estimator dynamics in (17), and the

7



extra states and jump rules in (22), where the role of
the different jump and flow sets should be intended as
explained in Remark 5. The overall state is then given by

ξ = (xr, b̄, xf , x̂r, θ̂, ȳr, ȳrI , η, τ),

where it is emphasized that due to the fact that (xr, b̄)
belongs to the compact set K and τ ∈ [0, π/(3ω)],
then there exists a large enough scalar M such that
(ȳr, ȳrI , η, τ) ∈ MB4, where B4 is the four-dimensional
closed unit ball. In the next theorem we establish par-
allel results to those of Theorem 1 in terms of stability
properties of the attractor

Ae = A× [−π/3, π/3]×MB4, (23)

where A is defined in (1) and corresponds to the set
where the estimate is correct. Note that Theorem 2 only
establishes local properties of the scheme even though
its results could be strengthened by relying on a more

sophisticated update law for θ̂ (see, e.g., [17] for global
asymptotic stabilization of dynamics on bounded man-

ifolds like our angles θ and θ̂) and on global results on
cascaded hybrid systems.

Theorem 2 For any ` > 0, any kav ∈ (0, 1] and a small
enough value of kθ > 0, the selection L = [ `0 ] in (17)
guarantees that the compact attractor Ae is uniformly
locally asymptotically stable for the closed-loop dynamics
(3)–(5), (17), (22).

Proof. The scheme can be represented as the cascade of
three hybrid dynamical systems.

The lowermost system corresponds to the dynamics re-
stricted to the set

Aθ = {ξ : θ = θ̂},

which is clearly forward invariant because the dynamics

of θ̂ coincide with that of θ. Using the result of Theorem 1
it is readily seen that the dynamics restricted to Aθ is
UAS (actually UES) to Ae.

The intermediate system corresponds to the dynamics
restricted to the set

Aȳ = {ξ : ȳr = b̄(0, 0) +
3

π
|xr(0, 0)|}, (24)

which is once again forward invariant because one can
easily derive from (7) that given any solution to the ex-
osystem (3)–(5), the scalar b̄(0, 0)+ 3

π |xr(0, 0)| is the av-

erage value of yr(t, j
∗(t)) (notice that both b̄ and |xr|

remain constant along solutions). Then we may prove
that set Aθ is uniformly (locally) asymptotically stable
for the dynamics restricted to Aȳ. To establish this fact

we may use the Lyapunov function Vθ in (20) that re-
mains constant along flows (as established in Lemma 3).
To analyze the change of Vθ across jumps, first note that
in Aȳ we have that d = yr− ȳr. Then, due to periodicity
of timer τ in (22) and due to the results of Lemma 3, we

have before each jump in (22b) that η = −|xr(0, 0)|ρ(θ̃).
Therefore, across all such jumps, the quantity in (19)
satisfies

(θ̃+)2 =
(
θ − θ̂+ + (i∗)+π

3

)2

≤
(
θ − θ̂+ + i∗

π

3

)2

=
(
θ̃ − satπ

6

(
kθ|xr(0, 0)|ρ(θ̃)

))2

,

where the inequality follows from the fact that i∗ in
(18) is a minimizer. Then from uniform boundedness

of |xr(0, 0)| and positive definiteness of ρ(θ̃)θ̃ in the set
(−π/6, π/6), it is ensured that function Vθ is (locally)
strictly decreasing as long as kθ > 0 is sufficiently small.
For all other jumps triggered by the jump sets in (5)
and (17), function Vθ remains constant as established in
Lemma 3. Since jumps in (22b) are periodic from peri-
odicity of τ , then asymptotic stability ofAȳ follows from
persistent jumping and [9, Prop. 3.24].

The uppermost system corresponds to the dynamics
starting anywhere in the allowable set of initial condi-
tions, which clearly converge to the attractor in (24)
because at each jump triggered by (22b) it holds that
3ω
π yrI is the average b̄(0, 0) + 3

π |xr(0, 0)| of yr, so that
the update law at the first equation in (22b) leads to
uniform convergence to zero of the Lyapunov function
Vy = (b̄ + 3

π |xr|)2 (once again we apply [9, Prop. 3.24]
and persistent jumping to establish this fact). Recall
that b̄ and |xr| remain constant along solutions so that
Vy remains constant along flows.

Once the three above nested or cascade-like results
are established, the uniform (local) asymptotic sta-
bility of the innermost attractor given by Ae in (23)
can be established applying iteratively the reasoning
in [10, Corollary 19] by intersecting the flow and jump
sets with sufficiently large compact sets. �

Remark 7 Notice that one could choose kav = 1 in
(22b) thereby obtaining finite time convergence of ȳ to
the (constant) average of yr. However, smaller choices of
kav may be desired to suitably filter possible noise affect-
ing the measurement. Similarly, kθ should be selected
small in such a way to ensure that Theorem 2 applies and
that suitable noise rejection is obtained. In general, the
tuning of the three parameters kav, kθ and ` should be
carried out based on the cascaded structure of the proof.
Indeed, to experience a graceful transient performance,
it is reasonable to pick gain kav as the most aggressive
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one, kθ in such a way to induce an intermediate speed of
convergence, and ` as the one that induces the slowest
transient. This type of tuning procedure was adopted in
the simulation examples of Section 5. y

5 JET experimental measurements

In this Section we apply the scheme in Figure 5, Section 4
to experimental data collected from the JET Tokamak
[18]. For simulations that confirm the effectiveness of
the method presented in Section 4 in the case of ideal
nonsmooth signals, we refer the reader to the Simulations
Section of [16] while here we focus on the application of
the scheme to noisy signals.

The stabilization of the unstable plasma vertical posi-
tion at JET facilities is achieved by changing the radial
magnetic field produced by current flow on dedicated
coils. Such a current is regulated by the Vertical Sta-
bilization (VS) system by means of a current amplifier
named FRFA (Fast Radial Field Amplifier), that is in-
deed equipped with the rectifiers discussed in Section 2.
The VS system acts on FRFA requesting a desired cur-
rent IFRFA,des that is obtained as the sum of two term,
the “fast” velocity loop that reacts suddenly to plasma
vertical displacements and the “slow” current loop that
aims to regulate IFRFA to a given set point value (usu-
ally zero). The ripple generated by the FRFA affects the
feedback signal ZPD, which is an estimate of the plasma
vertical velocity obtained by combining suitable mag-
netic measurements (from Mirnov coils). We define the
signal

yr(t) = α IFRFA(t) + ZPD(t) (25)

where IFRFA(t) is the current flowing within the poloidal
coil and the scaling factor α is equal to 4 · 104 m/s/A.
All these quantities are depicted in Figure 7 where the
effect of the ripple is evident on yr.
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Figure 7. Experiment data from JET Tokamak: current
IFRFA, estimated vertical velocity ZPD of plasma and mea-
sured signal yr.

To obtain a ripple-free signal, we apply the scheme in
Figure 5 where we discard the “Signal with ripple dis-
turbance” block and we inject directly into the “Ripple
observer” block the signal yr in (25). As a matter of fact
we have no longer a constant signal over which the rip-
ple disturbance is superposed, but a signal that varies
slowly with respect to the frequency of the ripple. Never-
theless, since we are taking compact sets and sufficiently
regular data in the hybrid system formulation, we can
rely on the robustness results of [9, Ch. 7], as we stated
earlier in this paper.

The experimental data we consider are only a 20 second
portion of the out of the 80 seconds available in pulse
]78000 because the remaining 60 s do not correspond
to relevant experimental data. For these 20 seconds we
zoom towards the end of the simulation (at about 17.70
s), as in Figure 7. Although we test our hybrid observer
on offline experimental data, we would like to point out
that it could be used for estimating the ripple on-line,
which would allow to improve the quality of the mea-
sured signal and thus the performance of the vertical
stabilization loop.

In [16] we noted that we should implement slightly in-
flated versions of flow and jump sets C and D in (5) to
force the simulated maximal hybrid solutions to be also
complete [9, Ch. 2.2 and 2.3]. Otherwise we may simu-
late maximal solutions that terminate prematurely (are
not complete) because the numerical perturbations force
them to fall outside C ∪ D. In the current case of JET
measurements we no longer have a ripple generator, and
for the flow/jump sets in (17) and in (22) we only inflated
the jump set {ξ : τ = π

3ω} as {ξ : π
3ω ≤ τ ≤ 1.005 π

3ω}.

We choose the values ` = 7.5, kav = 0.9, kθ = 1 as
parameters of our hybrid observer described in (17) and
(22) and we initialize it with ȳr(0) = −0.5 ·106, ȳrI = 0,

η(0) = 0, τ(0) = 0, θ̂ = 0, xf (0) = [ 0
0 ], x̂r(0) =

[
9.6·106

0

]
.

Analogously with the results in Section 4, we use as es-
timated signal σ̂ = yr −

(
x̂r1− 3

π |x̂r|
)
. At the bottom of

Figure 8 we have both yr and σ̂ on the full time scale.
In the above part, we have a zoom at the beginning of
the time history on the left, and at the end of the time
history on the right (same zoom as in Figure 7). The red

vertical lines correspond to the instants when θ̂ jumps
and it is shown clearly that at the beginning they are
not in phase with the original signal yr while at the end
they are, so that the hybrid observer effectively removes
from yr the ripple disturbance d depicted in the middle
part of Figure 8.

6 Conclusions

We proposed a hybrid system to model the ripple phe-
nomenon that arises in different contests such as power

9
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Figure 8. Original signal yr, signal σ̂ deprived of the ripple

and ripple d̂ estimated by the hybrid observer in different
time scales.

electronics. We discussed the effectiveness of the pro-
posed hybrid model characterizing its (hybrid) solutions,
flow/jump dynamics and flow/jump sets. We proposed
two hybrid schemes able to asymptotically estimate the
state of the hybrid model that generates the ripple wave-
form both when the switching instants are known and
unknown. The proposed methodology was applied to re-
construct the ripple disturbance affecting experimental
data of the vertical stabilization system at JET facilities.

References

[1] A. Pironti and M. Walker. Fusion, tokamaks, and plasma
control: an introduction and tutorial. Control Systems
Magazine, IEEE, 25(5):30–43, 2005.

[2] Bruce A Francis and W Murray Wonham. The internal model
principle of control theory. Automatica, 12(5):457–465, 1976.

[3] A. Isidori. Nonlinear Control Systems. Springer, third
edition, 1995.

[4] Lorenzo Marconi and Andrew R Teel. A note about hybrid
linear regulation. In IEEE Conference on Decision and
Control, pages 1540–1545. IEEE, 2010.

[5] Nicholas Cox, Lorenzo Marconi, and Andrew Teel. High-gain
observers and linear output regulation for hybrid exosystems.
International Journal of Robust and Nonlinear Control, 2013.

[6] Lorenzo Marconi and Andrew R Teel. Internal model
principle for linear systems with periodic state jumps. IEEE
Transactions on Automatic Control, 58(11):2788–2802, 2013.

[7] Daniele Carnevale, Sergio Galeani, and Laura Menini.
Output regulation for a class of linear hybrid systems. parts
1 & 2. In IEEE Conference on Decision and Control. IEEE,
2012.

[8] D. Carnevale, S. Galeani, and M. Sassano. Necessary and
sufficient conditions for output regulation in a class of hybrid
linear systems. In Decision and Control (CDC), 2013 IEEE
52nd Annual Conference on, pages 2659–2664, Dec 2013.

[9] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid Dynamical
Systems: modeling, stability, and robustness. Princeton
University Press, 2012.

[10] R. Goebel, R. Sanfelice, and A.R. Teel. Hybrid dynamical
systems. IEEE Control Systems Magazine, 29(2):28–93, April
2009.

[11] Nicholas Cox, Lorenzo Marconi, and Andrew R Teel. Hybrid
output regulation with unmeasured clock. In Joint IEEE
Conference on Decision and Control and Europen Control
Conference, pages 7410–7415, 2011.

[12] F. Forni, A.R. Teel, and L. Zaccarian. Follow the
bouncing ball: global results on tracking and state estimation
with impacts. IEEE Transactions on Automatic Control,
58(6):1470–1485, 2013.

[13] A.R. Teel, F. Forni, and L. Zaccarian. Lyapunov-based
sufficient conditions for exponential stability in hybrid
systems. IEEE Transactions on Automatic Control,
58(6):1591–1596, 2013.

[14] F. Forni, A.R. Teel, and L. Zaccarian. Reference mirroring
for control with impacts. In J. Daafouz, S. Tarbouriech, and
M. Sigalotti, editors, Hybrid Systems with Constraints, pages
211–249. Wiley, 2013.

[15] Lorenzo Marconi and Laurent Praly. Uniform practical
nonlinear output regulation. IEEE Transactions on
Automatic Control, 53(5):1184–1202, 2008.

[16] A. Bisoffi, M. Da Lio, and L. Zaccarian. A hybrid ripple
model and two hybrid observers for its estimation. In IEEE
Conference on Decision and Control, Los Angeles (CA), USA,
December 2014.

[17] Christopher G Mayhew, Ricardo G Sanfelice, and Andrew R
Teel. Quaternion-based hybrid control for robust global
attitude tracking. IEEE Transactions on Automatic Control,
56(11):2555–2566, 2011.

[18] F Sartori, A Barbalace, AJN Batista, T Bellizio, P Card,
G De Tommasi, P Mc Cullen, A Neto, F Piccolo, R Vitelli,
et al. The pcu jet plasma vertical stabilization control system.
Fusion Engineering and Design, 85(3):438–442, 2010.

10


