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ABSTRACT

On magnetic fusion facilities, it is often necessary to make use of the magnetic equilibrium obtained by fast analysis codes such as EFIT
(on JET) or CLISTE (on AUG). Although equilibrium codes may provide a very advanced and precise magnetic equilirbium for a given plasma
pulse/time, they do not provide tools for exploiting these equilibria. The FLUx Surface Handling code was initially developed by Nazareno
Gottardi in 1989 for this purpose. Over the years, FLUSH has gone through various modifications, in particular those brought in 2006 to enable
the use of FLUSH on various tokamak devices in the frame of the Integrated Tokamak Modelling project (ITM). This work brought forward
the central part of the code, which converts a given magnetic equilirbium into a set of spline coefficients to be exploited by the user. The user
interface, however, had since remained untouched, and most of the equilbrium exploitation functionalities, which made use of several central
algorithms, were not generalised to deal with various tokamak devices. The present paper shows how the FLUSH code generalisation has been
completed, and explains the improvements that have been brought to some of the central algorithms, in order to offer faster and more precise
tools to the users.

Keywords: FLUSH, EFIT, Flux, Surface, X-point, Separatrix, LCFS, Grad-Shafranov, Line of Sight, Spline.

1 Introduction

1.1 The FLUSH Code

In tokamak fusion, the total magnetic field can be defined as ~B =
F (ψ)∇φ+∇ψ ×∇φ, where φ is the toroidal coordinate, F (ψ) is the
toroidal magnetic field strength, and ψ is the poloidal magnetic flux.
Thus, magnetic field lines can be projected poloidally onto surfaces
of constant ψ-values, defined as flux surfaces. Note that in toroidal
coordinates, ∇φ = R−1 ~eφ, so that Bφ = F/R. The balance between

the plasma pressure ∇p and the magnetic pressure ~J × ~B can be used
to derive the Grad-Shafranov equilibrium [1], given by

∆⋆ψ = −µoR
2 dp

dψ
− F

dF

dψ
(1)

where the Grad-Shafranov operator is defined by ∆⋆ψ = R2∇ ·
(

R−2∇ψ
)

, and p = p(ψ) is the plasma pressure. More elaborate mod-
els exist to take into consideration plasma velocity, pressure anisotropy
and other effects [2]. It is also important to note that, considering the
fast parallel transport along field lines in fusion devices, the assump-
tion p = p(ψ) holds to some extent (ignoring turbulence and MHD
instabilities).

(a) (b) (c)

Figure 1:
Three examples of diverted plasmas:
(a) MAST Double-Null Discharge (DND) #24763.
(b) JET Pulse #72569.
(c) ITER equilibrium (CORSICA).

The magnetic equilibrium, here represented by the Grad-
Shafranov equation, is solved for tokamak plasmas using various codes,
depending on the device, such as EFIT [3,4], CLISTE [5], EQUINOX
[6] or CORSICA [7]. Once an equilibrium has been computed, it may
be used by other analysis codes to map various plasma profiles (eg.
temperature, density, radiation etc.) between real space and magnetic
space. In particular, such operations are extensively used by diag-

1



nostic codes that need to express collected data in terms of magnetic
confinement (eg. to determine the position of a probe measurement
compared to the edge of the magnetically confined plasma).

A few examples of tokamak magnetic equilibria are shown in
Figure-1. The most basic magnetic configuration in tokamaks is the
limiter plasma, for which magnetic surfaces are all cylindrical, and the
edge of the plasma is determined by the surface that touches material
components of the machine (the limiter). A more advanced magnetic
configuration consists in diverting the plasma by creating a null point
in the toroidal current, thus introducing an X-point in the magnetic
topology. The surface that has an X-point is called the separatrix, and
it may be considered as the edge of the confined plasma, beyond which
plasma is transported directly to the first-wall (or divertor) along mag-
netic field lines. It should be noted that, although FLUSH can deal
with double X-point configurations, it cannot yet handle snowflake
configurations [8], which will not be discussed in this paper; consid-
eration of snowflake configurations remains one of the generalisations
required for FLUSH to be truly portable.

The FLUSH code may be considered in two parts: the core part,
which produces the spline of a given magnetic equilibrium, and the
exploitation part, which offers various sets of tools for the user. In
order to present a clear understanding of the improvements brought
to FLUSH in recent years, it is necessary to introduce those two fun-
damental parts of the code.

The central part of FLUSH consists in a set of actions taken
during the initialisation of the code through the routine flushinit.
In essence, there is only one input crutially required by FLUSH: the
magnetic equilibrium itself. This needs to be provided by the user, or
retrieved from some database, and for every new plasma equilibrium,
FLUSH needs to be re-initialised. These actions, carried out during
the initialisation, can be listed as follows:

(a) Clearing internal data.
FLUSH is often used for data analysis of whole plasma pulses,
which may contain several thousands of different time slices, each
of which has its own magnetic equilibrium, computed by EFIT
or any other code. At JET, for example, the FLUSH splines
are calculated once, for all time slices of a given pulse, so that a
pulse/time equilibrium does not need to be splined several times
by each analysis code that needs to use the equilibrium data.
Hence, FLUSH caches some of its data, which may be used at
the next initialisation, provided this data is compatible between
the two equiliria. At the begining of the initialisation, compatible
data sets are kept, while the rest is cleared for the new equilib-
rium.

(b) Reading the equilibrium data.
In the usual case where a new equilibrium is given as input to
FLUSH, it needs to be extracted from its original format into
standard FLUSH variables. This is one of the advantages for the
FLUSH user: it is not required to provide data in one specific
FLUSH format, rather FLUSH has been developed to read most
conventional equilibrium formats from different institutes, such
as EFIT data, CLISTE data, MAST idam data, text format data
EQDSK, ITM data format, etc.

(c) Fitting splines to the equilibrium data.
Spline coefficients may be passed directly to FLUSH (as is often
the case on JET), but the most standard process is to have a
poloidal flux map over a spatial grid of coordinates. In this case,
both for stability and speed purposes, the grid data is splined
using NAG tools [9]. Such a spline is both representative of the
initial equilibrium data, but also provides a smoothness which
ensure well-behaved flux derivatives, which is not the case for a
map of finite discrete resolution.

(d) Computing the main plasma parameters.
Once the equilibrium has been splined, some plasma character-
istics are computed, mainly the magnetic axis, the X-point(s)
and the separatrix value. These are then used to provide a nor-
malised poloidal flux ψn to the user, such that ψn|axis

= 0.0 and
ψn|separatrix

= 1.0.

The second part of FLUSH, which surrounds the central core de-
scribed above, is the user interface, best described as the user’s tools.
These range from simple spline interpolation of the flux ψ at a given
(R,Z) point, to complex calculations, such as performing flux surface
averages of given functions. Effectively, most user routines make use
of one central tool: getting intersections between a given line of sight
and flux surfaces. Where this routine fails, generally the rest of the
more elaborate routines will fail too. The larger part of these routines
have been developed over the years, in order to answer specific needs
of physicists or diagnosticians. Although the central flux surface in-
tersection routine had been generalised at some point to include the
X-point geometry, all routines were clearly hard-coded for JET use
only. Also, an important aspect of FLUSH is that it is used by the
software SURF, which provides an IDL-based GUI interface to plot
flux surfaces in JET. This program needed to be reliable and fast, so
that some of the routines developed in FLUSH had a clear emphasis
on rapidity rather than precision.

1.2 Initial Improvements and Motivation on Further Im-

provements

The central part of FLUSH has been generalised in 2006 in order to
accommodate the equilibrium to any given machine. In this improve-
ment, several hard-coded parameters were generalised, such as the
plasma dimensions, the physical units, or the spline parameters (eg.
the number spline knots). In addition, FLUSH had previously used
only the NAG library [9] to spline equilibria, which is not practical for
code portability, since NAG is not open-source; one of the main tasks
was to adapt FLUSH to a open-source spline library, PSPLINE [10].

This new core was written using the C-language (the previous
FLUSH was fortran 77), making use of modules in a manner close to
Object-Oriented architecture. In particular, different structures were
used for distinct equilibrium aspects, such as the metaData for all pre-
spline inputs and quantities, the fittedData for all post-spline quan-
tities (eg. spline coefficients, X-point, axis etc.), and the tokGeometry

for all device-related data, such as the divertor and the first-wall.
These separated structures are especially useful when caching data
over several initialisations, or just when using generic parameters in-
ternally for coding purposes.

Although the central part of FLUSH was, at that point, generic
enough to be usable for any tokamak device, and for a wide range of
input formats, the rest of the code, namely the user tools, were still
strongly JET-oriented, if not simply JET hard-coded. Thus, FLUSH
was still not usable for devices such as ITER, MAST or DEMO, or at
least most of the more elaborate user routines were not. In fact, since
2006, the old FLUSH had not been replaced by the newer version at
JET, simply due to lack of manpower to complete the development of
the new FLUSH and ensure its reliability regarding large data analysis
codes such as CHAIN1 [11-13].

There were other motivations initially to develop FLUSH further,
from a practical and aesthetic point of view. From the user’s per-
pective, the old FLUSH routines were often named in the Fortran77
fashion, with short names that did not clearly relate to the role of the
routine, at least not to a FLUSH beginner. For example, the routine
to get the flux ψ at an (R,Z)-point was called flupn, the routine to
get intersections between flux surfaces and a line of sight was called
flul2, the routine to get the tangent flux surface to a line of sight was
called flul1, etc. For practical reasons, such routines would best be
renamed as getFlux, getIntersections and getTangents.

From the FLUSH developer’s perspective, the new FLUSH ver-
sion was half way through, with half of the code written in C, the other
half in Fortran77, sharing common blocks between Fortran77 and C.
It is, in general, not good practice to rewrite a code in a new language
just for the sake of the language itself. One would ideally provide
wrappers to the old code in the new language. However, in the case
of FLUSH, several routines did need rewriting, to generalise the code
to more global tokamak use. Some routines in fact needed rewriting
from scratch. Once these central tools were generalised, adapting the
rest of the code to these new tools was straight forward.

Additionally, as pointed out above, some of the routines of
FLUSH were strongly speed oriented, sometimes lacking in precision.
This was the case, for example, of the flux surface routines, one of the
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main tools of FLUSH. First of all, there were separated routines to
retrieve closed flux surfaces (inside the separatrix), open flux surfaces
(outside the separatrix), and the separatrix itself. There was not a sin-
gle routine to get surfaces anywhere. Although this could be achieved
through a wrapper calling all three routines successively, there would
still be some drawbacks. The first one is that the closed flux surface
routine was approximating surfaces using a cubic spline, based on a
dozen points along the surface itself. This was quick, but not at all
precise. The other drawback was that the open flux surface routine
needed a starting point for the surface, which was, in some cases, very
limiting. At last, both the separatrix and the open surface routines
required fix-sized arrays, with a maximum number of surface points.
Dynamic allocation was not available in Fortran77, but there are now
elegant tools to remedy to such issues.

The next sections describe how the FLUSH code was developed
in the years 2010-2013. The next section-2 explains how the interme-
diate version of FLUSH, developed in 2006, was adapted to replace
the old version of FLUSH at JET. It gives a detailed outline of the
implications of modifying a public code at JET, and the testing and
releasing procedures involved. The following section-3 focuses on the
work done to generalise the FLUSH tools to any tokamak configura-
tion. The several steps required to achive this are described succes-
sively. The last section-4 gives an overview of the work and discusses
future improvements to be considered.

2 Replacing the Old FLUSH at JET

2.1 The Use of FLUSH at JET

The first release of the new FLUSH at JET, in 2008, required large
modifications to the library. Most of those were legacy issues to make
sure the library was backward compatible, but there were some cases
where generic algorithms had been improved for speed/precision but
now failed for some cases specific to JET. Nevetheless, the new FLUSH
library was eventually released, but the important aspect of this re-
lease was not the modifications required to comply to JET standards.
The main step forward was the set of tools that were developed to pro-
vide FLUSH with a high-level, user-friendly testing procedure. These
two aspects (high-level and user-friendly) were at the centre of the
development of the testing procedure: high-level, because FLUSH is
extensively used at JET, and therefore cannot afford to fail; and user-
friendly because the FLUSH developer position is a so called JET-
Operating-Contract (JOC) position that is replaced at least every 4
years, so the testing procedure needed to be quick and easy to use.
Ultimately, scripts were developed to enable a new FLUSH officer to
release a new version of the library at JET only after reading approx-
imately two pages of the manual and running a few sets of simple
command lines.

In order to understand the implications of modifications in the
public FLUSH library at JET, one needs to consider all codes that
use FLUSH, and why they use FLUSH. For every JET experimental
discharge, all data collected by diagnostics during the few seconds of
plasma need to be processed, and made available to public users for
analysis and, eventually, for publication. This data processing is done
using a suite of codes called CHAIN1 [11-13]. One of the central codes
of CHAIN1 if EFIT, which provides the equilibrium data for all re-
maining codes. Thus, unless using very basic data directly from EFIT
(eg. magnetic axis position, strike point position etc.), numerous codes
will rely on FLUSH to interpret the magnetic field equilibrium.

Currently, there are 51 codes using FLUSH in CHAIN1. A large
part of those codes use FLUSH in a simple manner, just making use
of the spline interpolation to retrieve the poloidal flux or the magnetic
field at given (R,Z)-positions, but other codes make use of the more
advanced routines. For example, many codes that measure radial pro-
files (of density, temperature or other) will call FLUSH to project
these measures into flux-space, eg. to go from ne(R,Z) to ne(ψ). A
few codes use even more complex FLUSH tools, to retrieve flux sur-
faces, compute geometric quantities (plasma elongation, trangularity
etc.), or integrate plasma quantities over flux surfaces. If FLUSH is
not functioning properly, a large part of the experimental data will
not be available.

There are other codes than CHAIN1 that use FLUSH throughout
JET, some of which are officially public, many of which are private.
In practice, it is not possible to check that all codes relying on FLUSH
at JET are working as expected. Hence, the FLUSH philosophy is to
make use of CHAIN1’s extensive reliance on FLUSH and to assume all
FLUSH-using codes at JET are fine so long as CHAIN1 is reproducing
data accurately.

The other aspect of FLUSH at JET is that wrappers to the user’s
functions are available in many languages, namely FORTRAN, C, IDL,
MATLAB and, more recently, PYTHON. It is also available externally via
MDSPLUS. These wrappers are also released publicly. Thus, some test-
ing is also required for all wrappers.

2.2 Testing Procedure

There are several tests now available for FLUSH. Historically, the only
test for FLUSH was a single test code that called all FLUSH routines
with standard parameters, and dumped the output into files. The code
was run for the public FLUSH library and the development library,
so that output files could then be compared. In case everything was
exactly identical, such a procedure was good, but there were no tools
for measuring the extent of any differences. Comparisons between the
public and the development library were not automated.

One of the first step in setting up a rigid testing procedure for
FLUSH was to develop a PERL script to categorise and measure all
differences from each FLUSH routine output. This required the clas-
sification of outputs depending on their units (eg. cm, radian, Tesla,
normalised data etc.) in order to measure the weight of differences
accordingly. For example, a difference of 1% for a distance of 5m is
5cm, which is unacceptable (as far as JET is concerned), whereas a
difference of 1% for an angle given in the range [0, 2π] may be tolera-
ble. Another particular case is if the relative weight of a difference has
to be measured between zero and non-zero values, because the relative
difference is infinite compared to the zero value. Hence, several class
of outputs and difference measurements have been organised, and the
PERL script returns to the developer a clear report with a section for
each routine, giving the average difference and the maximum differ-
ence. Typically , the test is run over a set of standard JET discharges
(eg. a limiter pulse, a divertor pulse, an old EFIT pulse, a pulse
with a secondary X-point at the top of the plasma, etc.). The script
also judges whether differences are acceptable or not. For example,
if a routine gives spatial differences whose maximum is smaller than
1mm, and whose average is smaller that 0.1mm, then the routine is
judged accurate for the new library. Similar upper limits are used
for percentages. If all differences are judged negligible, the test will
be judged successful, otherwise the developer will be pointed to the
differences report.

The test described above is efficient when testing the global re-
liability of a development library, but is is not sufficient for testing
whether codes like CHAIN1 will produce sensible output. Therefore,
for completeness of the test procedure, another script was written to
test all FLUSH-related CHAIN1 codes. In recent years, elegant testing
procedures were developed by D.Dodt for CHAIN1, enabling develop-
ers to run accurate tests rapidly, and measure differences between data
outputs for different CHAIN1 versions. The architecture of the PERL

codes that were developed for CHAIN1 has been exploited in this
FLUSH script, not only to give an appropriate test of the CHAIN1
codes (as done by the CHAIN1 test-scripts themselves), but also to
make sure that the FLUSH script remains up to date with the CHAIN1
PERL architecture in the long term. This FLUSH script uses CHAIN1
functions to clone the latest versions of the CHAIN1 codes related to
FLUSH, and run them using the public and the development FLUSH
libraries. The two sets of outputs are then compared using CHAIN1
scripts.

2.3 Release Procedure

Although routine development does not require CHAIN1 testing, since
the initial test script that compares all FLUSH routines outputs is
quick and gives a good overview of the impact of changes, any re-
lease of FLUSH at JET has to be preceeded by a complete test, using
both the generic FLUSH test and the CHAIN1 test. These are in fact
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not the only requirements for a release, which involves several other
actions. The release procedure for FLUSH is the following:

(a) Do the tests
For any FLUSH release, both the standard FLUSH test and the
CHAIN1 test need to be run.

(b) Update the release number
Each release comes with a minor/medium/major release number,
eg. libflush.so.1.2.3, where 1, 2 and 3 are the major, medium
and minor release numbers respectively. These numbers are in-
cluded inside the code, inside the release record file, and at the
end of the names of the .so and .a files that are copied into the
release directory to sent to the official public release on JET (ie.
copied to the /usr/local directory).

(c) Update SVN.
FLUSH is currently under SVN. The SVN revision number is in-
cluded in the code, and in the release record file.

(d) Recompile code with updated release number.
Since both the SVN revision number and the release number are
included in the code, the code needs to be recompiled with those
new numbers before release.

(e) Check for uncommitted files.
Some of the files are always committed to SVN during a release,
such as the release record file and the version.c file, which con-
tains the release version number and the SVN revision number. In
case other files have a non-standard SVN status (eg. modified “M”
or added “A”) they need to be committed.

(f) Final commit.
All files, including the release record file and the binary copies of
the library are committed to SVN.

For security (ie. to ensure that all actions are delivered) as much
as simplicity, all these actions have been integrated into a single PERL

script. Note that since the code and the release record file, which both
contain the SVN revision number, have to be committed to SVN, the up-
per SVN revision number has to be used for those files (ie. svn rev+1).
The script has been adapted so that even someone new to FLUSH
(ie. not doing the release properly) will be prompted with enough
information to complete the release eventually. The only thing that
needs to be done separately by the person doing the release is the
testing procedure, which is also explained by the release script in case
the test results are missing. Note that this is the only input to the
release script: the locations and names of the test summaries. Thus,
executing the release simply looks like

release flush.perl standardtest.txt chain1test.txt

The general practice is that most modifications of the FLUSH
library will not result in failures of the standard and CHAIN1 tests.
Currently, the majority of FLUSH issues have been dealt with, so that
only special cases remain, each of which generally does not affect JET
data as a whole, but only a small fraction of the data. As an exam-
ple, a typical JET pulse comprises 10,000 EHTR time-slices (ie. 10,000
Grad-Shafranov equilibria), where EHTR is simply EFIT at high time
resolution. The sort of special cases that now have to be dealt with in
FLUSH occur perhaps for a few hundred time-slices per experimental
campaign (say at least 1000 pulses). Hence, these special cases affect
data with a frequency of the order of 10−3%. Nevertheless, these are
spread out over time and regularly require FLUSH releases.

Thus, most corner cases do not lead to failures of the standard
and CHAIN1 tests, but those tests were particularly efficient when
large modifications were brought to FLUSH in recent years. In fact,
these tools enabled the evaluation of the efficiency of the development
library compared to the old library, or in some cases, the inefficiency of
the old library compared to the new one. Test reports that can point
to a specific library Application Program Interface (API) provide di-
rect information on the flaws of algorithms being tested. However,
differences may occur because the newer library is more precise than

the old one, in which case a release is done using tests that have failed,
which usually requires clear explanations in the FLUSH records and
SVN.

3 Completing the FLUSH Generalisation

3.1 Improving the User Interface

The first aspect of the generalisation of the FLUSH routine was to
make the library user-friendly. There are numerous cases to which
simple conventions were applied, and in order to describe these con-
ventions, a few representative cases will be used. The first one is the
main FLUSH routine, flushinit, for which the standard FORTRAN call
is

call flushinit(igo, shot, time, lget, seq, uid, dda, lmsg, ier)

where we list and explain the arguments here:

(a) igo
Integer determining the way FLUSH will be initialised (ie. using
JET, MAST, eqdsk, NAG or other splines etc.) See Flush-manual
for full list and details.

(b) pulse
The pulse number of the experiment.

(c) time
The time at which equilibrium data is required.

(d) lget
FORTRAN entry file number for data input (eg. 3 for fort.3).

(e) seq
JET PPF-data [14] sequence number (in case JET equilibrium
data is required).

(f) uid
Identification name under which PPF-data requested has been
written (eg. JETPPF or flush or any).

(g) dda
Name of the PPF-data DDA requested (eg. EFIT or EHTR or any).

(h) lmsg
FORTRAN output file number for any output data (eg. 6 for fort.6).

(i) ier
Error identification number.

The sole purpose of introducing this call here is to clearly present
the level of intricacy required simply to obtain some equilibrium data.
The lget and lmsg have long been obsolete but cannot be removed due
to backward compatibility. Currently the igo parameter may take up
to 28 different values between -2 and 92 (one of the JET values is 15).
Of course, all cases need to be included, different machines, different
data inputs, different splines, different initialisation levels etc. Ulti-
mately, this igo parameter should be broken into separate routines,
such as

Flush setMachine,

Flush setSplineType,

Flush setUID,

Flush setDDA,

Flush setSeq,

etc.

to be called before the initialisation call, in case a user does not want to
use the default settings. This was unfortunately not done at the time
of development, due to some disagreements among the team members
regarding the true usefulness of such a modification, and how it should
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be formulated. In the meantime, for JET users, this crucial call was
simplified to,

flushQuickInit(pulse, time, ier).

Of course, this is only valid for JET, but it could easily be gener-
alised to any common default settings for each machine. Eventually,
breaking up the igo parameter into different routines should really be
done.

The main FLUSH routine flushinit represents perfectly the
sense of clarification that was desired by FLUSH users. In addition to
this isolated simplification, several other conventions were applied to
the code:

(a) All FLUSH API’s should have the prefix “Flush ”
In order to avoid any clash with other public libraries, and to make
FLUSH calls easily pinpointable when debugging users codes,
all new user routines implemented where named with the prefix
“Flush ”, such as Flush getFlux, or Flush getMagAxis.

(b) Users APIs to have self-explanatory names
Some old FLUSH APIs were not intuitive for someone who
was not intimately working with the code. For example,
flupx was renamed to Flush getXpoint, flusu2 was renamed to
Flush getClosedFluxSurfaces, etc. Note that the APIs flupx

and flusu2 still exist, but they are now wrappers to the newer
routines. In fact flusu2 is a good example for this, since it is now
a wrapper to Flush getClosedFluxSurfaces, which finds flux sur-
faces in a manner entirely different to what was done in the old
library.

(c) Users APIs to return an error number
All user calls should return some error number ier. Returning a
character string that explains the error is too complex, especially
when dealing with different levels of wrapping for different pro-
graming languages. Likewise, printing the error character string
directly on the user’s prompt could result in pollution of code
output. Instead, integers are used, and the user may then call the
routine Flush getError(ier), which will print the error identifi-
cation name and information related to the library failure.

(d) No maximum array size
Several old FLUSH routines needed size-limited arrays. For ex-
ample, flseparatrix and flouter, which were used to retrieve
the separatrix surface and outer flux surfaces respectively, could
not determine the number of surface points (which depends on the
accuracy required) before they were called. This is still the case,
but now allocatable pointers are sent to FLUSH and memory is
internally allocated accordingly.

(e) No combined APIs
A large number of the old FLUSH APIs were combinations of
other APIs. For example, flupn was used to get the poloidal flux
ψ at multiple points; flupn2 to get ψ and the poloidal magnetic
field components B

R
and B

Z
; flupn3 to get ψ, B

R
, B

Z
and the

toroidal field B
φ
; and flupn4 to get ψ, B

R
, B

Z
, B

φ
and the cur-

rent field components j
R
, j

Z
, j

φ
. The new APIs only retrieve one

quatity at a time, to avoid long lists of routine arguments, so that
functions such as Flush getFlux, Flush getBr, Flush getBz etc.
are now used. The user is then free to create his own wrappers
to combine different APIs together.

Although such conventions do not in any way justify rewriting a
working library, they are only the forefront of some more significant
modifications needed in the code to ensure reliable performance on all
types of magnetic equilibria.

3.2 Flux Extrema Along Lines of Sight

One of the main tools, available to the user, but also used extensively
internally in FLUSH, is the routine that finds intersections between
a given line of sight and given flux values. The line of sight (l.o.s.)
is typically given as a spacial point and an angle, such as (R,Z, α).
For a plasma that has a co-injected current, the poloidal flux is mono-
tonically increasing from the magnetic axis up to the separatrix and
beyond, except below a lower X-point (or above an upper X-point),
in the so-called private region, where ψ decreases again. Hence, given
any flux-value ψo, there may be up to 2 intersections with the l.o.s., if
the later goes through the core plasma, but does not enter any private
region (and if ψo <= ψxpoint). If the plasma has a lower X-point and
the l.o.s. also crosses the the private region below that X-point, then
there may be up to 3 intersections. Likewise, if the plasma has a lower
and an upper X-point, then there may be up to 4 intersections.

In order to find all intersections, the extrema along the l.o.s. first
need to be found. Once all minima/maxima have been found, since
ψ is monotonically increasing between each minimum/maximum pair,
finding a flux-value ψo is a simple iterative process using the stepping
increment δl along the l.o.s. given by:

δl =
(ψo − ψi)

dψi

dl

where the i subscript represents evaluation at the previous position
found on line.

In the previous FLUSH version, only the standard case of a con-
ventional tokamak with at most two X-points was treated, so at most
one minimum and two maxima along any line. This treatment is
rather robust for JET, but it is not adequate for any ψ-domain that
also includes poloidal field coils or X-point coils, which results in other
localised minima outside the plasma (eg. Figure-1a). If all extrema
along the l.o.s. cannot be found accurately, then finding all requested
ψ-values along that line may prove very tedious. Thus, the tool used
to find extrema along lines had to be generalised.

The algorithm implemented considers the two ends of the l.o.s.
on the spline domain. There can be two cases, as shown in Figure-2.
If the ψ-gradient is of the same sign at both ends of the line, then
there will be either no extrema between those two ends (black line),
or at least one pair of minimum-maximum (blue line). Hence depend-
ing on which end has the lowest flux, those two extrema are found by
stepping along the line starting from both ends. Once these have been
found, the same procedure can be applied again, since there will be
either no extrema between those two new points, or at least one pair
of minimum-maximum (red line). The algorithm is applied until no
more extrema are found between the new pair of minimum-maximum.

Figure 2:
(a) Line of sight with ψ-gradients of same signs at both ends of the line. The flux
ψ will have either no extremum on the l.o.s. (black case), or one pair of minimum-
maximum (blue case), or two pairs of minimum-maximum (red case), and so on.
(b) Line of sight with ψ-gradients of opposite signs at both ends of the line. The
flux ψ will have either one extremum (black case), or three (blue case), or five (red
case), an so on.

Likewise, if the ψ-gradients at the two end points are of opposite
sign, then there will be at least one extremum along the line (black
line). By stepping along the l.o.s., starting from both ends, if both ex-
trema found are at the same location, then the unique extremum has
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been found, else it means that there must be at least another extremum
between those two new points (blue line), so the same procedure can
be applied again (red line), over and over until two matching extrema
are found.

The algorithms used to find each extrema when stepping along
the line from one end are a mixture of Newton-Raphson and Steepest-
Descent/Ascent [15,16]. If the first derivative of ψ and its non-zero
second derivative are of opposite sign, then Newton-Raphson will be
faster, otherwise steepest descent/ascent is used. However, if Newton-
Raphson is used but the extremum being searched for is almost (or
close to) a saddle point, or if there is a change of sign in the second
derivative of ψ on the way to the extremum, then the algorithm must
switch back to a steepest descent/ascent.

3.3 Finding Flux Surfaces

There were three different tools to find flux surfaces in the old FLUSH
library. These tools will be described in detail to justify the new flux
surface tool that was developed for the new library.

The first tool, flusur, was used to retrieve closed flux surfaces,
inside the separatrix. The method used was to find the flux intersec-
tions for each surface with lines of sight originating from the magnetic
axis, at different angles. Ten lines of sight were taken at equidis-
tant angles in the range [0, 2π] for circular cases, and in the range
[αxpoint, αxpoint + 2π] for X-point cases (αxpoint being the angle be-
tween the X-point and the magnetic axis). The intersections found
along the surfaces for these l.o.s. were then used as a basis for a cubic
spline to interpolate as many surface points as required by the user.
The advantage of this routine was its speed, but regardless of the
number of points the user would ask for, the precision was always the
same, restricted to the cubic spline interpolation. In addition, had one
l.o.s. intersection not been found, or found with an error, the cubic
spline interpolation would result in oscillations around the mistaken
intersection.

The second tool, flseparatrix, was used to retrieve the separa-
trix surface. This was done in two steps. The first step was to get the
closed part of the surface, using the tool described just above, but with
15 l.o.s. instead of 10 for the spline interpolation. The second step
was to retrieve the legs of the separatrix, connecting the X-point to
the divertor targets. This was done by taking a set of horizontal lines
of sight between the X-point and the bottom of the FLUSH spline do-
main, which were used to find intersections with the flux value ψxpoint.
Although this works for most JET cases, it is not acceptable for many
other configurations, or for larger domains where the separatrix legs
would not be approximately vertical.

The last tool, flouter, was used to retrieve open flux surfaces,
outside the separatrix. This was done by giving a point outside the
separatrix as input to the routine, which would then follow the flux
contour with the requested accuracy until it reached the edge of the
domain. The contour following was done using the Ralston and Runge-
Kutta methods [17,18]. Although this method is rather efficient, it
requires an input point to start the surface, and assumes the surface
will eventually intersect the edge of the domain. In other words, the
user has to know where the surface starts and make sure it is an open
surface. Another issue with this method is that all surfaces outside
the separatrix are not necessarily open, some of them are closed (eg.
around PF-coils).

The three methods described above were rather efficient for stan-
dard JET cases. For many other plasma configurations, however, they
would fail. Firstly because the closed surface and separatrix methods
required finding intersections with lines of sight, which could fail un-
less the flux configuration was very close to that of EFIT at JET.
Secondly because finding the separatrix legs requires those legs to
be approximately vertical and intersecting the edge of the domain.
Thirdly because the outer flux surface method, although based on a
powerful contour following algorithm, was restricted to well defined
cases of surfaces going around the main plasma and intersecting the
domain.

In order to provide the user with a rapid and robust tool for flux
surface interpolation, a new method was developed, based on a dis-
cretization of the flux domain. The flux domain is discretized into a
rectangular grid, the size of which is typically 5cm for JET plasma, but

may be reduced or increased. At present the size of the grid elements
is set by the FLUSH developer, but making it available to the user
would be straight forward. As will be shown later in this section, a 5cm
grid is typical for JET and provides enough accuracy and robustness
while remaining fast enough for rapid execution.

The grid elements are not all equally sized, they are constructed
so that the magnetic axis lies on a grid node (or element corner) and
so that any X-point lies in the centre of an element. This ensures that
small, closed flux surfaces near the axis may be resolved, and that the
four surface lines near an X-point may be found accurately without
being too close to one-another.

Each grid element is then treated individually. The first step is
to find the minimum and maximum flux values ψmin and ψmax for
each element. Then, if the user requested a flux surface with values
ψo, and if that value belongs to the interval [ψmin, ψmax], intersec-
tions of that ψo-value are found along the sides of the element. The
flux surface piece inside this element is then interpolated according to
the requested accuracy. Finally, for a given flux surface, all surface
pieces among the grid elements are joined together in the right order
and returned to the user. The ordering of surface pieces is done by
stepping from piece to piece on adjacent grid elements.

The interpolation method used between intersections of a sur-
face and an element sides uses an inverse Taylor series expansion of
second order, averaged between both intersections. Let (R

1
, Z

1
) and

(R
2
, Z

2
) be the two end points (or element intersections) of the sur-

face piece. Around the location (R
1
, Z

1
), the 2D Taylor expansion at

second order of the poloidal flux ψ is given by:

ψ (R
1
+ δR, Z

1
+ δZ)

= ψ
∣

∣

1

+ψ
R

∣

∣

1

δR+ ψ
Z

∣

∣

1

δZ

+
1

2

[

ψ
RR

∣

∣

1

δR2 + 2ψ
RZ

∣

∣

1

δRδZ + ψ
ZZ

∣

∣

1

δZ2
]

where the R and Z subscripts mean partial differentiation, and
∣

∣

1

means evaluation at (R
1
, Z

1
). Note that since the aim here is to step

along the surface of a given ψ-value, on the surface, the above formu-
lation leads to

ψ
R

∣

∣

1

δR+ ψ
Z

∣

∣

1

δZ

+
1

2

[

ψ
RR

∣

∣

1

δR2 + 2ψ
RZ

∣

∣

1

δRδZ + ψ
ZZ

∣

∣

1

δZ2
]

= 0

Then, assuming the flux surface piece is not close to vertical, the in-
terpolation is done using the incremental steps δR = x between R

1

and R
2
(note that if the line is close to vertical, then the same method

is applied for δZ = x instead, for which the following analytical for-
mulation is very similar). Typically the step size x increases at each
iteration with the surface spacial resolution required by the user. Sub-
stituting δR = x into the above formulation, and rearranging, gives
the second order polynomial equation

AδZ2 +BδZ + C = 0

with

A =
1

2
ψ

ZZ

∣

∣

1

B = ψ
Z

∣

∣

1

+ ψ
RZ

∣

∣

1

x

C = ψ
R

∣

∣

1

x+
1

2
ψ

RR

∣

∣

1

x2

Note that for a first order approximation (ignoring all second
derivatives), the above reduces to the solution δZ = −xψ

R
/ψ

Z
. Thus,

since in the case A 6= 0 and B2−4AC >= 0, there are two solutions to
the above quadratic equation, the solution of choice is the one closest
to this first order approximation δZ = −xψ

R
/ψ

Z
provided psi

Z
6= 0,

otherwise the one closest to the straight line between the two end
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points of the surface piece, (R
1
, Z

1
) and (R

2
, Z

2
). The first order ap-

proximation δZ = −xψ
R
/ψ

Z
is also used for the case A ∼ 0 (with the

estimate that A ∼ 0 if |A| < 10−14), and if ψ
Z

= 0 then the step is
taken along the straight line between the two end points of the surface
piece. The remaining cases are if B2 − 4AC < 0 or A ∼ B ∼ C ∼ 0:
here too, the step is taken along the straight line between the two end
points of the surface piece.

Since a similar interpolation can be done at the other end points
(R

2
, Z

2
) of the surface piece, a weighted average is done between the

two interpolations δZ
1
and δZ

2
, such that

δZ = (1− β)δZ
1
+ βδZ

2

where

β =
1

2

[

1− cos

(

δR

R
2
−R

1

π

)]

This weighted average ensures the solution is not polluted by the in-
terpolation from (R

2
, Z

2
) if the step is taken very close to (R

1
, Z

1
)

(and inversely).
Now, the standard case on a given grid element is that there are

no or only two intersections corresponding to a given flux value, but
this may not be true near an X-point, where there can be four inter-
sections. For robustness, the rectangular grid is always built so that
X-points are approximately at the centre of a grid element, so that
the four intersections on that element will be well defined and not too
close to one another. The position of the four intersections relative
to the saddle point formed by the X-point is then used to determine
which intersections should be joined together. For the separatrix, the
two X-point surface pieces are each divided into two pieces meeting
at the X-point itself. Of course, at the X-point, all first derivatives
are zero and second derivatives are close to zero, so the interpolation
is done only from the other end of the surface piece, not from the
X-point end.

It should also be noted that four surface intersections on a grid
element may also be found for closed surfaces away from any X-point.
These are also treated separately. In addition, to ensure that sur-
faces with ψ ∼ ψaxis are always well resolved, the rectangular grid
is constructed such that the magnetic axis always lies on a grid node
(element corner). This is done to avoid having a small flux surface
enclosed inside an element; this way however small the closed surface
is, intersections will always be found to interpolate the surface points.

There are several advantages to this new flux surface tool, when
compared to the old tools. The first advantage is that there is no dis-
tinction between closed, X-point, and open surfaces, so that the user
may give any ψ value and retrieve the surface whatever its topology.
Another advantage is that the user does not need to know where sur-
faces start outside the separatrix in order to retrieve them. For exam-
ple, say a given ψ value has an open surface going around the plasma,
and another surface (not connected to the first one) somewhere else
in the domain, the new tool will find this surface automatically from
the discretization, whereas using the old tool flouter, the user would
need to know at least one point of that surface to retrieve it. A third,
important advantage is that the new tool is more precise, especially
concerning closed surfaces and the separatrix, since the old tool was
restricted to a cubic spline with maximum 15 knots per surface, whose
coefficients had nothing to do with the background ψ-map. The new
flux surface tool also has a restricted grid resolution, but the inverse
Taylor expansion described above is coherent with the ψ-map, and
thus ensures a precision that was lacking in the old tools. There is,
however, one disadvantage to this new tool: it takes an accuracy as
input, not a number of surface points, so the user will not know the
exact number of surface points until the surface has been retrieved.
Therefore, the old tool using the cubic spline has been kept to give
this choice to the user.

The other consideration of interest, when comparing this new flux
surface tool to the old one, is speed. The old closed flux surface tool
only had 15 pairs of intersections (2 per l.o.s.) to find, and cubic
spline coefficients to calculate, the rest was just spline interpolation.
The new tool first has to determine the minimum and maximum flux
of each grid element, after which it needs to find the surface intersec-
tions on each individual grid element. Once this is done, the surface

pieces corresponding to each element still need to be reordered and
finally interpolated using the inverse Taylor expansion. Of course, the
minimum/maximum values on each grid element is calculated only
once and then cached, in case the tool is used again later. The com-
putation time effectively increases as the grid resolution is increased,
hence the appropriate resolution should be found such that the tool
remains precise, but computation time is not penalising. It was found
that for JET a resolution of 4cm ensures robustness of the tool, while
resulting in resonable timing.

Figure 3:
(a) Comparison of computation time for core flux surfaces tools. A scan is done
over the number of flux surfaces, at 4 different levels of accuracy. The black signs
show the old tool timing, the red signs show the new standard surface tool, while
the cyan signs show the timing for an alternative tool, that follows surfaces along
the grid, improving computation speed for low numbers of surfaces. The old tool,
which finds 10 points for each surface and then interpolates the rest using a cubic
spline, is clearly faster, although the difference becomes smaller at refined accuracy
and large numbers of requested flux surfaces.
(b) This plot shows the same scan as (a), for SOL flux surfaces tools. The black
signs show the old tool, the red ones the new tool. In this case, the new tool is clearly
faster, except at low accuracy, low numbers of requested surfaces.

Nevertheless, there is no comparison with the old closed flux sur-
face tool, which is approximately 100 times faster. For SOL surfaces
however, the timing is favorable to the new tool, which is up to 100
times faster, depending on the requested accuracy. Thus, between the
core and the SOL, the new surface tool is on average as fast as the old
one. To remedy to the slower aspect of the new tool for closed flux
surfaces, an alternative is to find a point belonging to the requested
surface, and follow the surface along the grid, from element to el-
ement. This way, not all grid elements need to be analysed and the
computation time is improved (so long as the requested number of flux
surfaces is small). The API for this alternative tool has been labelled
Flush getSingleClosedSurfaceQuick. Figure-3 shows the timing of
the old and the new surface tools, for various accuracies and various
numbers of flux surfaces. It should be noted that the old surface tools
were restricted to 51 flux surfaces per call, which is the largest number
shown in this scan.

It should be noted that the new flux surface tool is relatively
steady in speed, for all accuracies and any flux surface number, which
means that most of the computation time is spend on the analysis of
the grid elements, prior to finding the flux surfaces. Another scan was
performed for different surface grid resolutions. The results are shown
in Figure-4. Effectively, reducing the resolution improves the com-
putation time, although for high numbers of requested surfaces, the
timing is very similar for the accuracies of 4cm, 8cm and 16cm. Thus, it
can be concluded that a better resolution should be retained, for the
sake of accuracy and robustness. In fact, Figure-4b shows flux surfaces
for a typical JET pulse, demonstrating that even with a resolution of
8cm, surfaces are accurately reproduced as with the resolution of 4cm,
however, at the 16cm resolution, some differences start to appear, and
in some places (particularly close to the X-point), the tool starts to
fail and result in non-smooth surfaces. For JET, the resolution of
4cm is used, and has proved to be robust for the last 4 experimental
campaigns C29-C32. The robustness of a 4cm grid should nevertheless
be tested in the future for other machines; it is expected that for a
device of the size of ITER, a larger grid could be accurate enough,
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while for smaller machines, a tighter grid might be required. Eventu-
ally, adjusting the grid size dynamically with respect to the domain
dimensions might be the best option, although this should be open for
discussion.

Another aspect of this flux surface development was whether pub-
licly available contour tracing codes could be used in FLUSH, rather
than developing an internal set of tools to retrieve flux surfaces. How-
ever, most open source codes that provide fast contour mapping tools,
such as the ROOT function TGraph2DPainter::GetContourList from
CERN [19], use a similar method but with linear interpolation be-
tween end points. In other words, using a high-resolution grid makes
linear interpolation reliable. In the present context, linear interpo-
lation means zeroth order interpolation with respect to the inverse
Taylor interpolation described above (ie. straight line between the
end points). The advantage of using second order interpolation is
that a low-resolution grid can be used, which is faster. In future, if
it is estimated that linear interpolation with a higher resolution grid
should be used instead, then the tools now available in FLUSH can be
used simply by ignoring the inverse Taylor interpolation.

In summary, the new flux surface tool is useful for retrieving
large numbers of flux surfaces everywhere in the plasma. There is no
distinction between core, separatrix and SOL. When retrieving large
numbers of surfaces in all regions for a high accuracy, the speed is
approximately the same as with the old tools. In addition, the new
tool is more precise in the core and at the separatrix, and more robust
in the SOL. At last, the new tool may be used for any plasma config-
uration, whereas the old tools were significantly oriented for JET and
not reliable on domains different to the usual EFIT configuration at
JET.

Figure 4:
(a) Computation times for different surface grid resolutions. Timings are taken
for the surface accuracy of 0.01cm, for various numbers of flux surfaces. For grid
resolutions below 4cm, the computation time is dominated by the grid analysis, for
resolutions above 8cm, the computation time is dominated by the surface finding and
interpolation..
(b) This plot shows surface contours for a typical JET discharge, using three dif-
ferent surface grid resolutions, 4cm (blue), 8cm (red), and 16cm (green). Although
the surfaces are perfectly aligned for the 4cm and 8cm resolutions, the surface tool
fails in some places for the 16cm resolution, particularly near the X-point, where flux
derivatives are close to zero.

3.4 Finding the LCFS

The last aspect of improvements brought to FLUSH concerns the de-
termination of the Last Closed Flux Surface (LCFS) at initialisation.
In order to describe in detail the improvements required, the process
of determining the LCFS in a plasma should first be explained.

Assuming the plasma is surrounded by a wall, we may have an
X-point plasma, if the X-point surface is totally enclosed within the
wall; or a limiter plasma, if there is no X-point surface or if the X-point
surface is not entirely enclosed within the first wall. The ψ-value of
the LCFS may be determined by stepping along the wall and recording
ψ-values on wall points: the LCFS will be the lowest ψ-value along
the wall (or the highest in case of counter-injected current). This
process is straight forward, except if there is one or several X-points
inside the wall, in which case the private region(s) (below the lower
X-point and above the upper X-point) has ψ lower than the X-point

surface(s). Hence, all wall points in the private region must be found,
and excluded when searching for the minimum ψ-value along the wall.

In the old FLUSH, since mostly JET was treated, the method
used to exclude those private wall points was simply to ignore all wall
points below the lower X-point (and/or above the upper X-point). For
JET, this is in fact quite robust, and only failed in rare corner cases,
when the X-point was very close to the wall. For most machines, this
assumption cannot be made, and the private region should be deter-
mined accurately. Alternatively, the closed part of the X-point surface
may be determined to check that all its points are enclosed within the
first wall.

(a) (b)

Figure 5:
(a) JET plasma with the closed private contour.
(b) ITER plasma with the closed private contour, including a corner of the domain.

The advantage of the latter method, using the closed contour of
the X-point surface, is its robustness and validity on all tokamak con-
figurations. Its disadvantage is that retrieving the complete X-point
surface contour requires more computation time than retrieving only
the private region of the surface, which is generally smaller. On JET
EFIT equilibria, this private region method is the fastest. Thus, one
needs to retrieve the X-point legs (or strike lines), up to the edge
of the domain, and then create a closed contour by joining the ends
of the two legs, as shown in Figure-5a. In cases where the two legs
end on two different edges of the domain, closing the contour implies
the addition of the domain corner, as shown in Figure-5b. Once the
closed private contour has been obtained, The first wall points inside
the contour are excluded from the LCFS search.

However, for other plasma configurations, such as MAST, this
method cannot be used. Figure-1a demonstrates this case, where the
private contour simply cannot be closed. In addition, for such cases,
the private contour has a length comparable to the closed part of the
X-point surface. Thus, the private contour method in FLUSH is used
only for JET EFIT cases (to insure CHAIN1 speed requirements).
For all other cases, FLUSH relies on the method based on the closed
contour of the X-point surface.

The method implemented to retrieve the closed part of the X-
point surface (or its private part) uses the rectangular grid, as for
retrieving standard flux surface. In this case, the contour is followed,
starting from the X-point, stepping from grid element to element. Un-
fortunately, although this method is more reliable and more precise,
once again, the downside is loss of speed. On average, the new ini-
tialisation method has been measured to be 5-10 times slower when
compared to the old FLUSH. Nevertheless, the FLUSH initialisation
remains reasonably fast for use in large codes such as CHAIN1, since
this initialisation is done only once per equilibrium, and generally re-
mains only a fraction of the total FLUSH run-time (depending on the
extent of the FLUSH-calculations done by the user).
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4 Conclusion and Further Work

This paper presented the progress achieved in recent years with the
FLUSH library. The work started in 2006 has been completed and
a new, generalised FLUSH code is now available to users. Both the
flux spline interpolation and the user tools are now adapted to any
tokamak magnetic configuration.

In addition to the globalisation of the code, accessible test and
release procedures have been implemented to ensure consistency of the
code throughout any future development or maintenance. The testing
procedure is directly linked to the CHAIN1 architecture to provide
up-to-date CHAIN1 tests in order to certify the functionality of all
FLUSH-related CHAIN1 codes at any FLUSH release.

Some of FLUSH’s central algorithms and tools have also been
modified, such as the line-of-sight intersection tool, the flux surfaces
routines and the LCFS search method. Although the old methods
are still available in the code for consistency and backward compat-
ibility, the default methods used are the new ones. In some cases,
the precision/robustness/practicality of the new tools leads to slower
computation times than the old tools, but again, the old tools are
still available to the user if rapidity becomes a greater concern than
reliability.

In the future, some additional progress can be made, both in
terms of internal coding as well as regarding user interface. For exam-
ple, the flushinit issue should be addressed and the IGO fork method
for initialisation should be broken into more efficient function calls,
which would simplify both the coding structure and the user acces-
sibility to various tokamak equilibria. At last, effort and manpower
should be spent to update the Integrated Modelling version of FLUSH
with the newer version.
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