
EUROFUSION WPJET1-PR(14) 12264

G Farias et al.

Prediction of the time to disruption in
JET with an ITER-like wall

Preprint of Paper to be submitted for publication in
Nuclear Fusion

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Prediction of the Time to Disruption 
in JET with an ITER-Like Wall

G. Farias1, J. Vega2, S. Dormido-Canto3, A. Murari4, R. Moreno2, H. Vargas1,
A. Valencia1 and JET EFDA contributors*

1Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
2Laboratorio Nacional de Fusión. CIEMAT, Madrid, Spain
3Dpto. Informática y Automática – UNED, Madrid, Spain

4Associazione EURATOM/ENEA per la Fusione, Consorzio RFX, 4-35127 Padova, Italy
* See annex of F. Romanelli et al, “Overview of JET Results”,

(24th IAEA Fusion Energy Conference, San Diego, USA (2012)).

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

Preprint of Paper to be submitted for publication in
Nuclear Fusion



.



1

ABSTRACT
Avoidance and mitigation of disruptions are crucial problems in ITER and are becoming increasingly 
relevant at JET with the installation of the new ITER-Like Wall (ILW). But it is important to 
emphasize that disruption prediction is a pre-requisite to put into operation any avoidance or 
mitigation methodology. The design of disruption predictors mainly takes into account the 
achievement of predictions with high success rate, low false alarm rate and enough anticipation time. 
An important issue in the estimation of the time to the disruption is to set bounds to the prediction 
error. An accurate estimation would allow the set-up of active avoidance/mitigation actions in direct 
dependence to the time to disruption from the prediction. This article describes a new generation 
of disruption predictors with very accurate determination of the time to disruption. The predictor 
has been tested with 1237 JET discharges during the ITER-like wall campaigns. The results show 
success rates of 100%, false alarm rates close to 0%, enough anticipation time (> 128 ms) and high 
accuracy in the time to disruption estimation (in the order of ms).

1.	 INTRODUCTION
In the context of guaranteeing safe operation of large Tokamaks, avoidance and mitigation (A/M) 
of disruptions have particularly high priority. The first one indicates the objective of ensuring 
disruption free operation. The second one is aimed at the alleviation of the disruption detrimental 
effects when the disruptive event is unavoidable.
	 Disruption prediction is a pre-requisite to start any A/M technique. Typically, disruption predictors 
are qualified by their success rate, false alarm rate and average warning time (or anticipation time). 
Ideal predictors are the ones that simultaneously meet the following conditions: success rates close 
to 100% (ITER requirement is >95%), false alarm rates close to 0% (ITER requirement is <5%) 
and enough average warning time (AWT) to activate A/M actions.
	 Figure 1 represents the sequence of events in typical real-time A/M procedures. A disruption 
predictor triggers an alarm when a disruptive behaviour is detected and this trigger can be used 
to activate any A/M mechanism. Of course, the A/M action will be effective after a certain delay 
(reaction time) with respect to the alarm. This reaction time, that includes the firing of technical 
systems, should be as short as possible but it is inevitable in the real world. After this time elapses, 
the plasma can start to experience the effects of the A/M techniques. Obviously, the reaction time 
has to be shorter than the warning time.
	 In general, different mitigation actions can be envisaged to reduce forces, to mitigate heat loads 
during the thermal quench and to avoid runaway electrons. Examples of mitigation methods can 
be the injection of a significant amount of gases through fast valves [1, 2], killer pellets [3, 4] or 
Electron Cyclotron Resonance Heating injection [5, 6]. Depending on the disruption type and the 
time available before the disruption, different strategies can be much more desirable than others.
	 A/M methods can have different characteristic times and, therefore, they cannot be applied if the 
reaction time is longer than the warning time. This is a crucial issue for the active selections of A/M 
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actions. The term active selection means to be able to choose, in real-time, among several potential 
A/M methods after the recognition of a forthcoming disruption. This decision can be optimised 
only on the basis of reliable warning times. However, so far, practical disruption predictors trigger 
an alarm after detecting a disruptive behaviour but they do not provide the time to disruption. In 
this respect, the off-line analysis of the predictions provides an average warning time with usually 
a large standard deviation. Fig. 2 shows results with the JET real-time APODIS predictor [7] 
corresponding to the first four ITER-like Wall (ILW) campaigns (years 2011-2013). On average, 
the resulting warning time is very good (423 ms) but there is a large standard deviation (827 ms); 
this of course makes very difficult the choice of which type of A/M strategy to implement once an 
alarm has been raised.
	 This article deals with the design and development of a new generation of disruption predictors, 
whose essential novelty is to provide not only the recognition of a disruptive behaviour but also the 
time to disruption. This Disruption Time Predictor (DTP) follows a multi-tier architecture similar to 
APODIS and has been tested with JET discharges corresponding to the first three ILW campaigns 
(years 2011-2012).
	 Section 2 presents a summary of data-driven models for disruption prediction, discusses the 
prediction confidence to accomplish successful mitigation actions and establishes the need of 
developing reliable time to disruption predictors (TTDPs). Section 3 explains the work done to 
date on TTDPs. Section 4 defines the architecture of a new TTDP (the so-called DTP). Section 5 
is devoted to describing a particular implementation of the DTP for the three first ILW campaigns 
of JET and section 6 shows the results. To conclude, section 7 discusses about the DTP, its results 
and future work on this kind of predictors.

2.	 PREDICTION CONFIDENCE ON SUCCESSFUL MITIGATION ACTIONS WITH 
PRESENT PREDICTORS

Good theoretical models of plasma evolution would be ideal to guide operations. However, the 
existing models and simulation tools have performances far from those that are needed to guarantee 
that disruptions are avoided [8]. Some problems of these models are: incomplete description of 
the plasma, strong assumptions and unphysical boundary conditions. To overcome this lack of 
theoretical input, data-driven models have been investigated in the past and have provided much 
better practical results. Their objective is to achieve reliable predictions of forthcoming disruptions 
with enough warning time. 
	 Disruption data-driven models are based on automatic classification techniques. In general, the 
plasma behaviour is represented at regular time intervals by a pair (x, y). The first element is a feature 
vector x∈o d, where d is the feature space dimension. The vector components are measurements 
of plasma quantities at the time instants of the measurements. The second element is a label that 
represents the plasma behaviour: disruptive or non-disruptive. In this article, the disruptive and 
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non-disruptive behaviours are respectively represented by the labels +1 and –1. In mathematical 
notation, y ∈{+1, –1}.
	 Typically, disruption predictors are developed in a supervised way. A large dataset of 
feature vectors xj ∈

o d j = 1,..., N (the larger N the better) with well-known corresponding labels
yj ∈

o d j = 1,..., N are used as training set. The pairs (xj, yj) are chosen from a database of past 
discharges. The most important criterion to select the training feature vectors is to ensure that they 
cover the widest operational space of the tokamak. The training set allows dividing the feature space 
into two regions separated by a decision function. This decision function is determined through 
the so-called training process. The decision function just constitutes the disruption predictor (i.e. 
the disruption data-driven model). Given a new example to classify xnew ∈

o d, the label ynew ∈{+1, 
–1} is assigned depending on the region of the feature space (in relation to the decision function) 
to which xnew belongs (fig. 3).
Disruption predictors have to work in real-time for the whole duration of the discharge. Feature 
vectors are generated during the discharge on a periodic basis, xkTp, k

 = 1,...,F,where F is the number 
of feature vectors in each particular discharge and TP is the temporal resolution of the predictor. 
Each feature vector is used as input to the predictor and the output is the predicted label ykTp ∈{+1, 
–1}at time kTP. If no disruptive behaviour is detected, the output will be always –1. A forthcoming 
disruption is recognized when the output is +1. When this happens, it is usual to say that the 
predictor triggers an alarm.
	 Feature vectors can be generated from different sets of relevant signals. The raw signals are 
processed during a maximum time TP to transform the raw data into features of distinctive nature, 
i.e. to generate a feature vector xkTp. In this article, the temporal interval TP needed to process the 
raw signals and to form a feature vector will be called signal processing interval (SPI). Obviously, 
the data processing time within the SPI has to be shorter than TP.
	 Several supervised machine learning methodologies have been reported during the years to 
develop disruption predictors. Some examples are neural networks [9, 10], Support Vector Machines 
(SVM) [11, 7], fuzzy logic [12], regression trees [13], discriminant analysis [14], self-organizing 
maps [15], manifold learning [16] and multiple threshold combinations [17].
	 In general, the quality of a predictor is expressed in terms of the disruption success rate (DSR), 
i.e. a relation between true positive (TP) and false negative (FN) predictions, and the false alarm 
rate (FAR), i.e. a relationship between true negative (TN) and false positive (FP) predictions:

(1)

(2)

However, these rates are not sufficient by themselves to determine how good a real-time predictor 
is. Although a predictor has 100% success rate and 0% false alarm rate, it is useless if the warning 

( )
TPDSR TP FN=

+
  

( )
FPFAR FP TN=

+
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time is shorter than the reaction time to accomplish mitigation methods. Therefore, together with the 
previous rates, a predictor has to provide sufficient AWT. However, even if the AWT is larger than 
the minimum reaction time, it does not guarantee a confident implementation of A/W actions. Fig. 
2 shows that on average, the alarms are triggered early enough. Nevertheless, the most important 
conclusion to extract from that figure is that 87.44% of the alarms take place 30ms in advance to 
the disruptions. Therefore, there is a confidence of 87.44% to apply successful A/M actions whose 
reaction time is less than 30ms. The confidence on having more time to implement successful 
mitigation actions with greater reaction time rapidly decreases. For example, A/M actions that would 
require a reaction time equal to the AWT, could only achieve a success confidence of 28.38%. In 
these conditions, it is therefore very difficult if not impossible to select the most appropriate A/M 
action once an alarm is triggered.
	 Therefore, to put into operation active selection of mitigation actions with a high level of 
confidence, a new generation of TTDPs are necessary. These disruption predictors have to be reliable 
enough to provide not only a high success rate and a low rate of false alarms but also an accurate 
estimation of the time to disruption when the alarm is triggered.

3. Discussion on previous time to disruption predictor proposals
This section describes three different works that deal with the problem of predicting the time to 
disruption in tokamaks.
	 The TTDP proposal from Pautasso et al [18] is based on a two-layer artificial neural network. 
The first layer contains 20 neurons and the network output (second layer) provides the time interval 
to the disruption. Therefore, the predictor is a temporal evolution signal whose value at each time 
instant is the time to disruption. The implementation of the artificial neural network in the ASDEX 
Upgrade (AUG) tokamak determined that the alarm threshold was 50 ms for 7.5 ms (3 consecutive 
feature vectors as the sampling period is 2.5 ms). In other words, if the predictor output was less or 
equal to 50 ms and this prediction was maintained for 7.5 ms, an alarm was triggered. The condition 
of maintaining the output below the alarm threshold for 7.5 ms allowed filtering false alarms. The 
value of 50 ms as the disruption alarm limit was chosen with the purpose of using an impurity pellet 
injector for disruption mitigation and to allow a margin to compensate for the error affecting the 
network prediction.
	 The feature vectors components (x∈o 13) were samples corresponding to temporal evolution 
signals and time derivatives. Feature vectors were formed on a periodic basis (2.5ms) and, therefore, 
the predictor output was obtained on this periodic basis. The off-line results reported in [18] with 
65 disruptive discharges and 500 non-disruptive discharges showed that the success rate was 85% 
(55/65) and the false alarm rate was 1% (5/500). The predictor was tested on-line in open loop with 
128 discharges (of which 28 disrupted). The success rate and the false alarm rate with disruptions 
of the same type that the ones used for training were 79% (22/28) and 7% (7/100) respectively.
	 A second work [19] related to a TTDP used a fuzzy framework only to achieve a suitable clustering 
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of the input space. The proposed predictor defined a complex structure of neural networks (NN). 
A first processing layer based on the radial basis function (RBF) NN scheme was basically used to 
decompose the original database into four parts (or subsets). The layer outputs were used to activate 
four multilayer perceptrons (MLP), trained exclusively on a subset of the original database. The 
output of the system was a single node linear layer that provided the estimated time to disruption 
(TTD) as well as an alarm when appropriated. As in [18], the predictor generated a temporal evolution 
signal (time period of 2.5 ms) and the alarm was triggered when the time to disruption was below 
250ms. 
	 The training database was made up of 62 disruptive discharges and the test set for off-line analysis 
had 46 disruptive shots. Also, an on-line test of the predictor was carried out in open loop, but the 
total number of discharges is not specified. The feature vector components (x∈o 24) were again 
samples of time series data and time derivatives. The probability of correctly activating an alarm 
taking into account the threshold of 250ms was 95% whereas the level of false alarms was 2% (it 
should be noted that the test database only contained disruptive shots and, therefore, a false alarm 
corresponded to an early detection of a disruption). In the predictor on-line version, a pre-alarm 
state was recognized when the TTD was in the range 50ms – 350ms. The alarm was triggered if 
the TTD was maintained in the range 250ms – 350ms for ten feature vectors. The use of these 10 
additional feature vectors avoided false alarms.
	 A third work about predicting the time to disruption [20] was applied to the JET database and 
was also based on artificial neural networks. The best network configuration was composed of 
nine inputs, two hidden layers with six and five hidden neurons respectively, and one output. Only 
signals available in real-time were taken into account (this means that data relying on off-line 
equilibrium reconstruction or off-line processed data are not used). Twenty feature vectors (x∈o 9) 
per discharge with a sampling period of 20 ms were chosen. Eight of the components represented 
temporal evolution of physics quantities and the last one was a time derivative. The feature vectors 
with label disruptive corresponded to the features in the time interval [tD – 420ms, tD – 40ms] of each 
disruptive discharge, where tD was the disruption time. In [20] the disruption time was determined as 
the time when the current quench started. The feature vectors with label non-disruptive belonged to 
a randomly chosen time interval of 400ms from each non-disruptive discharge. The neural network 
output was a real number between 0 and 1 representing the risk of disruption. It was obtained every 
20 ms (the time period of the input feature vectors). The network target for each disruptive discharge 
was a sigmoid in the time window of 400ms so as to represent a greater risk near the disruption.
	 The off-line analysis of the database included discharges with plasma current above 1.5MA, 
X-point configuration and flat-top plasma current. The training set consisted of 86 disruptive 
pulses and 400 non-disruptive ones, while the validation set consisted of 35 disruptive discharges 
and 246 non-disruptive ones. Finally, the test set had 62 and 132 disruptive and non-disruptive 
shots respectively. An alarm was triggered when the neural network output was above a certain 
threshold that was chosen minimizing a detection error function [20]. For disruptive pulses, the 
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neural network output was analyzed in the time window [tD – 440ms, tD – 100ms], where 100ms 
was a defined prediction interval before the disruption instant. The results with the test set showed 
no false alarms and a success rate of 83.9%. The remaining 16.1% were alarms that were raised 
late, i.e. in the interval [tD – 100ms, tD].
	 It is important to note that first the three above TTDPs were tested with a limited number of 
discharges and, secondly, not all types of disruptions were considered.

4. DTP architecture
As a first point, it should be emphasized that the TTDPs reviewed in section 3 were trained to 
produce temporal evolution signals of the time to disruption. When the TTD estimated is below a 
certain threshold, an assertion mechanism is used to filter false alarms and an alarm is raised. The 
DTP proposed in this article implements a different approach. Instead of generating a temporal 
evolution signal to predict the time to disruption and to trigger the alarm when special conditions 
are met, the objective is to predict a disruptive behavior and when the prediction is positive to 
simultaneously provide the time to disruption.
	 The DTP architecture is based on a two layer architecture like APODIS [7] (Fig.4) although 
many aspects are different and also some previous ideas described in [21] have been introduced. 
The first layer consists of a number of SVM classifiers (SVM-Ci, i = 1, …, n) trained to both identify 
disruptive behaviours and determine an expected time to disruption (ETTD).
	 The choice of SVM as base classifier is motivated by the fact that SVM is a very effective method 
for general purpose pattern recognition [22, 23]. In a few words, given a set of input vectors which 
belong to two different classes, SVM maps the inputs into a high dimensional feature space through 
some nonlinear mapping. An optimal separating hyper-plane is constructed in this feature space to 
minimize the risk of misclassification. The hyper-plane is determined by a subset of points of the 
two classes, called support vectors.
	 The difference among the n SVM classifiers of fig. 4 consists of their respective training processes, 
but this will be explained later. Due to the fact that the various classifiers can make different 
predictions about the plasma behaviour, it is necessary to combine all the predictions into a single 
one. This is the task of the second layer.
	 Figure 4 shows a feature vectorr xt that is generated in the SPI corresponding to the interval (t – Tp, 
t). This feature vector is used as input to all the first layer SVM classifiers. Each classifier, SVM– Ci, 
i = 1,...,n, generates as output a pair (yt,i,

 ETTDi (t)), where yt,i∈
 {+1, –1} is the label predicted for 

the feature vector xt by the classifier i, and ETTDi (t) is its corresponding ETTD. It should be noted 
that ETTDi (t) only makes sense if yt,i =

 {+1}, i.e. only when the classifier recognizes a disruptive 
behaviour. The combination of all pairs (yt,i,

 ETTDi (t)), i
 = 1,...n,  into a single one is accomplished 

in the second layer through a decision function fd (t) ≡
 fd ((yt,i,

 ETTDi (t)),..., ((yt,n,
 ETTDn (t)) = (yt,

 

ETTD (t). Therefore, the decision function determines whether or not the combination of the first 
layer classifiers recognizes a disruptive behaviour at time t. The output of the decision function 
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is also a pair (yt,
 ETTD (t)) that provides the label of the decision yt

 ∈ {+1,–1} together with the 
respective ETTD (if the prediction is ‘disruptive’).
	 It is important to emphasise that different decision functions can be defined to combine the 
classifier outputs into a single one. Therefore, each particular DTP can implement its own decision 
function. The specific implementations have to deal with two aspects: the combination of labels 
into a single one and the combination of the respective ETTDs to provide a resultant one.
	 An issue of any disruption predictor can be to maintain a low rate of false alarms. This is very 
important because a predictor with high sensibility can result incompatible with standard operations 
of the tokamaks to achieve high performance plasmas. Therefore, in order to filter spurious alarms 
with the DTP of figure 4, a filtering criterion has to be introduced. From a conceptual point of 
view, the filtering criterion establishes to trigger an alarm only when NC consecutive disruptive 
behaviours are detected (figure 5), i.e. when NC consecutive labels verify yt–(NC–1).TP 

= ... = yt–TP 
= yt 

= {+1}. From a mathematical point of view, the filtering criterion about to trigger or not an alarm 
at time t can be determined as the pair (yt

(NC), ETTD(NC) (t)) where
	  

and
	  

ETTD(NC) (t) = ETTD (t)

It should be noted that fig. 4 corresponds to a DTP with NC=1.
	 So far, the DTP architecture has been described at a high level but more specific details are 
required. In particular, it is necessary to explain both the rationale of choosing an architecture like 
the one shown in fig. 4 and the individual training procedure of the SVM classifiers. The former is 
accomplished in section 4.1 and the latter is carried out in section 4.2.

4.1. PHYSICS OF DISRUPTIONS AND ITS INFLUENCE ON THE DTP DESIGN
This section gives answers to two important questions in relation to fig. 4:
Q1: Why are needed a set of n classifiers that make predictions in parallel with the same feature 
vector xt?
Q2: How many classifiers have to be considered?
The response to Q1 is the central idea for the estimation of the time to disruption. It was mentioned 
in section 2 that the feature vectors are generated during a SPI whose time length is TP. The objective 
of the SVM classifier C1 is to predict a disruptive behaviour just for the next SPI. In other words, 
the expected time to disruption with C1 for a feature vector generated at time t would be t < ETTD1 

(t) ≤ t + TP. With regard to the classifier C2, the aim is to predict a disruptive behaviour for 2 SPIs 
later at the latest, i.e. if the feature vector is generated at time t, the expected time to disruption 

( ) { } ( ) { }
{ }

11  iff ... 1

1  otherwise
PC PC t T tt N TN

t

y y y
y

+ = = = = +
=  



8

with C2 would be t < ETTD2 (t) ≤ t + 2TP. In general, given a feature vector xt, the expected time to 
disruption with the classifier Cn would take place within the time interval of n SPIs, which means 
t < ETTDn (t) ≤ t + nTP.
With this structure and assuming a number of 5 classifiers, table 1 reproduces the ideal outputs 
obtained with the different classifiers from a time t with a temporal resolution TP in the case that a 
disruption will happen within the time interval (t < 4TP, t + 5TP).
	 According to the central idea described above, a classifier can predict with an anticipation of 
several SPIs (for instance, the SVM-Cn classifier ideally predicts with an anticipation of n SPIs). 
However an individual SVM classifier is not enough to be used as a general predictor. Different types 
of disruptions are characterized by different particular precursors that show specific characteristic 
times. For example, the fastest disruptive events are expected to be predicted only by the classifier 
SVM-C1. Other types of disruptions can be predicted well in advance by SVM-C8, SVM-C9 or so. 
Therefore, due to the existence of different characteristic times for the development of the disruptive 
event, several SVM classifiers have to be simultaneously considered to ensure an early prediction 
(the earlier the better) of any type of disruption. The existence of simultaneous SVM classifiers 
compels to use a decision function to give a single prediction at each time instant.
	 The answer to Q2 is not easy because there is not a threshold time from which disruption 
precursors appear. So, the use of a high n can be misleading because actually disruptive precursors 
can be absent n SPIs in advance and, therefore, the training of these classifiers can be ambiguous and 
non-reliable. Each particular application of the DTP will have to determine a number of classifiers.

4.2. SELECTION OF THE TRAINING DATASETS
This section describes the way in which the several classifiers can be trained to predict a disruptive 
behaviour 1, 2, …, n SPIs in advance. The selection of the training sets is very innovative and this 
selection process has been responsible of the success of the present TTDP.
	 Before describing the selection process of the training sets for the different SVM classifiers, it is 
necessary to describe the way in which the discharge signals are pre-processed. To this end, it should 
be emphasized that the main requirement is to have available a database of disruptive discharges 
with a high reliable estimation of the disruption time.
	 The pre-processing of discharges requires as a first step the normalization of the temporal evolution 
signals that are considered for the classifiers. The normalization process takes into account the whole 
database of past discharges and it is carried out to avoid that quantities that can differ by several 
orders of magnitude can have higher weights in the classification system. Typical normalization 
techniques are the ones that limit the signal amplitude to the range [0, 1] or the ones that transform 
the signals into time series data with mean 0 and variance 1.
	 The second step is the resampling of all needed signals to a common sampling period. Usually, 
this is accomplished by interpolation methods.
	 The third step is related to the pre-processing of disruptive discharges. The disruption time of 
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each discharge is the reference time to form SPIs backwards whose temporal length is TP. Figure 
6 shows the sampling times of the signals (TS) after the resampling process. It is important to 
note that the disruption time remains outside of the first SPI (I1). The several SPIs are numbered 
according to its location relative to the disruption time: I1, I2, I3 and so on. As it was mentioned in 
section 2, each SPI is used to generate a feature vector x ∈ o d that condenses the plasma behaviour 
into d components. Each component is obtained after some kind of signal processing with selected 
temporal evolution signals.
	 To conclude the discharge pre-processing, the non-disruptive discharges are also split into SPIs 
TP long, from the plasma breakdown to the plasma end. Again, a feature vector x ∈ o d per SPI is 
generated.
	 Once the feature vectors of the training discharges have been determined, it is necessary to 
describe how to select disruptive and non-disruptive feature vectors to train each individual SVM 
classifier. The selection process is the key aspect of this article. First of all, it is important to note 
that disruptive and non-disruptive discharges are not treated the same.
	 Top of Fig.7 shows a non-disruptive discharge with its resulting SPIs. As stated previously, a 
different training feature vector is generated in each SPI. However, they have been represented in 
the same way, xND where ND makes reference to its non-disruptive character.
	 At the bottom of Fig.7, the breakdown of a disruptive discharge into its SPIs is presented. As 
in the non-disruptive case, each SPI is represented by a training feature vector x–m, where the 
subindex is related to its corresponding SPI number (x–m is the feature vector corresponding to SPI 
Im). Therefore, the subindex is linked to the SPI location in relation to the disruption. The use of 
the negative sign is necessary to avoid confusion with the notation used in the article about feature 
vectors at time t (xt).
	 It is important to note that three types of SPIs have been considered for the disruptive discharges. 
The first type of SPIs (type I) consists of the closest ones to the disruption. As it is explained later, 
the corresponding feature vectors will be used sometimes with label ‘disruptive’ and sometimes 
with label ‘non-disruptive’. The second type of SPIs (type II) defines feature vectors that can be 
always classified as ‘non-disruptive’. It is generally accepted that far from the disruption, the feature 
vectors do not show a disruptive behaviour. This is justified by the fact that disruption precursors 
have a limited anticipation time. This limit is blurred and, therefore, a gap can be present between 
the SPIs of type I and type II. The third type of SPIs (type III) is really far away from the disruption 
and its corresponding feature vectors are never considered for training purposes.
	 The training process of the SVM classifiers (SVM-Ci, i = 1, …, n) of a DTP (Fig.4) has been 
defined to use the same number of feature vectors per classifier. However, although this number is 
constant, the difference between classifiers appears in the number of disruptive and non-disruptive 
feature vectors.
	 Given Nd disruptive discharges and Ns safe (or non-disruptive) discharges for training purposes, 
the training set of each SVM classifier includes Ns features vectors from non-disruptive discharges 
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and NFV + 1 feature vectors per disruptive discharge. On the one hand, the Ns feature vectors of 
class ‘non-disruptive’ correspond to 1 feature vector randomly chosen from the SPIs of each safe 
discharge (top of Fig.7). In general, the training set of the several SVM classifiers will have different 
feature vectors from the safe discharges. On the other hand, there are NFV type I (bottom of Fig.7) 
feature vectors per disruptive discharge and they are the same for the n classifiers (x–m, m = 1,2..., 
NFV) but have different labels as described below. Other feature vector is selected at random from 
the type II SPIs of a disruptive discharge (bottom of fig. 7) and its label is ‘non-disruptive’. The 
same vector is just included in the training set of all the classifiers
	 According to the description so far, NFV + 1 feature vectors per disruptive discharge are exactly 
the same in the training set of all classifiers. The difference in the datasets resides in the labels 
(disruptive/non-disruptive) that are assigned to the feature vectors. Table 2 shows how the type I 
feature vector labels are defined per disruptive discharge for the several classifiers. The reason of 
this assignment is based on the objective that the classifier Ck has to predict a disruptive behaviour 
within a time interval of k SPIs from the prediction time. Therefore, for the classifier C1, only the 
feature vector corresponding to the SPI I1 is labelled as ‘disruptive’ and all other feature vectors are 
labelled as ‘non-disruptive’. In the case of C2, the feature vectors from SPIs I1 and I2 are considered 
‘disruptive’, whereas the remaining ones up to NFV are marked as ‘non-disruptive’. The generalization 
of this reasoning is straightforward.
	 It is important to emphasize the innovative idea of using as either ‘disruptive’ or ‘non-disruptive’ 
the same feature vectors depending on the classifier. The objective is to look for specialised classifiers 
that are able to recognise disruptive features and to identify the remaining time to the disruption.

5.	 DEVELOPMENT OF A DTP FOR THE JET ILW CAMPAIGNS
A DTP for 1237 JET ILW discharges (201 disruptive and 1036 non-disruptive) between years 2011 
and 2013 has been developed. Different training/test datasets can be generated with a discharge 
proportion 60%/40% respectively.
	 Table 3 shows the twelve plasma quantities that have been taken into consideration for the DTP. 
The nine first signals are JET real-time signals that are read from the JET database and have been 
resampled at 1 ksample/s. The remaining ones are computed from the previous quantities. The 
signal amplitudes have been normalized to the range [0, 1].
	 SPIs 32ms long are used to take into account that the minimum time in JET to perform mitigation 
actions is 30 ms. Also, in a similar way to APODIS, two different features per signal are obtained 
in each SPI. The first one is the signal mean value in the corresponding SPI and the second one is 
the standard deviation of the power spectrum (after removing the DC component) during the SPI. 	
	 In this way, the total number of features that are available for the DTP is 24.
	 In this article, a maximum number of ten SVM classifiers have been used for the DTP first layer: 
SVM-Ci, i = 1, …, 10. This value, according to section 4.1, would allow the prediction of disruptive 
behaviors 10 SPIs in advance, i.e. 320ms in advance.
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Concerning the training of the classifiers, NFV = 20 SPIs of type I samples per disruptive discharge 
have been considered, which means to cover a time interval of 640 ms before the disruptions. Type 
II SPIs are chosen to deal with a period of time between 1 s and 1.6 s before the disruptions. All of 
the SVM classifiers are trained with the same radial basis function (RBF) kernel [23]

	  
Several values of the kernel parameter have been tested s = {10–5,  10–4, 10–3, 10–2, 10–1} and the 
best results are obtained with s = 10–1. Moreover, all the SVM classifiers are trained with the same 
regularization constant [23] in their respective optimization processes. Due to the fact that all the 
software has been written in Matlab (http://www.mathworks.com), the functions related to SVM 
that are included in the Matlab Statistical Toolbox have been used. With regard to the regularization 
constant, the default value provided by Matlab has been used. 
	 As NFV is 20, 21 feature vectors per disruptive discharge are considered. Taking into account 
that with 1237 discharges (which include 201 disruptive and 1036 safe) a training set uses 60% of 
the available ones (121 disruptive shots and 622 safe), it implies that the number of feature vectors 
to train each classifier is 121*(NFV+1)+ Ns = 3163.
	 The DTP has been tested with 40% (80 disruptive and 414 non-disruptive) of the 1237 available 
discharges by simulating the real-time data acquisition and signal processing. The DTP decision 
function that has been implemented establishes:

(3)

	
Therefore, this decision function is aimed at recognizing a disruptive behaviour at time t (fig. 4) 
when anyone of the 10 first layer classifiers identifies a disruptive event. But it is important to 
mention that more than one classifier can make a disruptive prediction. If this happens, the present 
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decision function gives an ETTD that is related to the classifier with smallest index (the one closer 
to the disruption time), which predicts the disruptive behaviour.
	 At this point, a couple of questions arise: why the smallest identifier? What does eq. mean?
	 Concerning the first question, it is important to take into account that the smaller identifier the 
lesser number of SPIs is predicted for the disruption. Therefore, this is the most restrictive criterion 
to put into operation A/M actions and it provides a very conservative option for these purposes. With 
regard to the meaning of eq. , it can be explained with an example. Let’s assume that only three of 
the classifiers recognize a forthcoming disruption, for instance yt,9 = yt,7 = yt,4 = {+1}. The smallest 
index corresponds to the classifier SVM-C4. Figure 8 shows that SVM-C4 provides the following 
ETTD: t < ETTD4(t) ≤ t = 4 . TP. However, SVM-C1, SVM-C2 and SVM-C3 do not recognize a 
disruptive behaviour for the next 3 SPIs. A simple combination of this information means to choose 
as ETTD the interval t + 3 . TP. Eq.  just generalises this reasoning.
	 Finally, it is important to mention that the TTD assigned to a DTP is defined as the remaining 
time to the upper bound of the ETTD interval, i.e. if the TTD: ETTD (t) ∈ (t +(k–1) . TP, t + k . TP), 
the corresponding TTD(t) = k . TP.

6.	 JET DTP RESULTS
As mentioned previously, the discharges of the training set are chosen in a random way from the 
1237 JET ILW shots between years 2011 and 2013. After selecting a training set (622 non-disruptive 
and 121 disruptive discharges), the remaining ones (414 non-disruptive and 80 disruptive) are used 
as test set to obtain the results. To take into account the potential influence of the random selection 
of discharges, 100 different datasets of trainining/test sets have been generated: DS(1), DS(2), …
DS(100). In other words, each dataset of training/test sets DS(m), m = 1, …, 100 obtains a disruption 
success rate (DSR(m)), a false alarm rate (FAR(m)) and time to disruption prediction (TTD(m)). 
The final results of a DTP are computed according to the following expressions:

(4)

	
The error in the estimation of the TTD is the standard deviation of the elements TTD(m), m = 1, 
…, 100. 
	 The DTP assessments have taken into account feature vectors of dimension 14 (xt 

o 14) and 24
(xt 

o 14). The first case corresponds to use the signals 1-7 of table 3 and two features per signal in each 
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SPI 32 ms long: the mean value and the standard deviation of the power spectrum after removing 
the DC component. These 14 features are the ones used by APODIS in the JET real-time network 
and, therefore, APODIS results can be compared with the results of the DTP. The case with 24 
features uses all the signals of table 3 and two features per signal as in the preceding case. Different 
number of classifiers in the first layer has been evaluated.
	 It should be reminded that each test set contains 414 non-disruptive and 80 disruptive discharges. 
In all cases, the test discharges are analysed every 32 ms, from plasma breakdown to end. A discharge 
is recognised as non-disruptive when all feature vectors of the discharge (taken at regular times 
of 32 ms) are identified as non-disruptive. A discharge is labelled as disruptive when one alarm is 
triggered, i.e. when the DTP predicts NC consecutive disruptive behaviours. A discharge is considered 
as missed alarm with it is disruptive but no alarm is triggered. Finally, a discharge is classified as 
false alarm when it is non-disruptive but the DTP predictor has triggered an alarm.
	 Due to the fact that the test sets consist of 414 non-disruptive discharges, each 1% of false alarm 
rate approximately means 4 false alarms. On the other hand, owing to the use of test sets with 80 
disruptive discharges, table 4 shows, on average, the number of missed alarms as a function of the 
DSR.
	 Table 5 summarizes the outcomes with NC = 1, i.e. the first disruptive behaviour is enough to 
trigger an alarm. Up to 10 sequential classifiers in the first layer have been tested. The DSR is above 
97.9% in all cases, which means that practically all disruptive discharges are successfully predicted. 
With regard to the false alarms, the more classifiers in the first layer the higher FAR. A DTP with 
24 features reduces this impact but some mechanism to filter false alarms is necessary.
	 Table 5 shows that up to three classifiers can be combined for successful predictions with FAR 
below 5%. But it should be noted that the ETTD with three classifiers (taking into account that 
processing windows of 32 ms are being used) vary between (64, 96] and (0, 32] ms. Therefore, to 
improve not only the ETTD but also to diminish the FAR, the filtering criterion with NC > 1 (fig. 
5) has been applied to the same 100 datasets of training/test sets: DS(m), m = 1, …, 100.
	 Table 6 shows the results with different number of classifiers in the first layer, several cases of 
consecutive alarms (NC parameter) and both 14 and 24 features. Each line of the table shows a 
different DTP that differs from the others in the first layer classifiers and/or the NC parameter. All 
possible combinations of first layer classifiers (between 10 and 5) and NC have been tested. However, 
only the cases in which the FAR is below 5% (either with 14 or 24 features) are shown. The values 
DSR, FAR and TTD are defined in eq. . Finally, min(TTD) represents the smallest element TTD(m), 
m = 1, …, 100 of a DTP.
	 As it is shown in table 6, the DSR is quite close to 100% in all cases. In fact, the minimum DSR 
with 14 features is 98.2% (this means, according to table 4, to miss 2 disruptions) and 97.1% in 
the case of 24 features (3 missed alarms). On average, there is about 3% (12 discharges) of false 
alarms in the DTPs with 14 features and about 2% (8 discharges in the case of 24 features.
	 The columns called TTD represent the average time to disruption obtained with the predictions.
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Elaborating on the false alarms, it is obvious that the rates decrease as NC increases. This means that 
NC, as expected, can be used to filter false alarms. Demanding the prediction of several consecutive 
disruptive behaviours before triggering an alarm makes a DTP both robust (the DSR is maintained) 
and insensitive to noise (false alarms are filtered).
	 With regard to the TTD, it should be noted that all the predictions are compatible with the ETTD. 
Moreover, it is important to emphasize that the minimum TTD in all cases is always greater than 
or equal to the time length of one SPI. This is essential to ensure that all predictions have at least 
32ms to carry out A/M actions. It is important to mention that the minimum time in JET to carry 
out mitigation actions is 30 ms. Therefore, the DTP results do not show tardy detections.
	 As mentioned, each row of table 6 shows the average results over 100 datasets of training/test 
sets. The results show high DSR, low FAR and accurate predictions of the time to disruptions. The 
outcomes, which are the average on a high number of training/test sets, prove the robustness of the 
DTP and confirm that there is no dependence on a specific selection of discharges. This means, that 
the training/test datasets can be chosen at random because all of them provide similar results.
	 To put into operation a real-time DTP, instead of computing results with 100 different predictors, 
it is necessary to select a particular training set and to assess the corresponding DTP with a test 
set. Table 7 shows the results with the best predictors of each row in table 6. But it is important to 
clarify the term ‘the best predictors of each row’. To obtain the best of the 100 predictors in each 
row, three filters have been used. The first one is to select the predictor whose test set provides the 
smallest standard deviation in the computation of the TTD. In case of similar values, the second 
filter establishes to choose the predictor that provides the smallest FAR. If a third filter is necessary, 
the predictor with the greatest DSR is selected.
	 Table 7 practically shows 100% of success rate in all the cases (14 and 24 features). The false 
alarm rate is almost 0% (on average, less than 1 discharge). The TTDs are compatibles with the 
ETTDs and it is important to note the high accuracy of the predictions (in some cases, the error 
estimation is below 1 ms). Moreover, in all the cases, the TTD definition (according to the largest 
possible time within the ETTD) is satisfactory. For practical purposes, DTPs with 14 features are 
preferred in comparison to the ones with 24 features. The former essentially provide the same results 
and are less sensible to signal failures (only 7 signals are required).
	 According to table 7, a DTP with seven classifiers (C1, …, C7), NC = 3 and 14 features provides 
the maximum TTD with the minimum FAR and 100% of DSR. Figure 9 shows the accumulated 
fraction of detected disruptions with this DTP. It is important to note that 1, 75 and 4 predictions 
show TTDs of 192ms, 160ms and 128 ms respectively. All anticipation times are very concentrated 
around a single value, which makes the DTP very accurate. This behaviour is the standard one for 
all the DPTs of table 7. Also, it is important to emphasise that all the TTDs are far enough from the 
time threshold of 30ms to accomplish mitigation actions in JET.
	 In the same figure, the real warning times at the time instants when the DTP triggers the alarm 
have been plotted. The AWT is 161ms and the estimation error is ±4 ms. It is clear from the plot 
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that both the TTD and the real warning times coincide in 95% (76/80) of the cases. But it should 
be noted that the discrepancies predict a shorter time to disruption than the real one. A shorter TTD 
is not an issue because if A/M actions are carried out by considering a shorter time, the disruptions 
will not be missed.
	 In general, in all the DTPs of table 7, the TTD and the DTP warning times match in 95% of the 
cases, and the disagreements show shorter TTDs.
	 Fig. 10 compares the real results of APODIS obtained with the same discharges of Fig.9. The 
success rate without considering tardy detections is 72.5% (58/80) and the false alarm rate is 0.5% 
(2/414). The AWT is 289ms and its range of variation is from 30 ms to 1.835 s (which implies a 
standard deviation of 332ms). These results are quite different from the ones obtained with the 
DTP. On the one hand, 100% of the disruptions are predicted with enough anticipation time. On the 
other hand, there is a large accuracy in the TTD predictions that according to fig. 9 means a large 
accuracy in the warning times.

7.	 DISCUSSION AND FUTURE WORK ON DTPS
The DTP described in this article is a kind of time to disruption predictor that successfully copes with 
three essential aspects of disruption prediction: high success rate and low false alarm rate together 
with an early and very accurate estimation of the time to disruption (table 7 and Fig.9). The tests 
carried out in JET with 1237 discharges show much better results of the DTP than the ones obtained 
with the JET APODIS predictor (Fig.10). These results include 100% of DSR, FAR near to 0%, 
enough anticipation time (> 128ms) and high accuracy in the TTD estimation (in the order of ms).
As part of future work, the DTP has to be tested with the large database of JET corresponding to 
the previous Carbon Fiber Composite (CFC) wall. Also, an important aspect to investigate is the 
possibility of increasing the TTD estimation but maintaining the accuracy. To this end, the analysis 
of new decision functions, different interval lengths (TP) of the SPIs, effect of increasing the number 
of 1st layer classifiers and implications of varying the number of type I and type II SPIs will have 
to be carried out.
	 The so accurate determination of the TTD will allow including the time as a new variable to search 
precursors of disruptive behaviours. From tables 6 and 7, it is clear that even the fastest disruptions 
in JET (for instance, vertical stabilization) could be predicted with at least 32ms. This means that 
the footprint of the disruptive event would be present and, therefore, a data mining analysis of the 
discharges can be crucial to establish physics models about disruptions. But it is important to note 
that during the ILW campaigns, the plasma scenarios that have been investigated did not produce a 
large number of fast disruptive events. So, the analysis of CFC wall discharges and the ones that will 
be produced in the next ILW experimental campaigns will be of primary importance in this respect.
	 Also, it is important to note the robustness of the predictor even with a reduced number of signals. 
Here, the term robustness means that there is no dependence on specific discharges (table 6) to 
train the DTP whenever a large number of discharges are available for training purposes. However, 
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recent analyses have raised the need of developing reliable disruption predictors from scratch [24, 
25, 26] for next fusion devices such as ITER or DEMO. Therefore, an interesting research topic 
will be the development of a DTP from scratch.
	 Other possibilities that can be explored in the future are the use of new plasma quantities and 
the introduction of probabilistic classifiers to create the DTP.
	 To conclude, it is important to emphasize that the results of these article give the unprecedented 
opportunity of designing active A/M actions to be included in the development of plasma scenarios.
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Table 1: The table shows the pairs (yt, ETTDi(t)) provided by the classifiers at the several prediction times. The first 
element in the pair is the predicted label and the second one is expressed as the expected number of SPIs from the 
prediction time. When the predicted label is {–1}, no ETTD is output.

Classifier 
Classifier outputs at the prediction times 

t t + TP t + 2TP t + 3TP t + 4TP 
SVM-C5 ({+1}, 5 SPIs) ({+1}, 5 SPIs) ({+1}, 5 SPIs) ({+1}, 5 SPIs) ({+1}, 5 SPIs) 
SVM-C4 ({-1}, -) ({+1}, 4 SPIs) ({+1}, 4 SPIs) ({+1}, 4 SPIs) ({+1}, 4 SPIs) 
SVM-C3 ({-1}, -) ({-1}, -) ({+1}, 3 SPIs) ({+1}, 3 SPIs) ({+1}, 3 SPIs) 
SVM-C2 ({-1}, -) ({-1}, -) ({-1}, -) ({+1}, 2 SPIs) ({+1}, 2 SPIs) 
SVM-C1 ({-1}, -) ({-1}, -) ({-1}, -) ({-1}, -) ({+1}, 1 SPI) 
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Table 3: List of signals to characterize the disruptive/non-disruptive status of JET plasmas with a DTP.

Table 4: Average number of missed alarms in the test sets deduced from the DSR.

Table 2: Labels of the feature vectors from type I SPIs of a disruptive discharge.

Classifier 
Labels 

1x   2x   3x   4x   5x   … 

SVM-C1 +1 -1 -1 -1 -1 … 
SVM-C2 +1 +1 -1 -1 -1 … 
SVM-C3 +1 +1 +1 -1 -1 … 
SVM-C4 +1 +1 +1 +1 -1 … 
SVM-C5 +1 +1 +1 +1 +1 … 

… … … … … … … 

Signal id. Signal name Units 
1 Plasma current A 
2 Mode locked amplitude T 
3 Plasma internal inductance  
4 Plasma density m-3 
5 Stored diamagnetic energy time 

derivative 
W 

6 Radiated power W 
7 Total input power W 
8 Poloidal beta  
9 Plasma vertical centroid position m 
10 Plasma inductance time derivative s-1 
11 Poloidal beta time derivative s-1 
12 Plasma vertical centroid position 

time derivative 
m/s 

DSR(%) Missed alarms 
100 0 

98.75  DSR < 100 1 
97.50  DSR < 98.75 2 
96.25  DSR < 97.50 3 
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Table 5: The DTP triggers an alarm when any first layer classifier predicts a disruptive behaviour. DSR and FAR are 
defined in eq.  and  respectively. Results are shown with 14 and 24 features and correspond to the average from 100 
datasets: DS1, DS2, …, DS100. For simplicity, the names of the classifiers in the first column do not show “SVM-“.

Table 6: at least 2 consecutive disruptive behaviours are necessary to trigger an alarm. Again, DSR and FAR are defined 
in eq.  and  respectively. ETTD is the expected time to disruption interval. 

 14 features 24 features 
1st layer classifiers DSR(%) FAR(%) DSR(%) FAR(%) 

C1 100 0.00 97.93 0.00 
C2, C1 100 0.06 98.40 0.06 

C3, C2, C1 100 1.38 98.51 0.84 
C4, …, C1 100 8.49 99.28 6.36 
C5, …, C1 100 11.68 99.29 8.60 
C6, …, C1 100 13.22 99.40 10.24 
C7, …, C1 100 16.99 99.49 10.93 
C8, …, C1 100 21.05 99.68 12.16 
C9, …, C1 100 29.79 99.78 16.21 

C10, …, C1 100 41.86 99.83 19.74 
 

  14 features 24 features 
1st layer 
classifiers 

NC ETTD 
(ms) 

DSR(%) FAR(%) TTD 
(ms) 

min(TTD) 
(ms) 

DSR(%) FAR(%) TTD (ms) Min(TTD) 
(ms) 

C10, …, C1 8 (64, 96] 99.4 6.3 97±16 32 98.4 4.3 97±15 32 
C10, …, C1 9 (32, 64] 99.4 4.7 65±11 32 98.1 2.9 65±12 32 
C10, …, C1 10 (0, 32] 98.2 3.3 33±10 32 97.1 1.7 33±14 32 
C9, …, C1 7 (64, 96] 99.9 5.5 97±14 32 98.5 4.0 97±14 32 
C9, …, C1 8 (32, 64] 99.3 4.2 66±14 32 98.1 3.1 66±17 64 
C9, …, C1 9 (0, 32] 99.2 2.8 33±8 32 97.6 1.9 33±12 32 
C8, …, C1 5 (96, 128] 100 5.2 127±10 32 99.1 4.1 127±7 64 
C8, …, C1 6 (64, 96] 99.9 3.3 97±11 32 98.5 2.5 96±10 32 
C8, …, C1 7 (32, 64] 99.9 2.3 65±9 32 98.4 1.5 65±11 32 
C8, …, C1 8 (0, 32] 98.6 1.4 34±8 32 97.5 0.9 33±12 32 
C7, …, C1 3 (128, 160] 100 7.2 158±10 96 99.1 4.7 159±7 96 
C7, …, C1 4 (96, 128] 100 5.2 127±10 32 99.1 2.9 127±6 64 
C7, …, C1 5 (64, 96] 100 3.1 96±8 32 99.1 1.5 96±8 64 
C7, …, C1 6 (32, 64] 99.9 1.5 64±6 32 98.4 0.7 64±8 32 
C7, …, C1 7 (0, 32] 99.8 0.8 33±6 32 97.7 0.2 33±8 32 
C6, …, C1 2 (128, 160] 100 6.5 158±10 32 99.1 4.8 158±7 96 
C6, …, C1 3 (96, 128] 100 2.5 127±8 32 99.1 1.8 127±6 64 
C6, …, C1 4 (64, 96] 100 0.8 95±5 32 98.8 0.7 96±6 32 
C6, …, C1 5 (32, 64] 100 0.2 64±4 32 98.2 0.1 64±8 32 
C6, …, C1 6 (0, 32] 99.9 0.1 32±5 32 97.7 0.0 32±8 32 
C5, …, C1 2 (96, 128] 100 4.8 127±8 32 99.1 2.5 127±5 64 
C5, …, C1 3 (64, 96] 100 1.7 96±7 64 98.3 0.6 96±6 64 
C5, …, C1 4 (32, 64] 100 0.5 65±8 32 98.2 0.1 65±8 32 
C5, …, C1 5 (0, 32] 99.5 0.1 33±8 32 97.6 0.0 33±11 32 

 



21

Table 7: each row gives the best predictor in each row of table 6.

Figure 1: The reaction time can include, firstly, any 
computation time to decide between implementing 
avoidance or mitigation actions (and the selection of a 
specific methodology), secondly, the necessary time to fire 
technical systems and, thirdly, the plasma response time 
to the A/M actions.

Figure 2: APODIS results during the 2011-2013 JET 
ILW campaigns (1078 non-disruptive discharges and 
564 unintentional disruptions): success rate 97.34% 
(549/564)) and false alarm rate 1.64% (12/1078). The 
AWT is 423ms but there is a large uncertainty (827ms) in 
its determination. The solid vertical line at 30ms represents 
the minimum time in JET to carry out A/M actions.
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C7, …, C1 7 (0, 32] 100 0.0 32±3 100 0.7 32±0 
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C6, …, C1 4 (64, 96] 100 0.0 96±0 100 0.0 96±3 
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C5, …, C1 2 (96, 128] 100 0.2 128±0 100 0.0 128±0 
C5, …, C1 3 (64, 96] 100 0.0 96±3 100 0.0 96±3 
C5, …, C1 4 (32, 64] 100 0.0 64±0 100 0.2 64±0 
C5, …, C1 5 (0, 32] 100 0.0 32±3 100 0.0 32±0 
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Figure 3: Figure caption.

Figure 4: DTP architecture. The prediction takes place at 
time t from a feature vector xt generated in the SPI

Fig. 5: Filtering criterion. The predictor only triggers an 
alarm after the recognition of NC consecutive disruptive 
behaviours in the NC consecutive DTPs. In this figure 
NC = 4 and yt

(4) = {+1} if yt–3TP
 = yt–2TP

 = yt–TP
 = yt {+1}. 

Moreover, ETTD(4) (t) = ETTD(t).

Figure 6: Sampling times after resampling in a disruptive 
discharge. The SPIs (I1, I2, I3, …) are numbered depending 
of its position in relation to the disruption time.
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Figure 8: The only classifier that predicts a disruptive 
behaviour is SVM-C4. The combination of intervals 
determines that ETTD(t) ∈ (t +3 . TP, t + 4. TP).

Figure 9: DTP results during the 2011-2013 JET ILW 
campaigns. The training was carried out with 622 and 
121 non-disruptive and disruptive discharges respectively. 
The test set consists of 414 non-disruptive and 80 
disruptive discharges: success rate 100% (80/80) and 
false alarm rate 0.2% (1/414). The solid vertical line at 
30ms represents the minimum time in JET to carry out 
mitigation actions.

Figure 10: APODIS real results with the discharges of 
Fig.9: success rate after removing tardy detections 72.5% 
and false alarm rate 0.5%. The AWT is 289ms and its 
standard deviation is 332ms. The solid vertical line at 30 
ms again represents the minimum time in JET to carry out 
mitigation actions.

Figure 7: Description of SPIs for non-disruptive and 
disruptive training discharges.
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