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ABSTRACT
Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion 
reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. 
Weight functions show the sensitivity as well as the accessible regions in velocity space for a given 
range of the neutron energy spectrum. Combined with a calculated fast-ion distribution function, 
they determine the part of the distribution function producing detectable neutrons in a given neutron 
energy range. Furthermore, we construct a forward model based on weight functions capable of 
rapidly calculating neutron energy spectra. This forward model can be inverted and could thereby be 
used to directly measure the fast-ion phase-space distribution functions, possibly in a combination 
with other fast-ion diagnostics. The presented methods and results can be applied to neutron energy 
spectra measured by any kind of neutron spectrometer and to any neutron yield measurement.

1.	 INTRODUCTION
Fast ions in fusion devices play an important role. They are created by ionization of injected energetic 
neutral particles, by acceleration of ions using ion cyclotron resonance heating or by fusion processes. 
It is envisaged that the fast ions born in the fusion process will deliver a large part of the heating 
in an eventual fusion power plant. For this to work, it is critical that the fast ions are sufficiently 
conned. It has been found that fast ions can be redistributed or expelled by magnetohydrodynamic 
(MHD) modes. Furthermore, it has been observed that the ions can have an influence on the stability 
of such modes [1, 2]. Therefore, the study of the behaviour of the fast ions and their interplay with 
MHD modes in present-day fusion devices is important.
	 One method to diagnose fast ions in fusion plasmas is by analysing the neutrons created in fusion 
reactions. The energies of the neutrons depend on the energy released in the fusion reactions as well 
as the velocities of the reacting ions. Neutron emission spectrometers measure neutron energy spectra 
and hence are sensitive to the velocity distribution functions of these ions. One such spectrometer 
is the time-of-flight spectrometer TOFOR at JET [3–10]. TOFOR consists of two sets of detectors
placed at a known distance from each other. By measuring the time it takes for the neutrons to travel 
from the first to the second set of detectors, it is possible to infer information about the neutron 
energy spectrum. Here we present a general method to relate neutron energy spectra and neutron 
count measurements to velocity space. Furthermore, we apply our method to neutron energy spectra 
measured by TOFOR.
	 In calculations of neutron energy spectra, it is convenient to consider three different contributions to 
the spectra: the thermal part, the beam-beam part and the beam- target part where the term “beam” refers 
to fast ions from a neutral beam injector and the term “target” refers to the thermal ions. Here, we only 
study the beam-target contribution originating from the fusion process between a fast ion and a thermal 
ion. The beam-target contribution often dominates the spectrum, especially for high neutron energies [3]. 
Neutrons created in a D-D reaction will have energies around 2.45MeV. However, the neutron energy 
spectrum can be broadened significantly if one or both ions have high energies. If an ensemble of fast 
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ions concentrated in a small region in velocity space reacts with thermal ions, the neutron spectra will 
have a characteristic double-hump shape due of the gyro-motion of the ions [6, 7, 11].
	 Here we develop weight functions for neutron emission spectrometry (NES) and neutron yield 
measurements analogous to those for fast-ion D (FIDA) spectroscopy [12–14] and collective 
Thomson scattering (CTS) [15]. Weight functions show the velocity-space sensitivity for a given 
energy range of a measured spectrum. So far, weight functions have been applied in four different 
ways for FIDA and CTS measurements. The simplest application is as an illustration of the region 
of velocity-space that is accessible by a given part of a measured spectrum and the sensitivity within 
this region [12–31]. For a given fast-ion distribution function, the product of the weight function 
and the distribution function shows which ions contribute most to the measurements in the given 
measurement range [12, 13, 25–31]. By integrating the product of the weight functions and a given 
distribution function, it is possible to calculate a synthetic spectrum which can then be compared 
with the measured one. This replaces the traditional forward modelling that is often based on time-
consuming Monte Carlo calculations [32–34]. Finally, weight functions are the basic ingredients in 
the pursuit to extract fast- ion distribution functions directly from measurements using tomographic 
inversion in velocity-space [15, 32–34].
	 This paper is organized as follows. In section 2 we derive analytic weight functions for NES 
and neutron yield measurements. In section 3 we calculate weight functions numerically using an 
existing forward model. We investigate the effect of various bulk ion temperatures on the velocity-
space sensitivity of NES measurements in section 4. Weight functions are used to illustrate the 
region in velocity space measured by a given part of a neutron spectrum in section 5, and in section 
6 we formulate a forward model based on weight functions. In section 7 we discuss perspectives, 
and conclusions are summarised in section 8.

2.	 ANALYTIC EXPRESSIONS FOR NEUTRON SPECTROMETRY WEIGHT 
FUNCTIONS

A fusion process between a fast deuterium beam ion and a thermal deuterium target ion can create 
a neutron and a Helium-3 ion according to the following reaction:
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measurement range [12, 13, 25–31]. By integrating the product of the weight functions

and a given distribution function, it is possible to calculate a synthetic spectrum which

can then be compared with the measured one. This replaces the traditional forward

modelling that is often based on time-consuming Monte Carlo calculations [32–34].

Finally, weight functions are the basic ingredients in the pursuit to extract fast-

ion distribution functions directly from measurements using tomographic inversion in

velocity-space [15, 32–34].

This paper is organized as follows. In section 2 we derive analytic weight functions

for NES and neutron yield measurements. In section 3 we calculate weight functions

numerically using an existing forward model. We investigate the effect of various bulk

ion temperatures on the velocity-space sensitivity of NES measurements in section 4.

Weight functions are used to illustrate the region in velocity space measured by a given

part of a neutron spectrum in section 5, and in section 6 we formulate a forward model

based on weight functions. In section 7 we discuss perspectives, and conclusions are

summarised in section 8.

2. Analytic expressions for neutron spectrometry weight functions

A fusion process between a fast deuterium beam ion and a thermal deuterium target

ion can create a neutron and a Helium-3 ion according to the following reaction:

D + D → 3He + n . (1)

The neutrons leave the plasma and can be detected using neutron spectrometers. The

energies of the detected neutrons depend on the velocities of the reacting ions. Here

we show which part of velocity space can generate neutrons with energies in particular

energy ranges using weight functions. Weight functions are defined as functions relating

a given measurement to the fast-ion phase-space distribution function, f
(
v‖, v⊥, r

)
:

s (vn,1, vn,2, φ) =

∫

vol

∫ ∞

0

∫ ∞

−∞
w
(
vn,1, vn,2, φ, v‖, v⊥, r

)
f
(
v‖, v⊥, r

)
dv‖dv⊥dr ,

(2)

where s (vn,1, vn,2, φ) is the detection rate of neutrons with velocities between vn,1 and

vn,2 measured by a detector at an angle φ between its line-of-sight and the magnetic field.

w
(
vn,1, vn,2, φ, v‖, v⊥, r

)
is the weight function in units of

[
Nn

sNf

]
, i.e. number of detected

neutrons in a given energy or velocity range per second per fast ion. f
(
v‖, v⊥, r

)
is in

units of
[
Nf s2

m5

]
. v‖ and v⊥ denote the ion velocity parallel and perpendicular to the

magnetic field, respectively, and r denotes the spatial coordinates. v‖ is defined positive

in the co-current direction, which is usually in the direction opposite to the magnetic

field. The spatial integral is over the conical measurement volume oriented along the

line-of-sight. The fast-ion phase-space distribution function and the weight functions

have a spatial dependence since the plasma parameters may vary significantly along the
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where s (vn,1, vn,2, f) is the detection rate of neutrons with velocities between vn,1 and vn,2 measured 
by a detector at an angle f between its line-of-sight and the magnetic field. (vn,1, vn,2, f, v||, v⊥, r) is 
the weight function in units of Nn

sNf
[     ] , i.e. number of detected neutrons in a given energy or velocity 

range per second per fast ion. f (v||, v⊥, r) is in units of Nf n
2

m5[         ]. v|| and v⊥ denote the ion velocity 
parallel and perpendicular to the magnetic field, respectively, and r denotes the spatial coordinates. 
v|| is defined positive in the co-current direction, which is usually in the direction opposite to the 
magnetic field. The spatial integral is over the conical measurement volume oriented along the 
line-of-sight. The fast-ion phase-space distribution function and the weight functions have a spatial 
dependence since the plasma parameters may vary significantly along the line-of-sight. Equation 
(2) can also be expressed as a function of energy and pitch 
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line-of-sight. Equation (2) can also be expressed as a function of energy and pitch

s (En,1, En,2, φ) =

∫ ∫ ∫
w (En,1, En,2, φ, E, p, r) f (E, p, r) dE dp dr , (3)

where E is the fast-ion energy, p is the pitch defined as p =
v‖
v

and En is the neutron

energy. In the following, weight functions will be derived in
(
v‖, v⊥

)
-space as the

mathematical expressions take a simpler form in these coordinates. However, the most

important expressions will be given in the more commonly used (E, p)-space as well.

Weight functions can be written as a product of two factors:

w
(
vn,1, vn,2, φ, v‖, v⊥, r

)
= R

(
φ, v‖, v⊥, r

)
prob

(
vn,1 < vn < vn,2|φ, v‖, v⊥

)
.

(4)

prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
is the probability that a neutron has a velocity between

vn,1 and vn,2 (or likewise a kinetic energy between En,1 and En,2), given it was created

in a fusion reaction between a thermal ion and a fast ion with velocity (v‖, v⊥) and

observed at an angle φ. The conditioning symbol ”|” means given. This factor contains

the spectral information that determines which part of velocity space a given interval

in the neutron energy spectrum is susceptible to. R
(
φ, v‖, v⊥, r

)
is the rate of detected

neutrons per fast ion as a function of velocity and position.

Before we derive analytic expressions for the probability part, we illustrate the

properties of the rate function R
(
φ, v‖, v⊥, r

)
. The rate function gives the total number

of neutrons detected per second per fast ion irrespective of the neutron energies. It

depends on the relative velocity, vrel between the fast and thermal ions and can be

calculated according to

R
(
φ, v‖, v⊥, r

)
=

Ω(r)

4π

∫ ∫
ft
(
vt,‖, vt,⊥, r

)
σ (φ, vrel) vrel dvt,‖dvt,⊥ , (5)

where Ω is the solid-angle of the detector as seen from the plasma as a function of

position, ft is the thermal ion distribution function, vt,‖ and vt,⊥ are the thermal ion

velocities parallel and perpendicular to the magnetic field, σ is the fusion cross section

and vrel = |vrel| is the magnitude of the relative velocity. The integral is over the thermal

ion velocity and is calculated by numerically sampling over a Maxwellian distribution.

Here we illustrate some basic properties of R by assuming that the velocities of the

fast ions are significantly higher than the velocities of the thermal ions. Furthermore we

neglect the φ-dependence of the cross section and the finite solid-angle. This allows us

to approximate the thermal-ion distribution function by a δ-function located at origo.

In this case, the relative velocity becomes the velocity of the fast ions and equation (5)

reduces to

R
(
v‖, v⊥, r

)
= nt (r) σ

(√
v2‖ + v2⊥

)√
v2‖ + v2⊥ , (6)

where nt is the thermal ion density. In this case R does not depend on pitch as shown

in figure 1(a). Here, σ is approximated by [35]

σ =
S

Ecm

(
exp

(
BG√
Ecm

)
− 1

) , (7)
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Here we illustrate some basic properties of R by assuming that the velocities of the fast ions are 
significantly higher than the velocities of the thermal ions. Furthermore we neglect the f-dependence 
of the cross section and the finite solid-angle. This allows us to approximate the thermal-ion 
distribution function by a d-function located at origo. In this case, the relative velocity becomes 
the velocity of the fast ions and equation (5) reduces to
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properties of the rate function R
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. The rate function gives the total number

of neutrons detected per second per fast ion irrespective of the neutron energies. It
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calculated according to
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where Ω is the solid-angle of the detector as seen from the plasma as a function of
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and vrel = |vrel| is the magnitude of the relative velocity. The integral is over the thermal

ion velocity and is calculated by numerically sampling over a Maxwellian distribution.

Here we illustrate some basic properties of R by assuming that the velocities of the

fast ions are significantly higher than the velocities of the thermal ions. Furthermore we

neglect the φ-dependence of the cross section and the finite solid-angle. This allows us

to approximate the thermal-ion distribution function by a δ-function located at origo.
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where nt is the thermal ion density. In this case R does not depend on pitch as shown
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where Ecm is the energy in the center-of-mass frame, BG is a constant and S is a fifth-order polynomial 
in Ecm. A thermal ion density of 5×1019 m–3 is used. A drifting thermal target distribution modelled as a 
d-function located at a non-zero parallel velocity and no perpendicular velocity gives a rate function of
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where Ecm is the energy in the center-of-mass frame, BG is a constant and S is a fifth-

order polynomial in Ecm. A thermal ion density of 5 × 1019 m−3 is used. A drifting

thermal target distribution modelled as a δ-function located at a non-zero parallel

velocity and no perpendicular velocity gives a rate function of
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)
= nt (r) σ

(√(
v‖ − vd

)2
+ v2⊥

)√(
v‖ − vd

)2
+ v2⊥ (8)

where vd is the drift velocity parallel to the magnetic field. This introduces an

asymmetry in pitch, as we show in figure 1(b). Here a co-current drift velocity of

vd = 2.1 × 105 m/s is used. In this situation, the neutron rate is largest for fast ions

with negative pitch, as they move in the direction opposite to the thermal drift and thus

have a larger relative velocity.

(a) R without drift. (b) R with drift.

Figure 1. Rate functions with and without a drift of the target ions in units of
[
Nn

Nis

]
.

The co-current drift velocity is 2.1× 105 m
s . The thermal ion density is 5× 1019 m−3.

The rate function, R, is the weight function for neutron yield measurements [12],

which count any neutron irrespective of energy. This follows from equation (4) for

vn,1 → −∞ and vn,2 → ∞ as the probability function becomes unity for very large

neutron energy ranges, i.e. the probability that a detected neutron has a velocity

between ±∞ must be 1. Neutron count measurements are most sensitive in the velocity-

space regions with the largest amplitudes of R, where most neutrons are produced per

ion per second.

Now we derive analytic expressions for the probability part of the weight functions.

The probability that a detected neutron has a velocity in a given interval, vn,1 < vn < vn,2
is the integral of the probability density function of the neutron velocity integrated over

this interval:

prob
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which count any neutron irrespective of energy. This follows from equation (4) for
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between ±∞ must be 1. Neutron count measurements are most sensitive in the velocity-

space regions with the largest amplitudes of R, where most neutrons are produced per

ion per second.

Now we derive analytic expressions for the probability part of the weight functions.

The probability that a detected neutron has a velocity in a given interval, vn,1 < vn < vn,2
is the integral of the probability density function of the neutron velocity integrated over

this interval:

prob
(
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=
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We assume that the energy and momentum of the thermal target ions are negligible compared with 
the energy and momentum of the beam ions, respectively. Thus, given the parallel and perpendicular 
velocities of the fast ion and the angle, f, to the detector, the neutron velocity only depends on 
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the gyro-angle, g, of the fast ion before the reaction [36]. The neutron velocity probability density 
function can therefore be expressed as a function of the gyro-angle probability density function:
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We assume that the energy and momentum of the thermal target ions are negligible

compared with the energy and momentum of the beam ions, respectively. Thus,

given the parallel and perpendicular velocities of the fast ion and the angle, φ, to the

detector, the neutron velocity only depends on the gyro-angle, γ, of the fast ion before

the reaction [36]. The neutron velocity probability density function can therefore be

expressed as a function of the gyro-angle probability density function:

pdfvn = pdfγ

∣∣∣∣
dγ

dvn

∣∣∣∣ . (10)

The gyro-angle probability distribution function is assumed uniform:

pdfγ =
1

2π
, (11)

and the problem reduces to expressing the relation between the gyro-angle of the fast ion

and the neutron velocity in known quantities. Conservation of energy during a fusion

process between a fast beam ion and a stationary target ion in the lab frame of reference

dictates
1

2
mfv

2
f +Q =

1

2
mHev

2
He +

1

2
mnv

2
n , (12)

where mf , mHe and mn and vf , vHe and vn are the masses and velocities of the fast ion,

the helium ion and the neutron, respectively, and Q is the energy released in the fusion

process. For a D-D reaction, Q = 3.27 MeV. Conservation of momentum dictates

mfvf = mHevHe +mnvn . (13)

Isolating vHe and squaring gives

v2He =
1

m2
He

(mfvf −mnvn)
2 =

1

m2
He

(
m2

fv
2
f +m2

nv
2
n − 2mfmnvf · vn

)
.

(14)

To calculate the dot product vf · vn, we write

vn = v̂nvn , (15)

where v̂n is the unit vector in the direction towards the spectrometer along the line-

of-sight. The projection of the fast-ion velocity in the direction towards the neutron

spectrometer, u, can then be expressed as

u = vf · v̂n . (16)

Inserting equations (14), (15) and (16) in equation (12) and isolating u gives

u =
1

2

(mHe +mn)

mf

vn −
1

2

(mHe −mf )

mn

v2f
vn

− mHe

mfmn

Q

vn
. (17)

Only neutrons moving along the line-of-sight towards the neutron spectrometer are

detected. We define a
(
v‖, v⊥,1, v⊥,2

)
-coordinate system similar to the one defined in

reference [15]. The v⊥,1-axis is oriented such that the line-of-sight of the spectrometer

lies in the
(
v‖, v⊥,1

)
-plane. The fast-ion velocity can be written as

vf = v‖v̂‖ + v⊥ cos (γ) v̂⊥,1 + v⊥ sin (γ) v̂⊥,2 , (18)

	 (10)

The gyro-angle probability distribution function is assumed uniform:
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and the problem reduces to expressing the relation between the gyro-angle of the fast ion and the 
neutron velocity in known quantities. Conservation of energy during a fusion process between a 
fast beam ion and a stationary target ion in the lab frame of reference dictates
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)
-coordinate system similar to the one defined in
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vf = v‖v̂‖ + v⊥ cos (γ) v̂⊥,1 + v⊥ sin (γ) v̂⊥,2 , (18)

	 (15)

where v̂n is the unit vector in the direction towards the spectrometer along the line-of-sight. The 
projection of the fast-ion velocity in the direction towards the neutron spectrometer, u, can then be 
expressed as
	

Velocity-space sensitivity of neutron spectrometry measurements 6

We assume that the energy and momentum of the thermal target ions are negligible

compared with the energy and momentum of the beam ions, respectively. Thus,

given the parallel and perpendicular velocities of the fast ion and the angle, φ, to the

detector, the neutron velocity only depends on the gyro-angle, γ, of the fast ion before

the reaction [36]. The neutron velocity probability density function can therefore be

expressed as a function of the gyro-angle probability density function:

pdfvn = pdfγ

∣∣∣∣
dγ

dvn

∣∣∣∣ . (10)

The gyro-angle probability distribution function is assumed uniform:

pdfγ =
1

2π
, (11)

and the problem reduces to expressing the relation between the gyro-angle of the fast ion

and the neutron velocity in known quantities. Conservation of energy during a fusion

process between a fast beam ion and a stationary target ion in the lab frame of reference

dictates
1

2
mfv

2
f +Q =

1

2
mHev

2
He +

1

2
mnv

2
n , (12)

where mf , mHe and mn and vf , vHe and vn are the masses and velocities of the fast ion,

the helium ion and the neutron, respectively, and Q is the energy released in the fusion

process. For a D-D reaction, Q = 3.27 MeV. Conservation of momentum dictates

mfvf = mHevHe +mnvn . (13)

Isolating vHe and squaring gives

v2He =
1

m2
He

(mfvf −mnvn)
2 =

1

m2
He

(
m2

fv
2
f +m2

nv
2
n − 2mfmnvf · vn

)
.

(14)

To calculate the dot product vf · vn, we write

vn = v̂nvn , (15)

where v̂n is the unit vector in the direction towards the spectrometer along the line-

of-sight. The projection of the fast-ion velocity in the direction towards the neutron

spectrometer, u, can then be expressed as

u = vf · v̂n . (16)

Inserting equations (14), (15) and (16) in equation (12) and isolating u gives

u =
1

2

(mHe +mn)

mf

vn −
1

2

(mHe −mf )

mn

v2f
vn

− mHe

mfmn

Q

vn
. (17)

Only neutrons moving along the line-of-sight towards the neutron spectrometer are

detected. We define a
(
v‖, v⊥,1, v⊥,2

)
-coordinate system similar to the one defined in

reference [15]. The v⊥,1-axis is oriented such that the line-of-sight of the spectrometer

lies in the
(
v‖, v⊥,1

)
-plane. The fast-ion velocity can be written as

vf = v‖v̂‖ + v⊥ cos (γ) v̂⊥,1 + v⊥ sin (γ) v̂⊥,2 , (18)

	 (16)

Inserting equations (14), (15) and (16) in equation (12) and isolating u gives

	

Velocity-space sensitivity of neutron spectrometry measurements 6

We assume that the energy and momentum of the thermal target ions are negligible

compared with the energy and momentum of the beam ions, respectively. Thus,

given the parallel and perpendicular velocities of the fast ion and the angle, φ, to the

detector, the neutron velocity only depends on the gyro-angle, γ, of the fast ion before

the reaction [36]. The neutron velocity probability density function can therefore be

expressed as a function of the gyro-angle probability density function:

pdfvn = pdfγ

∣∣∣∣
dγ

dvn

∣∣∣∣ . (10)

The gyro-angle probability distribution function is assumed uniform:

pdfγ =
1

2π
, (11)

and the problem reduces to expressing the relation between the gyro-angle of the fast ion

and the neutron velocity in known quantities. Conservation of energy during a fusion

process between a fast beam ion and a stationary target ion in the lab frame of reference

dictates
1

2
mfv

2
f +Q =

1

2
mHev

2
He +

1

2
mnv

2
n , (12)

where mf , mHe and mn and vf , vHe and vn are the masses and velocities of the fast ion,

the helium ion and the neutron, respectively, and Q is the energy released in the fusion

process. For a D-D reaction, Q = 3.27 MeV. Conservation of momentum dictates

mfvf = mHevHe +mnvn . (13)

Isolating vHe and squaring gives

v2He =
1

m2
He

(mfvf −mnvn)
2 =

1

m2
He

(
m2

fv
2
f +m2

nv
2
n − 2mfmnvf · vn

)
.

(14)

To calculate the dot product vf · vn, we write

vn = v̂nvn , (15)

where v̂n is the unit vector in the direction towards the spectrometer along the line-

of-sight. The projection of the fast-ion velocity in the direction towards the neutron

spectrometer, u, can then be expressed as

u = vf · v̂n . (16)

Inserting equations (14), (15) and (16) in equation (12) and isolating u gives

u =
1

2

(mHe +mn)

mf

vn −
1

2

(mHe −mf )

mn

v2f
vn

− mHe

mfmn

Q

vn
. (17)

Only neutrons moving along the line-of-sight towards the neutron spectrometer are

detected. We define a
(
v‖, v⊥,1, v⊥,2

)
-coordinate system similar to the one defined in

reference [15]. The v⊥,1-axis is oriented such that the line-of-sight of the spectrometer

lies in the
(
v‖, v⊥,1

)
-plane. The fast-ion velocity can be written as

vf = v‖v̂‖ + v⊥ cos (γ) v̂⊥,1 + v⊥ sin (γ) v̂⊥,2 , (18)

	 (17)

Only neutrons moving along the line-of-sight towards the neutron spectrometer are detected. We 
define a (v||, v⊥,1, v⊥,2)–coordinate system similar to the one defined in reference [15]. The v⊥,1-axis 



6

is oriented such that the line-of-sight of the spectrometer lies in the (v||, v⊥,1)-plane. The fast-ion 
velocity can be written as

	

Velocity-space sensitivity of neutron spectrometry measurements 6

We assume that the energy and momentum of the thermal target ions are negligible

compared with the energy and momentum of the beam ions, respectively. Thus,

given the parallel and perpendicular velocities of the fast ion and the angle, φ, to the

detector, the neutron velocity only depends on the gyro-angle, γ, of the fast ion before

the reaction [36]. The neutron velocity probability density function can therefore be

expressed as a function of the gyro-angle probability density function:

pdfvn = pdfγ

∣∣∣∣
dγ

dvn

∣∣∣∣ . (10)

The gyro-angle probability distribution function is assumed uniform:

pdfγ =
1

2π
, (11)

and the problem reduces to expressing the relation between the gyro-angle of the fast ion

and the neutron velocity in known quantities. Conservation of energy during a fusion

process between a fast beam ion and a stationary target ion in the lab frame of reference

dictates
1

2
mfv

2
f +Q =

1

2
mHev

2
He +

1

2
mnv

2
n , (12)

where mf , mHe and mn and vf , vHe and vn are the masses and velocities of the fast ion,

the helium ion and the neutron, respectively, and Q is the energy released in the fusion

process. For a D-D reaction, Q = 3.27 MeV. Conservation of momentum dictates

mfvf = mHevHe +mnvn . (13)

Isolating vHe and squaring gives

v2He =
1

m2
He

(mfvf −mnvn)
2 =

1

m2
He

(
m2

fv
2
f +m2

nv
2
n − 2mfmnvf · vn

)
.

(14)

To calculate the dot product vf · vn, we write

vn = v̂nvn , (15)

where v̂n is the unit vector in the direction towards the spectrometer along the line-

of-sight. The projection of the fast-ion velocity in the direction towards the neutron

spectrometer, u, can then be expressed as

u = vf · v̂n . (16)

Inserting equations (14), (15) and (16) in equation (12) and isolating u gives

u =
1

2

(mHe +mn)

mf

vn −
1

2

(mHe −mf )

mn

v2f
vn

− mHe

mfmn

Q

vn
. (17)

Only neutrons moving along the line-of-sight towards the neutron spectrometer are

detected. We define a
(
v‖, v⊥,1, v⊥,2

)
-coordinate system similar to the one defined in

reference [15]. The v⊥,1-axis is oriented such that the line-of-sight of the spectrometer

lies in the
(
v‖, v⊥,1

)
-plane. The fast-ion velocity can be written as

vf = v‖v̂‖ + v⊥ cos (γ) v̂⊥,1 + v⊥ sin (γ) v̂⊥,2 , (18)	 (18)

where v̂||, v̂⊥,1 and v̂⊥,2 are the three unit vectors. In this coordinate system v̂n becomes

	

Velocity-space sensitivity of neutron spectrometry measurements 7

where v̂‖, v̂⊥,1 and v̂⊥,2 are the three unit vectors. In this coordinate system v̂n becomes

v̂n = cos (φ) v̂‖ + sin (φ) v̂⊥,1 . (19)

The projected fast-ion velocity, u, can be expressed in terms of the parallel and

perpendicular ion velocities [15]:

u = vf · v̂n = v‖ cos (φ) + v⊥ sin (φ) cos (γ) . (20)

If, for a given u, equation (20) is fulfilled for γ, then so it is for 2π−γ as well. Combining

equations (17) and (20) and isolating γ gives

γ = arccos

(
u− v‖ cos (φ)

v⊥ sin (φ)

)

= arccos


 1

v⊥ sin (φ)


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2
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1

2

(mHe −mf )

mn

(
v2‖ + v2⊥

)

vn

− mHe

mfmn

Q

vn
− v‖ cos (φ)




 . (21)

To find pdfvn from equation (10), we differentiate γ with respect to the neutron velocity

dγ

dvn
= − 1

sin (γ)


 1

v⊥ sin (φ)


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2
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(
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)

v2n

+
mHe

mfmn

Q

v2n




 . (22)

Combining equations (9)-(11) and changing the integration variable to γ gives

prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
=

∫ γ(vn,2)

γ(vn,1)

1
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+

∫ 2π−γ(vn,2)

2π−γ(vn,1)

1

2π

∣∣∣ dγ
dvn

∣∣∣
dγ
dvn

dγ . (23)

The second integral in equation (23) arises since equation (20) is fulfilled for both γ and

2π− γ as mentioned earlier. As φ is only defined between 0◦ and 180◦, the terms in the

parenthesis in equation (22) are always positive, and thus the signs of the integrands

in equation (23) depend only on γ. For 0 < γ < π the integrand is negative, and for

π < γ < 2π, the integrand is positive. The probability can now be calculated

prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
=

1

2π

(∫ γ(vn,2)
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(−1) dγ +

∫ 2π−γ(vn,2)
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dγ

)

=
γ (vn,1)− γ (vn,2)

π
, (24)

where the γ values are given by equation (21). Thus, the probability function is the

fraction of the gyroorbit that leads to neutrons with energies within the given neutron

	 (19)

The projected fast-ion velocity, u, can be expressed in terms of the parallel and perpendicular ion 
velocities [15]:
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	 (20)

If, for a given u, equation (20) is fullfilled for g, then so it is for 2p – g  as well. Combining equations 
(17) and (20) and isolating g gives
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To find pdfvn from equation (10), we differentiate g with respect to the neutron velocity
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	 (22)

Combining equations (9)-(11) and changing the integration variable to  gives
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prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
=

∫ γ(vn,2)

γ(vn,1)

1

2π

∣∣∣ dγ
dvn

∣∣∣
dγ
dvn

dγ

+

∫ 2π−γ(vn,2)

2π−γ(vn,1)

1

2π

∣∣∣ dγ
dvn

∣∣∣
dγ
dvn

dγ . (23)

The second integral in equation (23) arises since equation (20) is fulfilled for both γ and

2π− γ as mentioned earlier. As φ is only defined between 0◦ and 180◦, the terms in the

parenthesis in equation (22) are always positive, and thus the signs of the integrands

in equation (23) depend only on γ. For 0 < γ < π the integrand is negative, and for

π < γ < 2π, the integrand is positive. The probability can now be calculated

prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
=

1

2π

(∫ γ(vn,2)

γ(vn,1)

(−1) dγ +

∫ 2π−γ(vn,2)

2π−γ(vn,1)

dγ

)

=
γ (vn,1)− γ (vn,2)

π
, (24)

where the γ values are given by equation (21). Thus, the probability function is the

fraction of the gyroorbit that leads to neutrons with energies within the given neutron

	 (23)
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The second integral in equation (23) arises since equation (20) is fulfilled for both g  and 2p – g as 
mentioned earlier. As f is only defined between 0o and 180o, the terms in the parenthesis in equation 
(22) are always positive, and thus the signs of the integrands in equation (23) depend only on g. 
For 0 < g < p the integrand is negative, and for p < g < 2p, the integrand is positive. The probability 
can now be calculated
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where v̂‖, v̂⊥,1 and v̂⊥,2 are the three unit vectors. In this coordinate system v̂n becomes

v̂n = cos (φ) v̂‖ + sin (φ) v̂⊥,1 . (19)

The projected fast-ion velocity, u, can be expressed in terms of the parallel and

perpendicular ion velocities [15]:

u = vf · v̂n = v‖ cos (φ) + v⊥ sin (φ) cos (γ) . (20)

If, for a given u, equation (20) is fulfilled for γ, then so it is for 2π−γ as well. Combining

equations (17) and (20) and isolating γ gives

γ = arccos

(
u− v‖ cos (φ)

v⊥ sin (φ)

)

= arccos


 1

v⊥ sin (φ)


1

2

(mHe +mn)

mf

vn −
1

2

(mHe −mf )

mn

(
v2‖ + v2⊥

)

vn

− mHe

mfmn

Q

vn
− v‖ cos (φ)




 . (21)

To find pdfvn from equation (10), we differentiate γ with respect to the neutron velocity

dγ

dvn
= − 1

sin (γ)


 1

v⊥ sin (φ)


1

2

(mHe +mn)

mf

+
1

2

(mHe −mf )

mn

(
v2‖ + v2⊥

)

v2n

+
mHe

mfmn

Q

v2n




 . (22)

Combining equations (9)-(11) and changing the integration variable to γ gives

prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
=

∫ γ(vn,2)

γ(vn,1)

1

2π

∣∣∣ dγ
dvn

∣∣∣
dγ
dvn

dγ

+

∫ 2π−γ(vn,2)

2π−γ(vn,1)

1

2π

∣∣∣ dγ
dvn

∣∣∣
dγ
dvn

dγ . (23)

The second integral in equation (23) arises since equation (20) is fulfilled for both γ and

2π− γ as mentioned earlier. As φ is only defined between 0◦ and 180◦, the terms in the

parenthesis in equation (22) are always positive, and thus the signs of the integrands

in equation (23) depend only on γ. For 0 < γ < π the integrand is negative, and for

π < γ < 2π, the integrand is positive. The probability can now be calculated

prob
(
vn,1 < vn < vn,2

∣∣φ, v‖, v⊥
)
=

1

2π

(∫ γ(vn,2)

γ(vn,1)

(−1) dγ +

∫ 2π−γ(vn,2)

2π−γ(vn,1)

dγ

)

=
γ (vn,1)− γ (vn,2)

π
, (24)

where the γ values are given by equation (21). Thus, the probability function is the

fraction of the gyroorbit that leads to neutrons with energies within the given neutron

	 (24)

where the g values are given by equation (21). Thus, the probability function is the fraction of the 
gyroorbit that leads to neutrons with energies within the given neutron energy range. These results 
are valid for  f ≠ 0o or 180o. For f = 0o or 180o, the projected fast-ion velocity become v||, and a 
given (v||,v⊥) -coordinate will give a single neutron velocity through equation (17). In this specific 
case, the probability functions becomes semicircular arcs in (v||,v⊥)-space with values 1. As stated 
earlier, the probability function can also be expressed in terms of the neutron energy, En:
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energy range. These results are valid for φ �= 0◦ or 180◦. For φ = 0◦ or 180◦,

the projected fast-ion velocity become v‖, and a given
(
v‖, v⊥

)
-coordinate will give a

single neutron velocity through equation (17). In this specific case, the probability

functions becomes semicircular arcs in
(
v‖, v⊥

)
-space with values 1. As stated earlier,

the probability function can also be expressed in terms of the neutron energy, En:

prob
(
En,1 < En < En,2

∣∣φ, v‖, v⊥
)
=

γ (En,1)− γ (En,2)

π
. (25)

γ (En) is found be inserting vn =
√

2En

mn
in equation (21). The probability can also be

expressed in energy-pitch coordinates.

prob (En,1 < En < En,2|φ,E, p) =
γ (En,1)− γ (En,2)

π
. (26)

The γ values are then calculated from

γ = arccos

(
1√

1− p2
1

sin (φ)

(
1

2

(mHe +mn)√
mfmn

√
En

E

− 1

2

(mHe −mf )√
mfmn

√
E

En

− 1

2

mHe√
mfmn

Q√
EEn

− p cos (φ)

))
. (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17),

(21) and (27) reduce considerably. Equation (17) becomes

u = vn −
1

2

v2f
vn

− 3

2

Q

mnvn
. (28)

Equation (21) becomes

γ = arccos


 1

v⊥ sin (φ)


vn −

1

2

(
v2‖ + v2⊥

)

vn
− 3

2

Q

mnvn
− v‖ cos (φ)




(29)

and equation (27) becomes

γ = arccos

(
1√

1− p2 sin (φ)

(√
2
En

E
− 1

2

√
E

2En

− 3

2

Q√
2EEn

− p cos (φ)

))
. (30)

Examples of probabilities calculated using equation (25) for φ = 90◦, 45◦ and 10◦ for

different neutron energies are plotted in figure 2 in
(
v‖, v⊥

)
-space. They are calculated

for a neutron energy interval of ∆En = En,2−En,1 = 0.1 MeV. The coloured regions are

observable for the given neutron energy range and projection angle φ whereas the white

regions cannot contribute to the signal and are unobservable regions. The probability

functions corresponding to different neutron energy ranges cover different regions in

velocity space. We have chosen to show these examples of the weight functions for

very large
(
v‖, v⊥

)
-values in order to reveal the shape of the observable region. Fast

ions at JET typically have lower energies. Figure 2 shows that the weight functions for

	 (25)

g  (En) is found be inserting vn = 2En
mn

 in equation (21). The probability can also be expressed in 
energy-pitch coordinates. 
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energy range. These results are valid for φ �= 0◦ or 180◦. For φ = 0◦ or 180◦,

the projected fast-ion velocity become v‖, and a given
(
v‖, v⊥

)
-coordinate will give a

single neutron velocity through equation (17). In this specific case, the probability

functions becomes semicircular arcs in
(
v‖, v⊥

)
-space with values 1. As stated earlier,

the probability function can also be expressed in terms of the neutron energy, En:

prob
(
En,1 < En < En,2

∣∣φ, v‖, v⊥
)
=

γ (En,1)− γ (En,2)

π
. (25)

γ (En) is found be inserting vn =
√

2En

mn
in equation (21). The probability can also be

expressed in energy-pitch coordinates.

prob (En,1 < En < En,2|φ,E, p) =
γ (En,1)− γ (En,2)

π
. (26)

The γ values are then calculated from

γ = arccos

(
1√

1− p2
1

sin (φ)

(
1

2

(mHe +mn)√
mfmn

√
En

E

− 1

2

(mHe −mf )√
mfmn

√
E

En

− 1

2

mHe√
mfmn

Q√
EEn

− p cos (φ)

))
. (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17),

(21) and (27) reduce considerably. Equation (17) becomes

u = vn −
1

2

v2f
vn

− 3

2

Q

mnvn
. (28)

Equation (21) becomes

γ = arccos


 1

v⊥ sin (φ)


vn −

1

2

(
v2‖ + v2⊥

)

vn
− 3

2

Q

mnvn
− v‖ cos (φ)




(29)

and equation (27) becomes

γ = arccos

(
1√

1− p2 sin (φ)

(√
2
En

E
− 1

2

√
E

2En

− 3

2

Q√
2EEn

− p cos (φ)

))
. (30)

Examples of probabilities calculated using equation (25) for φ = 90◦, 45◦ and 10◦ for

different neutron energies are plotted in figure 2 in
(
v‖, v⊥

)
-space. They are calculated

for a neutron energy interval of ∆En = En,2−En,1 = 0.1 MeV. The coloured regions are

observable for the given neutron energy range and projection angle φ whereas the white

regions cannot contribute to the signal and are unobservable regions. The probability

functions corresponding to different neutron energy ranges cover different regions in

velocity space. We have chosen to show these examples of the weight functions for

very large
(
v‖, v⊥

)
-values in order to reveal the shape of the observable region. Fast

ions at JET typically have lower energies. Figure 2 shows that the weight functions for

	 (26)

The values are then calculated from
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energy range. These results are valid for φ �= 0◦ or 180◦. For φ = 0◦ or 180◦,

the projected fast-ion velocity become v‖, and a given
(
v‖, v⊥

)
-coordinate will give a

single neutron velocity through equation (17). In this specific case, the probability

functions becomes semicircular arcs in
(
v‖, v⊥

)
-space with values 1. As stated earlier,

the probability function can also be expressed in terms of the neutron energy, En:

prob
(
En,1 < En < En,2

∣∣φ, v‖, v⊥
)
=

γ (En,1)− γ (En,2)

π
. (25)

γ (En) is found be inserting vn =
√

2En

mn
in equation (21). The probability can also be

expressed in energy-pitch coordinates.

prob (En,1 < En < En,2|φ,E, p) =
γ (En,1)− γ (En,2)

π
. (26)

The γ values are then calculated from

γ = arccos

(
1√

1− p2
1

sin (φ)

(
1

2

(mHe +mn)√
mfmn

√
En

E

− 1

2

(mHe −mf )√
mfmn

√
E

En

− 1

2

mHe√
mfmn

Q√
EEn

− p cos (φ)

))
. (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17),

(21) and (27) reduce considerably. Equation (17) becomes

u = vn −
1

2

v2f
vn

− 3

2

Q

mnvn
. (28)

Equation (21) becomes

γ = arccos


 1

v⊥ sin (φ)


vn −

1

2

(
v2‖ + v2⊥

)

vn
− 3

2

Q

mnvn
− v‖ cos (φ)




(29)

and equation (27) becomes

γ = arccos

(
1√

1− p2 sin (φ)

(√
2
En

E
− 1

2

√
E

2En

− 3

2

Q√
2EEn

− p cos (φ)

))
. (30)

Examples of probabilities calculated using equation (25) for φ = 90◦, 45◦ and 10◦ for

different neutron energies are plotted in figure 2 in
(
v‖, v⊥

)
-space. They are calculated

for a neutron energy interval of ∆En = En,2−En,1 = 0.1 MeV. The coloured regions are

observable for the given neutron energy range and projection angle φ whereas the white

regions cannot contribute to the signal and are unobservable regions. The probability

functions corresponding to different neutron energy ranges cover different regions in

velocity space. We have chosen to show these examples of the weight functions for

very large
(
v‖, v⊥

)
-values in order to reveal the shape of the observable region. Fast

ions at JET typically have lower energies. Figure 2 shows that the weight functions for

	 (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17), (21) and (27) 
reduce considerably. Equation (17) becomes
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energy range. These results are valid for φ �= 0◦ or 180◦. For φ = 0◦ or 180◦,

the projected fast-ion velocity become v‖, and a given
(
v‖, v⊥

)
-coordinate will give a

single neutron velocity through equation (17). In this specific case, the probability

functions becomes semicircular arcs in
(
v‖, v⊥

)
-space with values 1. As stated earlier,

the probability function can also be expressed in terms of the neutron energy, En:

prob
(
En,1 < En < En,2

∣∣φ, v‖, v⊥
)
=

γ (En,1)− γ (En,2)

π
. (25)

γ (En) is found be inserting vn =
√

2En

mn
in equation (21). The probability can also be

expressed in energy-pitch coordinates.

prob (En,1 < En < En,2|φ,E, p) =
γ (En,1)− γ (En,2)

π
. (26)

The γ values are then calculated from

γ = arccos

(
1√

1− p2
1

sin (φ)

(
1

2

(mHe +mn)√
mfmn

√
En

E

− 1

2

(mHe −mf )√
mfmn

√
E

En

− 1

2

mHe√
mfmn

Q√
EEn

− p cos (φ)

))
. (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17),

(21) and (27) reduce considerably. Equation (17) becomes

u = vn −
1

2

v2f
vn

− 3

2

Q

mnvn
. (28)

Equation (21) becomes

γ = arccos


 1

v⊥ sin (φ)


vn −

1

2

(
v2‖ + v2⊥

)

vn
− 3

2

Q

mnvn
− v‖ cos (φ)




(29)

and equation (27) becomes

γ = arccos

(
1√

1− p2 sin (φ)

(√
2
En

E
− 1

2

√
E

2En

− 3

2

Q√
2EEn

− p cos (φ)

))
. (30)

Examples of probabilities calculated using equation (25) for φ = 90◦, 45◦ and 10◦ for

different neutron energies are plotted in figure 2 in
(
v‖, v⊥

)
-space. They are calculated

for a neutron energy interval of ∆En = En,2−En,1 = 0.1 MeV. The coloured regions are

observable for the given neutron energy range and projection angle φ whereas the white

regions cannot contribute to the signal and are unobservable regions. The probability

functions corresponding to different neutron energy ranges cover different regions in

velocity space. We have chosen to show these examples of the weight functions for

very large
(
v‖, v⊥

)
-values in order to reveal the shape of the observable region. Fast

ions at JET typically have lower energies. Figure 2 shows that the weight functions for

	 (28)

Equation (21) becomes
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energy range. These results are valid for φ �= 0◦ or 180◦. For φ = 0◦ or 180◦,

the projected fast-ion velocity become v‖, and a given
(
v‖, v⊥

)
-coordinate will give a

single neutron velocity through equation (17). In this specific case, the probability

functions becomes semicircular arcs in
(
v‖, v⊥

)
-space with values 1. As stated earlier,

the probability function can also be expressed in terms of the neutron energy, En:

prob
(
En,1 < En < En,2

∣∣φ, v‖, v⊥
)
=

γ (En,1)− γ (En,2)

π
. (25)

γ (En) is found be inserting vn =
√

2En

mn
in equation (21). The probability can also be

expressed in energy-pitch coordinates.

prob (En,1 < En < En,2|φ,E, p) =
γ (En,1)− γ (En,2)

π
. (26)

The γ values are then calculated from

γ = arccos

(
1√

1− p2
1

sin (φ)

(
1

2

(mHe +mn)√
mfmn

√
En

E

− 1

2

(mHe −mf )√
mfmn

√
E

En

− 1

2

mHe√
mfmn

Q√
EEn

− p cos (φ)

))
. (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17),

(21) and (27) reduce considerably. Equation (17) becomes

u = vn −
1

2

v2f
vn

− 3

2

Q

mnvn
. (28)

Equation (21) becomes

γ = arccos


 1

v⊥ sin (φ)


vn −

1

2

(
v2‖ + v2⊥

)

vn
− 3

2

Q

mnvn
− v‖ cos (φ)




(29)

and equation (27) becomes

γ = arccos

(
1√

1− p2 sin (φ)

(√
2
En

E
− 1

2

√
E

2En

− 3

2

Q√
2EEn

− p cos (φ)

))
. (30)

Examples of probabilities calculated using equation (25) for φ = 90◦, 45◦ and 10◦ for

different neutron energies are plotted in figure 2 in
(
v‖, v⊥

)
-space. They are calculated

for a neutron energy interval of ∆En = En,2−En,1 = 0.1 MeV. The coloured regions are

observable for the given neutron energy range and projection angle φ whereas the white

regions cannot contribute to the signal and are unobservable regions. The probability

functions corresponding to different neutron energy ranges cover different regions in

velocity space. We have chosen to show these examples of the weight functions for

very large
(
v‖, v⊥

)
-values in order to reveal the shape of the observable region. Fast

ions at JET typically have lower energies. Figure 2 shows that the weight functions for

	 (29)
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and equation (27) becomes
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energy range. These results are valid for φ �= 0◦ or 180◦. For φ = 0◦ or 180◦,

the projected fast-ion velocity become v‖, and a given
(
v‖, v⊥

)
-coordinate will give a

single neutron velocity through equation (17). In this specific case, the probability

functions becomes semicircular arcs in
(
v‖, v⊥

)
-space with values 1. As stated earlier,

the probability function can also be expressed in terms of the neutron energy, En:

prob
(
En,1 < En < En,2

∣∣φ, v‖, v⊥
)
=

γ (En,1)− γ (En,2)

π
. (25)

γ (En) is found be inserting vn =
√

2En

mn
in equation (21). The probability can also be

expressed in energy-pitch coordinates.

prob (En,1 < En < En,2|φ,E, p) =
γ (En,1)− γ (En,2)

π
. (26)

The γ values are then calculated from

γ = arccos

(
1√

1− p2
1

sin (φ)

(
1

2

(mHe +mn)√
mfmn

√
En

E

− 1

2

(mHe −mf )√
mfmn

√
E

En

− 1

2

mHe√
mfmn

Q√
EEn

− p cos (φ)

))
. (27)

For the special case mHe = 3mn and mf = 2mn, which we treat here, equations (17),

(21) and (27) reduce considerably. Equation (17) becomes

u = vn −
1

2

v2f
vn

− 3

2

Q

mnvn
. (28)

Equation (21) becomes

γ = arccos


 1

v⊥ sin (φ)


vn −

1

2

(
v2‖ + v2⊥

)

vn
− 3

2

Q

mnvn
− v‖ cos (φ)




(29)

and equation (27) becomes

γ = arccos

(
1√

1− p2 sin (φ)

(√
2
En

E
− 1

2

√
E

2En

− 3

2

Q√
2EEn

− p cos (φ)

))
. (30)

Examples of probabilities calculated using equation (25) for φ = 90◦, 45◦ and 10◦ for

different neutron energies are plotted in figure 2 in
(
v‖, v⊥

)
-space. They are calculated

for a neutron energy interval of ∆En = En,2−En,1 = 0.1 MeV. The coloured regions are

observable for the given neutron energy range and projection angle φ whereas the white

regions cannot contribute to the signal and are unobservable regions. The probability

functions corresponding to different neutron energy ranges cover different regions in

velocity space. We have chosen to show these examples of the weight functions for

very large
(
v‖, v⊥

)
-values in order to reveal the shape of the observable region. Fast

ions at JET typically have lower energies. Figure 2 shows that the weight functions for

	 (30)

Examples of probabilities calculated using equation (25) for f = 90o, 45o and 10o for different 
neutron energies are plotted in figure 2 (v||,v⊥)–space. They are calculated for a neutron energy 
interval of ∆En = En,2–En,1 = 0.1MeV. The coloured regions are observable for the given neutron 
energy range and projection angle  whereas the white regions cannot contribute to the signal and 
are unobservable regions. The probability functions corresponding to different neutron energy 
ranges cover different regions in velocity space. We have chosen to show these examples of the 
weight functions for very large (v||,v⊥)–values in order to reveal the shape of the observable region. 
Fast ions at JET typically have lower energies. Figure 2 shows that the weight functions for higher 
neutron energies cover larger velocity-space regions. The observable regions for a given neutron 
energy do not necessarily include the regions for lower neutron energies as demonstrated by figures 
2(g) and 2(i). The probability for the neutrons to be in a particular energy range is largest for ions 
close to the edges of the probability functions. This is analogous to weight functions for CTS and 
FIDA [14, 15].
	 The limiting edges separating the observable region in velocity space from the unobservable 
region, i.e. the edges of the weight functions, can be found be inserting cos (g) = 1 in equation 
(21), as in this case the projected velocities and therefore the neutron energies are at their extreme 
values. In this case, equation (21) can be rewritten in the form (v||

 – v||,0)
2 + (v⊥

 – v⊥,0)
2 = r2 which 

is the equation of a circle centred at (v||,0
 – v⊥,0)

2 with radius r. Rewriting equation (21) with cos (g) 
= –1 gives
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(
v‖,0, v⊥,0

)
with radius r. Rewriting equation (21) with cos (γ) = −1 gives

v‖,0 = − cos (φ)

mHe −mf

mnvn , (31)

v⊥,0 =
sin (φ)

mHe −mf

mnvn , (32)

r =

√
2
mHe (mHe +mn −mf )

mf (mHe −mf )
2 En − 2

mHe

mf (mHe −mf )
Q . (33)

The center of the circle lies on a straight line through the origin with angle 180◦ − φ

to the v‖-axis since
v⊥,0

v‖,0
= − tan (φ). The distance from the center of the circle to the

origin is mn

mHe−mf
vn. Thus, the larger the neutron energy, the further the center of the

weight functions moves away from the origin. Rewriting equation (21) with cos (γ) = 1

gives

v′‖,0 = v‖,0 (34)

v′⊥,0 = − v⊥,0 (35)

r′ = r , (36)

where
(
v′‖,0, v

′
⊥,0

)
and r′ are the center coordinates and radius of a second circle. Thus

the second circle is a mirror image of the first, mirrored across the v‖-axis. The weight

functions are bounded by the parts of the circles with positive v⊥-coordinates. This

differs from weight functions for FIDA and CTS which have characteristic triangular

shapes in
(
v‖, v⊥

)
-coordinates [14, 15]. Letting r → 0 in equation (33) gives a lower

limit for the neutron energy En. For D-D neutrons this limit is found to be En = Q
2
.

Figure 2 further shows the dependence of the weight functions on the projection angle

φ. The weight functions occupy a smaller region of velocity-space for φ-angles far from

90◦, a behaviour also seen for CTS and FIDA weight functions. For a perpendicular

view (φ = 90◦), the weight functions are symmetric with respect to v‖ as figures 2(a),

2(b) and 2(c) show. This is also evident from equation (31) as v‖,0 = 0 for φ = 90◦.

For 0◦ < φ < 90◦ the weight functions are shifted towards negative parallel velocities,

whereas for 90◦ < φ < 180◦ they are shifted towards positive parallel velocities.

Figure 3 shows examples of the probability functions calculated in (E, p)-space. We

again calculate the probability functions up to high ion energies to show large portions

of the weight functions. As for
(
v‖, v⊥

)
-coordinates, we find that for smaller φ angles,

the weight functions cover a smaller region of (E, p)-space, and the symmetry in pitch

for φ = 90◦ is evident. However, the shape of the weight functions in (E, p)-space is

more complicated than in
(
v‖, v⊥

)
-space. The probability functions have finite values

down to E = 0 MeV for En � 2.45 MeV. However, this does not mean that the full

weight functions have significant values at very low ion energies, as the rate function

goes rapidly to zero for such low ion energies.
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again calculate the probability functions up to high ion energies to show large portions
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The center of the circle lies on a straight line through the origin with angle 180o – f to the v||–axis 
since v⊥,0

v||,0
 = –tan (f). The distance from the center of the circle to the origin is. Thus, the larger the 

neutron energy, the further the center of the weight functions moves away from the origin. Rewriting 
equation (21) with cos (g) = 1 gives
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shapes in
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limit for the neutron energy En. For D-D neutrons this limit is found to be En = Q
2
.

Figure 2 further shows the dependence of the weight functions on the projection angle

φ. The weight functions occupy a smaller region of velocity-space for φ-angles far from

90◦, a behaviour also seen for CTS and FIDA weight functions. For a perpendicular

view (φ = 90◦), the weight functions are symmetric with respect to v‖ as figures 2(a),

2(b) and 2(c) show. This is also evident from equation (31) as v‖,0 = 0 for φ = 90◦.

For 0◦ < φ < 90◦ the weight functions are shifted towards negative parallel velocities,

whereas for 90◦ < φ < 180◦ they are shifted towards positive parallel velocities.

Figure 3 shows examples of the probability functions calculated in (E, p)-space. We

again calculate the probability functions up to high ion energies to show large portions

of the weight functions. As for
(
v‖, v⊥

)
-coordinates, we find that for smaller φ angles,

the weight functions cover a smaller region of (E, p)-space, and the symmetry in pitch

for φ = 90◦ is evident. However, the shape of the weight functions in (E, p)-space is

more complicated than in
(
v‖, v⊥

)
-space. The probability functions have finite values

down to E = 0 MeV for En � 2.45 MeV. However, this does not mean that the full

weight functions have significant values at very low ion energies, as the rate function

goes rapidly to zero for such low ion energies.
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the second circle is a mirror image of the first, mirrored across the v‖-axis. The weight

functions are bounded by the parts of the circles with positive v⊥-coordinates. This

differs from weight functions for FIDA and CTS which have characteristic triangular

shapes in
(
v‖, v⊥

)
-coordinates [14, 15]. Letting r → 0 in equation (33) gives a lower

limit for the neutron energy En. For D-D neutrons this limit is found to be En = Q
2
.

Figure 2 further shows the dependence of the weight functions on the projection angle

φ. The weight functions occupy a smaller region of velocity-space for φ-angles far from

90◦, a behaviour also seen for CTS and FIDA weight functions. For a perpendicular

view (φ = 90◦), the weight functions are symmetric with respect to v‖ as figures 2(a),

2(b) and 2(c) show. This is also evident from equation (31) as v‖,0 = 0 for φ = 90◦.

For 0◦ < φ < 90◦ the weight functions are shifted towards negative parallel velocities,

whereas for 90◦ < φ < 180◦ they are shifted towards positive parallel velocities.

Figure 3 shows examples of the probability functions calculated in (E, p)-space. We

again calculate the probability functions up to high ion energies to show large portions

of the weight functions. As for
(
v‖, v⊥

)
-coordinates, we find that for smaller φ angles,

the weight functions cover a smaller region of (E, p)-space, and the symmetry in pitch

for φ = 90◦ is evident. However, the shape of the weight functions in (E, p)-space is

more complicated than in
(
v‖, v⊥

)
-space. The probability functions have finite values

down to E = 0 MeV for En � 2.45 MeV. However, this does not mean that the full

weight functions have significant values at very low ion energies, as the rate function

goes rapidly to zero for such low ion energies.

	 (35)
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with radius r. Rewriting equation (21) with cos (γ) = −1 gives
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The center of the circle lies on a straight line through the origin with angle 180◦ − φ

to the v‖-axis since
v⊥,0

v‖,0
= − tan (φ). The distance from the center of the circle to the

origin is mn

mHe−mf
vn. Thus, the larger the neutron energy, the further the center of the

weight functions moves away from the origin. Rewriting equation (21) with cos (γ) = 1

gives

v′‖,0 = v‖,0 (34)

v′⊥,0 = − v⊥,0 (35)

r′ = r , (36)

where
(
v′‖,0, v

′
⊥,0

)
and r′ are the center coordinates and radius of a second circle. Thus

the second circle is a mirror image of the first, mirrored across the v‖-axis. The weight

functions are bounded by the parts of the circles with positive v⊥-coordinates. This

differs from weight functions for FIDA and CTS which have characteristic triangular

shapes in
(
v‖, v⊥

)
-coordinates [14, 15]. Letting r → 0 in equation (33) gives a lower

limit for the neutron energy En. For D-D neutrons this limit is found to be En = Q
2
.

Figure 2 further shows the dependence of the weight functions on the projection angle

φ. The weight functions occupy a smaller region of velocity-space for φ-angles far from

90◦, a behaviour also seen for CTS and FIDA weight functions. For a perpendicular

view (φ = 90◦), the weight functions are symmetric with respect to v‖ as figures 2(a),

2(b) and 2(c) show. This is also evident from equation (31) as v‖,0 = 0 for φ = 90◦.

For 0◦ < φ < 90◦ the weight functions are shifted towards negative parallel velocities,

whereas for 90◦ < φ < 180◦ they are shifted towards positive parallel velocities.

Figure 3 shows examples of the probability functions calculated in (E, p)-space. We

again calculate the probability functions up to high ion energies to show large portions

of the weight functions. As for
(
v‖, v⊥

)
-coordinates, we find that for smaller φ angles,

the weight functions cover a smaller region of (E, p)-space, and the symmetry in pitch

for φ = 90◦ is evident. However, the shape of the weight functions in (E, p)-space is

more complicated than in
(
v‖, v⊥

)
-space. The probability functions have finite values

down to E = 0 MeV for En � 2.45 MeV. However, this does not mean that the full

weight functions have significant values at very low ion energies, as the rate function

goes rapidly to zero for such low ion energies.

	 (36)

where (v′||,0
 – v′⊥,0)

2  and r′ are the center coordinates and radius of a second circle. Thus the second 
circle is a mirror image of the first, mirrored across the v||-axis. The weight functions are bounded 
by the parts of the circles with positive v⊥-coordinates. This differs from weight functions for FIDA 
and CTS which have characteristic triangular shapes in (v||,0

 – v⊥,0) -coordinates [14, 15]. Letting r 
→ 0 in equation (33) gives a lower limit for the neutron energy En. For D-D neutrons this limit is 
found to be En = Q/2. Figure 2 further shows the dependence of the weight functions on the projection 
angle f. The weight functions occupy a smaller region of velocity-space for f-angles far from 90o, 
a behaviour also seen for CTS and FIDA weight functions. For a perpendicular view (f = 90o), the 
weight functions are symmetric with respect to v|| as figures 2(a), 2(b) and 2(c) show. This is also 
evident from equation (31) as v||,0 = 0 for f = 90o. For 0o < f < 90o the weight functions are shifted 
towards negative parallel velocities, whereas for 90o < f < 180o they are shifted towards positive 
parallel velocities.
	 Figure 3 shows examples of the probability functions calculated in (E, p)-space. We again calculate 
the probability functions up to high ion energies to show large portions of the weight functions. As 
for (v||,0

 – v⊥,0)–coordinates, we find that for smaller  angles, the weight functions cover a smaller 
region of (E, p)-space, and the symmetry in pitch for f = 90o is evident. However, the shape of 
the weight functions in (E, p)-space is more complicated than in (v||

 – v⊥)-space. The probability 
functions have finite values down to E = 0MeV for En ~– 2.45MeV. However, this does not mean 
that the full weight functions have significant values at very low ion energies, as the rate function 
goes rapidly to zero for such low ion energies.

3.	 NUMERICAL CALCULATION OF NEUTRON SPECTROMETRY WEIGHT 
FUNCTIONS

Weight functions can be computed numerically using a forward model capable of calculating a 
neutron energy spectrum for a given arbitrary beam-ion velocity distribution and a given thermal ion 
velocity distribution function. The forward model used here has previously been used for neutron 
spectrometry analysis in e.g. [8, 37]. We define a point-like velocity distribution function for the 
fast ions and calculate the corresponding energy spectrum. This distribution function can be written 
as a product of -functions
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(a) En = 2 MeV, φ = 90◦ (b) En = 2.4 MeV, φ = 90◦ (c) En = 3 MeV, φ = 90◦

(d) En = 2 MeV, φ = 45◦ (e) En = 2.4 MeV, φ = 45◦ (f) En = 3 MeV, φ = 45◦

(g) En = 2 MeV, φ = 10◦ (h) En = 2.4 MeV, φ = 10◦ (i) En = 3 MeV, φ = 10◦

Figure 3. The probablity part of neutron spectrometry weight functions calculated

in (E, p)-space for ∆En = 0.1 MeV centered at En.

3. Numerical calculation of neutron spectrometry weight functions

Weight functions can be computed numerically using a forward model capable

of calculating a neutron energy spectrum for a given arbitrary beam-ion velocity

distribution and a given thermal ion velocity distribution function. The forward model

used here has previously been used for neutron spectrometry analysis in e.g. [8, 37].

We define a point-like velocity distribution function for the fast ions and calculate the

corresponding energy spectrum. This distribution function can be written as a product

of δ-functions

f (E, p, r) = Nfδ (E0 − E) δ (p0 − p) δ (r0 − r) , (37)

where Nf is the number of fast ions. Inserting equation (37) in equation (3) and

integrating gives the amplitude of the weight function at (E0, p0, r0) for the given neutron

	 (37)

where Nf is the number of fast ions. Inserting equation (37) in equation (3) and integrating gives the 
amplitude of the weight function at (E0, p0, r0) for the given neutron energy range and projection angle:
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energy range and projection angle:

w (En,1, En,2, φ, E0, p0, r0) =
s (En,1, En,2, φ)

Nf

. (38)

The probability part can now be calculated

prop (En,1 < En < En,2|φ,E0, p0) =
w (En,1, En,2, φ, E0, p0, r0)

R (φ,E0, p0, r0)
. (39)

where the rate part can be calculated using equation (5) or directly from the spectrum

as

R (φ,E0, p0, r0) =
1

Nf

∫ ∞

0

s (En, φ) dEn . (40)

This is repeated on a numerical grid of velocity-space positions of the point-like

distribution. Figure 4 compares examples of the probability part of the weight functions

calculated using the analytical approach derived in section 2 and the numerical approach

calculated using equation (39). The analytic and numeric results agree very well, in

shape as well as in amplitudes. The numerically calculated weight functions are less

smooth than the analytic ones since the forward model uses a Monte Carlo approach.

Furthermore, the numerical weight functions have a coarser velocity-space resolution

because the computation of analytic weight functions requires much less computational

time.

4. Effect of temperature on the velocity-space sensitivity

Our approach to calculate analytic weight functions assumed stationary target ions

corresponding to zero temperature of the thermal ion distribution. We can readily

investigate the effect of a non-zero temperature on the velocity-space sensitivity using

numerical weight functions. The effect of increasing the temperature of the Maxwellian

target distribution is shown in figure 5. The sharp features of the zero temperature

probability function are being blurred for a finite temperature of the target distribution.

The larger the temperature, the more blurred the probability functions become. The

maximum close to the edge of the probability function is reduced and broadened already

for a temperature of 1 keV. The probability function covers a slightly larger velocity-

space region. These trends become more pronounced with increasing temperatures.

The weight functions become blurred because the thermal ions have a Maxwellian

distribution. Hence fast ions with given
(
v‖, v⊥

)
-coordinates and gyroangles produce

neutrons with energies that are distributed with a similarly broadened Maxwellian

distribution. The black lines in figure 5 show the edge of the weight function in the

T = 0 keV case calculated using equations (31)-(33) and transformed to (E, p)-space.

5. Weight functions used to show interrogation regions

For the remainder of this paper, we will consider the complete weight functions consisting

of the probability part and the neutron rate part according to equation (4). We will

	 (38)

The probability part can now be calculated
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distribution. Figure 4 compares examples of the probability part of the weight functions

calculated using the analytical approach derived in section 2 and the numerical approach

calculated using equation (39). The analytic and numeric results agree very well, in

shape as well as in amplitudes. The numerically calculated weight functions are less

smooth than the analytic ones since the forward model uses a Monte Carlo approach.

Furthermore, the numerical weight functions have a coarser velocity-space resolution

because the computation of analytic weight functions requires much less computational

time.

4. Effect of temperature on the velocity-space sensitivity

Our approach to calculate analytic weight functions assumed stationary target ions

corresponding to zero temperature of the thermal ion distribution. We can readily

investigate the effect of a non-zero temperature on the velocity-space sensitivity using

numerical weight functions. The effect of increasing the temperature of the Maxwellian

target distribution is shown in figure 5. The sharp features of the zero temperature

probability function are being blurred for a finite temperature of the target distribution.

The larger the temperature, the more blurred the probability functions become. The

maximum close to the edge of the probability function is reduced and broadened already

for a temperature of 1 keV. The probability function covers a slightly larger velocity-

space region. These trends become more pronounced with increasing temperatures.

The weight functions become blurred because the thermal ions have a Maxwellian

distribution. Hence fast ions with given
(
v‖, v⊥

)
-coordinates and gyroangles produce

neutrons with energies that are distributed with a similarly broadened Maxwellian

distribution. The black lines in figure 5 show the edge of the weight function in the

T = 0 keV case calculated using equations (31)-(33) and transformed to (E, p)-space.

5. Weight functions used to show interrogation regions

For the remainder of this paper, we will consider the complete weight functions consisting

of the probability part and the neutron rate part according to equation (4). We will

	 (40)

This is repeated on a numerical grid of velocity-space positions of the point-like distribution. Figure 
4 compares examples of the probability part of the weight functions calculated using the analytical 
approach derived in section 2 and the numerical approach calculated using equation (39). The analytic 
and numeric results agree very well, in shape as well as in amplitudes. The numerically calculated 
weight functions are less smooth than the analytic ones since the forward model uses a Monte Carlo 
approach. Furthermore, the numerical weight functions have a coarser velocity-space resolution 
because the computation of analytic weight functions requires much less computational time.

4. EFFECT OF TEMPERATURE ON THE VELOCITY-SPACE SENSITIVITY
Our approach to calculate analytic weight functions assumed stationary target ions corresponding 
to zero temperature of the thermal ion distribution. We can readily investigate the effect of a non-
zero temperature on the velocity-space sensitivity using numerical weight functions. The effect of 
increasing the temperature of the Maxwellian target distribution is shown in figure 5. The sharp 
features of the zero temperature probability function are being blurred for a finite temperature of the 
target distribution. The larger the temperature, the more blurred the probability functions become. The
maximum close to the edge of the probability function is reduced and broadened already for a 
temperature of 1keV. The probability function covers a slightly larger velocity- space region. These 
trends become more pronounced with increasing temperatures. The weight functions become 
blurred because the thermal ions have a Maxwellian distribution. Hence fast ions with given (v||, 
v⊥)–coordinates and gyroangles produce neutrons with energies that are distributed with a similarly 
broadened Maxwellian distribution. The black lines in figure 5 show the edge of the weight function 
in the T = 0keV case calculated using equations (31)–(33) and transformed to (E, p)–space.

5. WEIGHT FUNCTIONS USED TO SHOW INTERROGATION REGIONS
For the remainder of this paper, we will consider the complete weight functions consisting of the 
probability part and the neutron rate part according to equation (4). We will be using numerical weight 
functions calculated using appropriate angle-dependant cross sections and plasma parameters. As 
mentioned earlier, a weight function shows the velocity-space sensitivity of the measurement for 
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a given neutron energy range and in particular which regions are accessible by the measurements. 
Figure 6(a) shows a measured time-of-flight spectrum from TOFOR measured during JET Pulse 
No: 68138 together with a synthetic time-of-flight spectrum from a calculated energy-spectrum.
	 The corresponding synthetic neutron energy spectrum is shown in figure 6(b). A shaded bar 
has been inserted in figure 6(b). The weight function for the energies corresponding to the shaded 
interval is shown in figure 6(c), i.e. the neutrons with energies in the shaded region of figure 6(b) 
can only arise from reactions involving fast ions with velocities located in the coloured region 
of figure 6(c). This weight function is calculated using a background ion temperature of 2.3keV. 
Furthermore, it is possible to estimate which regions in velocity space generate most neutrons 
for a given velocity- space distribution function. To do this one plots the product of a weight 
function and the distribution function, i.e. the integrand of equations (2) or (3). The integrand 
shows the number density of detected neutrons with energies in a given energy range per second 
in velocity space for the particular distribution function. The fast-ion distribution function has 
been calculated using TRANSP with the NUBEAM module [38] for JET Pulse No: 68138. The 
fast ions have been simulated in the entire TOFOR measurement volume. Here the velocity 
distribution of the ions in the center of JET is considered, as these will often produce most of the 
detected neutrons. The product of the weight function and the central fast ion velocity distribution 
function is shown in figure 6(d).
	 Plotting a calculated fast-ion distribution function together with a weight function illustrates the 
part of the distribution function that is measurable in the given part of the neutron energy spectrum 
as well as the sensitivity. Examples are shown in figures 7(a) and 7(b). The fast-ion distribution 
functions are shown as black contour lines, and the weight function is shown in colours. The weight 
function is calculated for En = 2.3 ± 0.015MeV, f = 90o and Ethermal = 2keV. Figure 7(a) shows a 
beam-ion slowing down distribution function originating from an off-axis radial injection, while 
figure 7(b) shows a distribution function from an on-axis tangential injection. Both are from JET 
Pulse No: 69242.
	 The products of the weight function and the distribution functions are shown in figures 7(c) 
and 7(d). In the case of a normal injection, the range of neutron energies between 2.285MeV and 
2.315MeV measures fast ions with energies higher than 40keV and pitch values between –0.75 
and 0.75 as seen in figure 7(c). For a tangential injection, most detected neutrons are produced in 
reactions involving passing ions with p > 0.5 as seen in figure 7(d).

6. WEIGHT FUNCTIONS USED IN A FORWARD MODEL
Weight functions can be used to calculate a spectrum given a fast-ion distribution function, f (E, p, 
r), using equation (3). This is done by evaluating equation (3) for every neutron energy interval of 
relevance. Both the fast-ion distribution function and the weight function have a spatial dependence 
as the ion temperatures and densities can vary throughout the acceptance cone of the neutron 
detector. Figure 8 shows neutron energy spectra calculated with a conventional forward model and 
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using weight functions. The two methods produce spectra that are almost identical. The spectrum 
computed using weight functions is calculated by splitting the entire TOFOR viewing cone up in 
10 volumes. In each volume, the ion temperatures and densities are assumed constant and a fast-
ion distribution function is simulated for each. Once the weight functions have been calculated, the 
weight function method is significantly faster than the traditional forward model since the spectra 
can be calculated by matrix multiplication. This is advantageous if synthetic spectra for many 
different fast-ion distribution functions are to be calculated.

7.	 DISCUSSION
Recent studies have investigated the potential of combining measurements taken simultaneously 
using several fast-ion Da or collective Thomson scattering views, and even combining measurements 
from the two different types of diagnostics [32, 33]. This is made possible by the use of weight 
functions in the form of equation (2) in tomographic inversion algorithms to directly measure the 
fast-ion distribution function. NES weight functions as we formulated here allow us to combine 
NES measurements with CTS and FIDA measurements to measure the fast-ion distribution function. 
However, so far only localized measurements in small measurement volumes such as those for CTS 
or FIDA can be combined whereas the measurement volume of NES is a cone oriented along the 
line-of-sight. The larger measurement volume makes a combination cumbersome but not impossible. 
Assuming that most detectable neutrons have been produced near the plasma center, and assuming 
that the beam-target contribution dominates, NES measurements could be combined with CTS or 
FIDA measurements from central measurement volumes. No further development of the NES weight 
functions are needed under these assumptions. Otherwise, the inference of the fast-ion distribution 
function must account for the spatial dependencies.
	 The examples shown in this paper have been calculated using values of the d(d,n)3He reaction. 
However, the derivation in section 2 is also valid, under the assumptions given, for neutrons from 
the d(t,n)4He reaction, or any other reaction, as long as the appropriate values of mf, mHe and Q 
are used.

CONCLUSIONS
We have calculated velocity-space weight functions for neutron spectrometers and neutron yield 
counters both analytically and numerically, considering the often dominant beam-target reaction. 
These show the velocity-space sensitivity of NES measurements in given energy ranges of detected 
neutrons. The accessible region in (v||, v⊥)–space is bounded by circles or circular arcs in the limit 
where the velocities of the target ions are zero. The closer a fast ion is to the edge of the circle, the 
more likely it is to generate a detectable neutron in the given energy range. The larger the energy 
of the detected neutron, the larger the observation region becomes for a given observation angle. 
Finite temperatures of the thermal target ions blur the weight functions. The weight functions can 
be used to investigate the region in velocity-space accessible by a given part of a neutron spectrum. 
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Given a fast-ion distribution function, the weight functions can be used to calculate the part of the 
distribution function that generates most neutrons in the given energy range. Furthermore, they can 
be used in a forward model based on matrix multiplication that is significantly faster than traditional 
forward models based on Monte Carlo sampling.
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Figure 1: Rate functions with and without a drift of the target ions in units of Nn
Nis[    ]. The co-current drift velocity is 2.1 

× 105 ms  m . The thermal ion density is 5 × 1019m−3.

Figure 2: The probability part of neutron spectrometry weight functions calculated in (v||, v⊥)-space for ∆En = 0.1MeV 
centered at En.
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Figure 3: The probablity part of neutron spectrometry weight functions calculated in (E, p)-space for ∆En = 0.1MeV 
centered at En.
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Figure 4: Comparison of the probability part of neutron spectrometry weight functions calculated numerically and 
analytically, for En = 2.6MeV and ∆En = 0.03MeV.
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Figure 5: Probability part of neutron spectrometry weight functions with φ = 90°, En = 2.2MeV and ∆En = 0.03MeV 
calculated for various thermal ion temperatures. The thick black lines show the edge of the T = 0 weight functions.

Figure 6: Example of applying the weight function approach to neutron measurements at JET.
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Figure 7: (a-b) By plotting a calculated distribution function together with a calculated weight function, it is possible 
to visualize the region in velocity space which is accessible by a given part of the neutron energy spectrum. (c-d) shows 
the product of f and w, which illustrates where most neutrons come from, given the calculated distribution function. 
These examples are for a numerical weight function calculated for En = 2.3 ± 0.015MeV and φ = 90°. The distribution 
functions are calculated for JET Pulse Number: 69242 using TRANSP together with the NUBEAM module.

Figure 8: Comparison of a spectrum computed using a fast forward-model based on weight functions, and a spectrum 
calculated using the conventional forward model calculated using a Monte Carlo approach.

C
P

S
14

.1
04

3-
7c

0.5
8

6

4

2

0

1.0

0

-0.5

-1.0
50 100 1500

(×1011)

P
itc

h  
(-

)

E (MeV)

0.5
2.0

2.5

1.5

1.0

0.5

0

1.0

0

-0.5

-1.0
50 100 1500

(×1011)

P
itc

h  
(-

)

E (MeV)

0.5

1.0

0

-0.5

-1.0
50 100 1500

P
itc

h  
(-

)

E (MeV)

a) ƒ and w, radial NBI b) ƒ and w, tangential NBI

c) ƒ × w, radial NBI d) ƒ × w, tangential NBI

0.5

1.0

0

-0.5

-1.0
50 100 1500

P
itc

h  
(-

)

E (MeV)

2.0

1.5

0.5

1.0

0
2.0 2.5 3.01.5 3.5

dN
/d

E
 (s

-
1  M

eV
-

1 )
 (×

10
5 )

En (MeV)

Weight functions
Conventional

C
P

S
14

.1
04

3-
8c

http://figures.jet.efda.org/CPS14.1043-7c.eps
http://figures.jet.efda.org/CPS14.1043-8c.eps

