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ABSTRACT

The new full-metal ITER-like wall (ILW) at JET was found to have a deep impact on the physics of
disruptions at JET. In order to develop disruption classification, the 10-dimensional operational space
of JET with the new ILW has been explored using the Generative Topographic Mapping method
(GTM). The 2-dimensional map has been exploited to develop an automatic disruption classification
of several disruption classes manually identified. In particular, all the non-intentional disruptions
have been considered, that occurred in the JET from 2011 to 2013 performed with the new wall
(JET-ILW). A statistical analysis of the plasma parameters describing the operational spaces of JET
with Carbon wall (JET-C) and JET-ILW has been performed and some physical considerations have
been made on the difference of these two operational spaces and the disruption classes which can
be identified. The performance of the JET-ILW GTM classifier is tested in a real-time fashion in
conjunction with a disruption predictor presently operating at JET with good results (above 90%).
Moreover, to validate and analyse the results another reference classifier has been developed, based
on the kNearest Neighbour technique. Finally, in order to verify the reliability of the performed
classification, a conformal predictor has been developed which is based on non-conformity measures.

1. INTRODUCTION

Avoidance or mitigation of disruptions is of primary importance in order to preserve the integrity
of tokamak machines because disruptions could result in large forces or extreme heat loads. Hence,
understanding of disruptive phenomena is particularly important in designing and operating new
experimental devices such as ITER, which will have the task of demonstrating the feasibility of
fusion energy production from a technical and engineering point of view.

These considerations motivate a strong interest in developing methods and techniques that
minimize both the number and the severity of disruptions. The latter can be accomplished by
achieving an early detection of a disruptive event such that mitigating actions can be triggered.
Therefore, it would be helpful to distinguish the cause of the disruption, because different disruption
classes may require a different reactions or mitigation strategies.

The work presented in this paper fits in the broad framework of machine learning techniques
that have been exploited as an alternative approach to automatic disruption classification at JET.

Machine learning methods have been extensively used in the field of disruption prediction.
In particular, several contributions have been presented using neural networks (NN) in
different tokamaks [1]. One of the major drawbacks of the NN approaches is that the network
performance normally deteriorates when new plasma configurations are presented to the network.
Improvements, from this point of view, might be possible using Novelty Detection techniques
[2]. Another successful experience in JET is represented by the real-time Advanced Predictor Of
DISruptions (APODIS) [3].

In [4, 5] the authors investigated the possibility of improving the previous black box approaches,
which are blind, or non-explanatory, by a process called manifold learning, which finds low

dimensional structures in high dimensional data caused by constraints on the data itself.



In [4] the mapping of the multi-dimensional plasma parameter space of ASDEX Upgrade has been
performed using a 2D Self Organizing Map (SOM).

In [5], the high dimensional operational space of JET has been analyzed and described using
different linear projection methods such as Principal Component Analysis, and non-linear manifold
learning techniques such as SOM and GTM. The 2D SOM and/or GTM maps allowed identifying
characteristic regions of the plasma scenario and discriminating between regions with high risk of
disruption and those with low risk of disruption.

Fewer efforts have been made to apply machine learning techniques to disruption classification,
even if being able not only to predict but also classify the type of disruption will enable one to better
choose the appropriate mitigation strategy.

The first attempt to automatically classify disruptions at JET was described in [6] using pattern
recognition techniques. Disruptions for training were manually classified by some of the authors,
in collaboration with physicists at JET, in four classes.

It has to be highlighted that, manually classifying disruption type is essential to develop any
automated classification system. In [7] and [8] both the proposed automatic disruption classifiers
were based on the manual classification proposed in [9] for the discharges occurring during the
JET operations with the Carbon Wall from 2000 to 2010. In [9] specific chains-of-events that led to
disruption have been identified and used to classify disruptions, grouping those that follow specific
paths. Sometimes these paths are clear and unique, while others could follow near similar courses.
Moreover, several different problems may occur simultaneously, eventually leading to a disruption.
Hence, not always an unambiguous manual classification is possible.

In [5] the potentiality of the GTM mapping of the JET-C operational space has been exploited
to develop an automatic disruption classifier of seven disruption types classified in [9], showing a
great potential in terms of classification success rate (exceeding 97%).

In [8] a clustering method, based on the geodesic distance on a probabilistic manifold, has been
applied to the JET-C disruption database. The developed technique identifies the type of disruption
with 85% confidence, several hundreds of ms before the thermal quench.

The new full-metal ITER-like wall at JET was found to have a deep impact on the physics of
disruptions at JET. Such impact has been analyzed in [10, de Vries APS 2013] where it has been
stressed that the main difference between JET-C and JET-ILW is the lengthening of the current
quench due to lower radiation and higher temperatures during the disruption, which increases the
impulse to the vessel and conducts a larger fraction of energy to the wall. This is aggravated by the
fact that the ILW is more vulnerable to heat loads.

Regarding the disruption causes, differences between JET-ILW and JET-C have been identified
in [10, de Vries APS 2013] for 2011 and 2012 campaigns. The predominant effect of the ILW on
disruption causes was the change in density limit, more disruptions due to error field locked mode,
and a new class of disruptions, due to accumulation of high-Z impurities. The error field locked
modes became more common with the JET-ILW because the density could drop significantly in
case of failure of the gas injection system, allowing these modes to grow, while with the JET-C
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observed in special cases with the JET-C. However, with the JET-ILW it becomes the predominant
disruption cause at JET [de Vries APS 2013].

In the present paper, a statistical analysis on JET-C and JET-ILW disruptions have been performed
to investigate how the modification of disruption physics in the JET-ILW experiments eventually
influences the operational space of JET. The analysis showed the necessity to develop a specialized
GTM map of the JET-ILW 10-dimensional plasma parameter space for disruption classification
purposes. Results of the mapping have been reported showing the suitability of the proposed
method for the classification task, simulating the on-line application in conjunction with APODIS
prediction system. Moreover, the potentiality of the method in giving useful physics insight in the
development of disruptions has been discussed.

Furthermore, in order to corroborate the obtained results, those obtained with another classifier
based on kNN have been presented. Finally, in order to verify the reliability of the classification, a
conformal predictor has been developed which provides information on the level of confidence of
the proposed classification.

2. MACHINE LEARNING METHODS

Today the large amount of data available from fusion experiments and their character of high-
dimensionality make it particularly difficult to handle, process, and extract properly what is really
important among all the available information. In fact very often data sets consist not only of a
huge number of examples, but are also characterized by a consistent number of features necessary
to exhaustively represent the behavior of a certain phenomenon. Obviously not all the features
have necessarily the same level of importance, or it can happen that some of them are redundant
or completely useless in relation to a specific objective. This is a key point for several reasons:
first of all, even if computer power is continuously increasing, there is a computational limit to the
amount of data which can be handled because of the complexity of the algorithms and the required
hardware memory. Furthermore, high-dimensionality makes data very difficult to interpret, which
is a common scientific problem. The most obvious issue is visualization; when the data dimension
is greater than three they cannot be visualized and it becomes harder to perceive similarities and
dissimilarities between different variables. Furthermore, the sampling of the space is harder due
to the high number of possible data samples, and one has to take into account also the aspect of
the computational burden required by pattern recognition, classification and prediction algorithms.
Therefore, reducing the quantity of relevant features in a data set is a fundamental step for the
subsequent application of powerful data-analysis and machine learning techniques. In the literature
a wide range of methods to approach the aforementioned issues are proposed. In the following, the
machine learning methods used in this paper for feature extraction, data reduction, data visualization

(mapping) and classification are briefly described.

2.1 GENERATIVE TOPOGRAPHIC MAPPING
Generative Topographic Mapping belongs to the class of the so called “generative models”, which
try in a various ways to model the distribution of the data by defining a density model with low



intrinsic dimensionality in the data space. Through a nonlinear mapping from the latent space to
the data space, the GTM generates a mixture of Gaussians, whose centers are constrained to lie on
a low dimension space embedded in the high-dimensional one and has to be fitted to the data. This
is usually achieved through a form of the Expectation Maximization algorithm by maximizing the
likelihood or the log-likelihood function of the model [12].

In a certain way, GTM has been inspired by the SOM algorithm [13], attempting to overcome its
limitations. In particular, SOM does not define a density model and the convergence of the prototype
vectors are not based on the optimization of an objective function such as the likelihood function,
in fact the preservation of the neighborhood structure is not guaranteed. Being a generative latent
model, GTM basically tries to find a representation in terms of a small number of latent variables:
in order to be able to visualize the lower dimensional representation of the data, the latent variable
dimension must be two or three. Since the mapping is defined from the latent space to the data
space, for visualization purposes an inversion of the mapping itself is required and this is achieved
computing the posterior probability in the latent space through the Bayes’ theorem.

However, a single data point corresponds to a probability distribution in the latent space, not
just to a single point; therefore, usually condensed information such as the mean or the mode of
the posterior distribution are made as reference. The nonlinear mapping between the latent space
and the data space can be expressed by a linear regression model: one of the suggested approaches
is to use a linear combination of radial basis functions (RBFs), such as for example Gaussians.

Similarly to the SOM algorithm, GTM can be applied for data clustering and topology
preservation. Being the mapping defined by a smooth and continuous nonlinear function, the
topographic ordering of the latent space will be preserved in the data space, in the sense that points
close in the latent space will be mapped onto nodes still close in the data space. Summarizing,
GTM explicitly defines a density model (given by the mixture distribution) in the data space, and
it allows overcoming several problems, in particular the ones related to the objective function (log
likelihood) to be maximized during the training process, and the convergence to a (local) maximum
of such an objective function, that is guaranteed by the Expectation Maximization algorithm.

2.2 KNEAREST NEIGHBOUR
The kNearest Neighbours algorithm (k-NN) is a reference non-parametric method used for
classification and regression. It represents one of the simpler but at the same time more used learning
algorithms. An object can be classified on the base of its neighbors classification by a majority vote
with the object being assigned to the class with the higher number of neighbors among the knearest
ones. kNN is defined as an instance-based classifier, unlike GTM for example, which defines a
generative latent model. There are several implementations of this algorithm, such as the weighted
version for taking into account the different importance of the neighbors on the base of the distance
to the test unlabeled point.

The kNN technique requires the definition of a similarity measure, or in other words a distance
measure. The most commonly used metric is the Euclidean distance, but also other metrics such



as Hamming distance [14] or Mahalanobis distance [15] can be used depending on structure and
properties of the data of interest.

k-NN is a simple and flexible technique whose drawbacks are well known, as for example the
application of the majority-voting criterion for classification when the dataset is strongly unbalanced
in terms of the different classes. In this case, the class with higher frequency of occurrence can distort
the majority vote among knearest neighbors. One solution to overcome this problem is to take into
account the distance of each of the knearest neighbors with a weighted sum multiplying for a factor
proportional to the inverse of the distance from the considered point to the test unlabeled point.

The method has some strong consistency results. In particular, the algorithm is guaranteed to
yield an error rate no worse than twice the Bayes Manifold learning algorithms error rate if the
amount of data tends to infinity [16]. Bayes error rate is referred to the optimal decision boundary

that provides the lowest probability of error for a classifier, given a distribution of data [17].

2.3 CONFORMAL PREDICTORS

Conformal predictors belong to the wide family of machine learning algorithms that can be applied
for prediction and classification purposes. Unlike others methods, they have the peculiarity to provide
together with prediction or classification also the corresponding level of confidence [18, 19]. The
theory of conformal predictions is based on the principles of algorithmic randomness, and on the
Kolmogorov complexity of an i.i.d. (identically independently distributed) sequence of data instances.

Conformal predictors can be used together with any method of prediction, such as support vector
machines, neural networks, decision trees, or nearest neighbour classifiers. Recently, a method based
on membership functions has been proposed to extend their use also to Fuzzy Logic classifiers [20].
To determine the confidence level for the classification of a new object, it is necessary to estimate
how different a new object is from the old examples: to this purpose, usually a nonconformity score
is calculated on the base of a defined nonconformity measure.

Let us consider N successive ordered pairs (X;,y;),(X,,¥,),...,(X,,y,), where z;=(X;, y;) represents
the generic example, which consists of an object xi and the corresponding label yi. Both the object
and the label belong to measurable spaces, respectively the object and the label space. Conformal
prediction requires firstly the definition of a nonconformity measure, which measures how different
a new example is from old examples. A bag of size n € N is a collection of n elements and can be
given in any order. In the following, a bag of size n will be indicated with the notation. The first
step of the conformal prediction algorithm is the computation of the nonconformity scores for any
object of the given bag on the base of a defined nonconformity measure A:

oci:=A(<zl,...,z‘i 1,zi+1,...,zn>,zi) (D

Nonconformity scores have not an absolute value, being relative to the particular case considered
for the given bag of objects (z,,..., z,,). Therefore, in order to generalize and give a measure of how
unusual an element z; is with respect to the other elements of the bag, its score must be compared

with the one of all the other objects. This can be done for example by computing the so-called



p-value, which is defined by the fraction:

pvalue = #H:] :j,...,nn D0 = OLZ'H )

This fraction, which is the p-value for z;, can assume values between //n and /, and represents the
normalized number of examples belonging to the bag at least as nonconforming as z;. The closer to
its lower bound 1/n the p-value is the more nonconforming the object z; is with respect to the other
elements of the bag. If n is large enough, a high level of nonconformity may define an outlier for
the considered class.

In the framework of the classification with conformal predictors, the p-values have a double
function: they are used to assign the class to a new element and, at the same time, on the base of
their values, it is possible to define the goodness and the reliability of the classification itself. Thus,
if a new object of unknown label to be classified on the base of the defined nonconformity measure
into one of N available classes is considered, the conformal predictor will assign to the new object
the label with the highest p-value. The reliability of the prediction is quantified by two parameters,
confidence and credibility, defined as:

Credibility = Largest p-value (max(p;),j=1,....N).
7 3)

Confidence = 1 — 2" largest p-value

The values of credibility and confidence are indicative of the reliability with which the classification
is provided. In particular, assuming that each class is statistically well represented in the training
set, a low value of credibility means that the new object (test) is not representative of any class of
objects in the bag (training set). Another important point is represented by the fact that the maximum
p-value is not necessarily defined in a unique way, in the sense that the maximum p-value could
be attributed to more than one class. This is a case of ambiguity, which means the conformal
predictor for the given training set, on the base of the defined nonconformity measure, is not able
to discriminate among the classes which the maximum p-value is associated with.

As it has been anticipated at the beginning of this section, the nonconformity score can be
computed in different ways. For the classification purpose of this work, the conformal predictor is
based on the nearest neighbour technique. When a new example z, = (x,,, y,) has to be classified,
the nearest-neighbour technique finds the object x; of the training set closest to the new one (x,,) and
assigns its label y; to the label y, to be predicted, but it doesn’t provide any information about the
confidence of the prediction. On the other hand, conformal predictors measure the nonconformity of
the new example with respect to the old ones belonging to the training set quantifying the goodness
of the prediction. In particular, for all the possible classes, they compare the distance of the nearest
object x; with the same label previously attributed, with the distance of the nearest neighbour with

a different label, computing the so-called nonconformity scores:



min {|x;-x|:1<jsn&j=zi&y =y}
o. =
l min{‘xj—xi‘:lsjsn&j;ti&yi ¢yj}

4)

_ distance to z's nearest neighbour with the same label

distance to z's nearestneighbour with a different label

3. AUTOMATIC CLASSIFICATION OF THE JET CARBON WALL DISRUPTIONS
In [7] the GTM of the 10D operational space of JET with Carbon Wall has been used to develop a
disruption classifier of seven disruption classes manually classified in [9].

In particular, 243 non-intentional disruptions occurred on JET in the experimental campaigns
from 2005 up to 2009, in the shot range between 63718 and 79853, have been considered. In the
aforementioned interval, also 1467 safe discharges have been selected. The plasma quantities used
to described the operational space are [5]: the plasma current (,); the poloidal beta (b,,); the Model
Lock Amplitude (LM); the Safety Factor at 95% of Poloidal Flux (gys); the Total Input Power (P,,,);
the Plasma Internal Inductance (/;); the Plasma Centroid Vertical Position (Z,.); the Line Integrated
Plasma Density (ne;;,); the Stored Diamagnetic Energy Time Derivative (dW ;,/dt); the Total Radiated
Power (P, ;).

Each signal has been sampled at 1 kHz, and a “safe” label has been associated with each sample of
the safe discharges whereas a “disrupted” label has been associated with the last 210 samples of the
disruption terminated discharges (one sample every 1 ms in the time interval [t;210 ms - t], where
tp 1s the disruption time [7]). Then, a data reduction has been performed for the safe discharges to
reduce the huge amount of safe samples and to balance the data set of safe and disrupted samples.

In [9] the non-intentional disruptions in the considered JET-C campaigns have been analysed and
associated with particular disruption classes by detecting specific chains-of-events and grouping
those that follow definite paths. In particular, the following seven classes have been identified:
problems during the Auxiliary Power Shut-Down (ASD); Greenwald Limit (GWL); Impurity Control
problem (IMC); Internal Transport Barrier (ITB); Low Density and Low ‘g’ (LON); Density Control
problem (NC); Neo-Classical Tearing Mode (NTM). It should be noted that the complexity of the
disruption process could make this manual classification rather ambiguous and a few disruptions
were not able to be classified at all [9]. Nevertheless, this work was essential to develop an automated
classification able to help identifying a strategy for disruption avoidance or mitigation.

Making reference to this manual classification, a label corresponding to the disruption types can
be associated with each disruptive sample. In Figure 1, the 2D GTM of the 10D JET-C operational
space is reported, making reference to the Mode representation [12]. In the GTM, the latent space is
a discrete grid of nodes (or cells). The arrangement of nodes is a two-dimensional regular spacing in
a 70x70 rectangular grid. Each map unit in the GTM can be associated with a particular composition
characterized by a coloured symbol, as shown in the legend in Figure 1.

Beyond the data analysis and the characterization of the operational space, also the potential of
such mapping techniques for the disruption classification has been exploited, in order to figure out

at least in the feature space, if it is possible to distinguish regions where a certain class results to be



predominant with respect to the others. In the case of the GTMs, Figure 1 shows that some classes
are quite widespread all over the disruptive regions in the operational space, but also regions where
a specific class results to be predominant with respect to the others can be found. Thus, there is not
only a well-defined separation between disruptive and non-disruptive regions, but also the possibility
to characterize certain regions with a higher probability for a certain class with respect to the others.
For example, it can be seen that disruptions due to too strong ITBs, which are characterized by a
well-defined physics, are projected in the lower right corner of the GTM, while several regions are
interested mostly by both NCs and IMCs.

As previously mentioned, each node in the map is related to samples coming from different
classes. By projecting onto the map the temporal evolution of a discharge, each sample results
to be associated with a node. For each sample and each class, a class membership can be defined
on the base of the percentage of samples of the considered class in the node to which the sample
is associated, with respect to the total number of disruptive samples in the node itself. In order
to classify a disruptive shot, a majority voting algorithm has been adopted based on the class
membership of each class in a prefixed time interval before the disruption. In [7] the classification
has been performed in the last 210 ms of the disrupted pulses and the automatic classification was
in very good agreement with respect to the manual classification, as reported in Table I.

4. JET-ILW VERSUS JET-C OPERATIONAL SPACE

After the installation of the new ILW it was first attempted to project the disruptions of the JET-ILW
campaigns onto the GTM trained with the JET-C discharges, but the performance of the map in
classifying the new disruptions significantly deteriorated for certain classes (especially for IMC),
probably because of the fact that the operational space, or at least, the considered feature space
changed. Therefore, a detailed analysis has been performed to investigate how the modification of
the disruption physics, recognised in [10], in the JET-ILW experiments with respect to the JET-C
ones, eventually influences the classification space of JET.

As mentioned in the introduction, the most common disruptions during the first phase of operation
with the ILW, were those due to accumulation of high-Z impurities, mainly W, and as a consequence
excessive core radiation. Originally, for JET-C operations, the class IMC was proposed to deal
with disruptions due to impurity control problems. However, for JET-ILW operations it was found
that, within the IMC class, a distinct sub-class existed, related particularly to the control of high-Z
impurities. Then, the later sub-class has been identified as a new separated disruption class [11]
which in this paper is labelled IMC_high-Z.

The original training to detect the IMC class was based on JET-C data and, in these cases, the
IMC disruptions were mainly due to low-Z impurities and linked to large edge radiation, resulting
in the shrinking of the plasma column, yielding the growth of instabilities that disrupt the plasma.
Conversely, the new IMC_high-Z class has features that are quite distinct from the IMC class, such
as accumulation of high-Z material, strong core radiation and the formation of hollow temperature
profiles, which result in the flattening of the current density profile, yielding again an onset of
instabilities [11].



Such disruptions were rare with the JET-C and hence previously not identified as separate class [9].
The root cause of the disruptions due to high-Z impurity accumulation may lie in the edge, where
sputtered material enters the plasma, although a clear cause is not often found. For these reasons,
disruptions related to high-Z impurity control have been considered separately as a new class.
To evaluate whether this modification in the physics of the disruptions has changed the disruption
operational space, a statistical analysis has been performed on JET-C and JET-ILW disruption classes.
In Table II, the composition of the databases for both the JET-C and the JET-ILW is reported. For
JET-C the database consists of 243 non intentional disruptions occurred from 2005 to 2009; for
JET-ILW it consists of 149 non intentional disruptions occurred from 2011 to 2013. In Table II the
distribution and the occurrence for the different classes are reported. As it can be seen from Table
IT (“JET-C” and “JET-ILW” columns) and Figure 2, the composition of the two data bases is quite
different: in particular, disruptions due to Greenwald limit or due to too strong ITB are no longer
present in the new campaigns, whereas the number of disruptions due to IMC consistently increased,
as earlier reported [de Vries APS 2013].

Moreover, by considering the new impurity control problem disruption class, the disruptions
distribution slightly modifies (see “JET-ILW with IMC_high-Z" column in the same Table II): 81 of
the 109 IMC disruptions and one of the NTM become IMC_high-Z. The assignment to the different
classes is based on the manual classification described in [de Vries APS 2013].

A statistical analysis has been then performed on the plasma parameters describing the JET-C
and the JET-ILW operational spaces. In Figure 3 the probability density functions (pdf) of four
plasma parameters related to the last 210ms of the IMC disruptions for the JET-C (red lines) and
JET-ILW (grey dashed lines), and IMC_high-Z for JET-ILW (blue dashed lines) are reported: (a)
Plasma current Ip; (b) Safety Factor at 95% of Poloidal Flux q95; (c) Plasma Internal Inductance li;
(d) Line Integrated Plasma Density nelid. The analysis gives us interesting information in particular
for the new IMC class, confirming that a new GTM is needed to represent the JET-ILW operational
space. From Figure 3, it can be seen that it is quite difficult to discriminate among classes just from
the distribution of the signals. In fact it is well known that what really matters is the combination
of the parameters.

Moreover, for the new IMC class the pdf of the internal inductance is shifted towards lower
values, whereas the pdf of the electron density is shifted toward higher values. This is a direct
indication of the impact of the high-Z material on the core density and its radiation, flattening the
current density profile, thus lowering the internal inductance. Further analyses can be performed
to compare different behavior of disruption classes passing from JET-C to JET-ILW.

Regarding the density control problem and the impurity control problem classes, Figure 4 reports
the probability density functions of 1, and /; for the last 210 ms of IMC and NC disruptions with
JET-C, whereas Figure 5 reports the distributions of the same signals for the IMC, IMC_high-Z
and NC disruptions with JET-ILW.

From Figure 5, it can be seen that, for the JET-ILW, both /, and /; signals result to be quite
different, especially if we compare NC and IMC_high-Z classes. In particular, the new impurity
control problem type basically occurs for lower values of plasma inductance, mainly as a results of



the flattening or the hollowing of the current profiles. Regarding the plasma current, it can be seen
that no NC disruptions occur above 2 MA: note that high values of /,, in the case of IMC_high-Z
disruptions, are probably due to the typical ranges of currents used in the attempt to control high-Z
impurity accumulation. Therefore, in this case, the distributions are showing the statistical evidence
of the considered databases and not a direct dependence of high values of 7, with high-Z impurities.
Conversely, for the JET-C, NC and IMC disruptions share the same region in the operational space
[Cannas NF 2013]. This is confirmed also looking at Figure 4, where the probability density functions
of I, and /; are more or less overlapped.

5. MAPPING OF THE JET-ILW OPERATIONAL SPACE

Starting from the previous statistical analysis and the physical considerations on the new disruption
class, a new GTM has been trained to represent the JET-ILW operational space. The training set
consists of the last 210ms of the 149 non intentional JET-ILW disruptions (29137 samples); the
resulting GTM has a latent space of 36x36 grid of nodes built using 81 radial basis functions
(Gaussian shape) with a 1.5 width. In Figure 6 (a) the Mode Representation of the GTM is reported.
Figure 6 (b) shows the GTM Pie Plane representation. In such visualization, each node is represented
by a pie chart describing the percentage composition in terms of number of samples belonging to the
different classes. The samples are diversified according to the colour code reported on the legend in
the same figure, with reference to the different classes of disruptions. Both representations highlight
a high level of separation among the different classes.

Figures 7 (a) and (b) show the same map (Mode (a) and Pie Plane (b) representations), trained
with the same training parameters, where the IMC_high-Z class has been introduced.

In Table III, the level of separation of the different classes is reported in terms of percentage of
samples of each class which is projected into nodes entirely composed by samples of the considered
class.

Table IV reports the same information of Table III, but with the new impurity type class in
addition. It can be seen that the new class, IMC_high-Z, is even better separated with respect to the
other classes. In fact, it is interesting to observe that, coherently with what has been found for the
JET-C operational space, the main contribution to the nodes shared by samples of density control
problem and impurity control problem disruptions is given by the old “IMC” class, whereas the
overlapping on the map presented by the new impurity type is mainly with the IMC class itself.

Further useful information can be obtained by looking at the component planes of some signals.
The component plane representation expresses the relative component distribution of the input data
on the 2D map [7], allowing to identify also by visualization eventual similar patterns or particular
behaviours for certain classes. As an example, the differences in terms of the plasma current and
the internal inductance for the density control problem and the impurity control problem classes
can be easily pointed out by analysing the corresponding component planes shown in Figure 8.

Similar considerations to those made for the probabilities density functions of Figure 5 can be
done: in particular, making reference to the GTM map in Figure 7, it is easy to see how impurity
control problem disruptions occur typically for higher values of the plasma current and lower values
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of the internal inductance. These tools, together with the statistical analysis, can provide efficiently
non-trivial information of a complex multidimensional space, which usually is quite hard to get
with classical methods.

In order to test the performance in classification of the new maps, a real time application has
been simulated in conjunction to APODIS: the majority voting algorithm has been applied to the
class membership function of a time window of respectively 32 or 64ms right before the time in
which APODIS triggers the alarm. Note that, in several cases APODIS gives the alarm significantly
in advance with respect to the thermal quench, even hundreds of ms in advance.

Table V reports the performance of the real time automatic classification achieved by the GTM
trained considering the classes previously defined for the JET-C. As it can be seen, the global success
rate is quite high, reaching values above the 90%, so in very good agreement with the manual
classification. The classification performance slightly deteriorates when the new class is considered,
as shown in Table VI. This is mainly due to the difficulty to discriminate the new class from the
previous impurity control problem one, at least on the base of the selected plasma parameters. Other
signals, such as core radiation or radiation peaking, should be included to better discriminate the
two IMC classes, but such signals are not always reliable for all the disruptions in the data base.

6. VALIDATION AND COMPARISON

In order to validate and analyse the results obtained with GTM, another reference classifier has
been developed based on kNN, which uses as kernel the Mahalonobis distance. This is a reference
instant based classifier, unlike GTM that builds a generative latent model. In this case, the majority
voting is applied to the k closest points in the high dimensional space and it can be interpreted
also in terms of Bayes’ formalism. Table VII reports the performance of the kNN classifier for the
classes identified for the JET-C.

Table VIII shows the kNN performance when the IMC_high-Z class is considered. Also in this
case, the global performance is above 90% when the new impurity control problem class is not
considered, whereas the performance deteriorates when the new class is considered.

The class-membership function gives us useful information. As an example, in Figure 9 the class-
memberships of the Pulse No: 82867 is reported for both GTM and kNN; it results to be an IMC
disruption according to the manual classification. It is possible to note a transition among different
classes and in particular that between NCs and IMCs or vice versa, which is not uncommon both for
JET-C and JET-ILW disruptions. It means that the characteristics of the disruption process change
in time, and are detected differently long before the disruption and closer to the disruption time.
Note that APODIS alarm is triggered almost two seconds before the thermal quench. It is also very
important to point out that both the classifiers converge to the same results, even if, in this specific
case, we can observe that for GTM based classifiers the phase where we can associate the highest
probability to the correct class is about 400 ms, whereas in the kNN is more than 700ms.

In Figure 10 the time evolution of some of the available signals is reported for the same discharge
(No. 82867) with reference to the time window analysed in Figure 9.

As can be seen in Figure 10, a locked mode grows at t=13.79s, around which a rapid change of
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the density occurs, followed by a quench of the temperature that, in the subsequent phases, recovers
up to the final thermal quench at t=55.73s. Both PTN and APODIS trigger the alarm when the mode
locks (see Figure 9) and for both classifiers the discharge evolves as a NC disruption up to the final
phase where is correctly classified as IMC, according to the manual classification. Thus, given the
complex behaviours that often characterize the evolution of a discharge, it is important to know the
reliability of the classification. Literature provides recent methods, such as the conformal predictors,
which allow us to take into account also this aspect. To this purpose, a conformal predictor has
been developed which is based on non-conformity measures. Note that, conformal predictors have
the advantage to provide a measure of the reliability of the classification, even if the well-known
constraints related to the computation time restrict their application in real time.

Regarding classification, the conformal predictors can provide the level of reliability of
classification itself with two parameters: the credibility and the confidence, which are defined on the
base of the p-values (see section 2.3). In Figure 11 the class membership provided by the classifier
is reported together with the credibility and the confidence levels for the Pulse No: 82867. As can
be seen, the credibility, which is the parameter with more variability, is quite low for all the initial
phase, and then it rises constantly during the last 400ms, according to the results obtained with the
GTM based classifier.

The credibility, even if low in the phase where the conformal predictor assigns the label
corresponding to the NC class, is mostly above 0.05, which in literature [21] is often used as threshold
for trusting or not a prediction (right side of Figure 11). In general, if the credibility is less than 5%,
the considered samples are not representative of the training set, or in other words, they cannot be
considered as generated independently from the same distribution. In particular, the credibility falls
under the considered threshold in correspondence of the transition between NC and IMC classes.
This behaviour could depend on a rapid reconfiguration or a change in the considered parameters’
space. Further analysis should be done to clarify this point.

In Figure 12, the class membership function obtained with the GTM (a) and with the kNN (b)
based classifiers are reported for the Pulse No: 82569, which has been manually classified as IMC
disruption.

It can be noted that, in addition to the agreement in the classification provided by the two methods,
the confidence level plotted in Figure 13 remains very high for a long phase. In fact, looking at the
projection on the GTM map (see Figure 14), the discharge is evolving in a limited region of the
operational space, and this means that the parameters are not changing too much in the considered
time interval, at least up to the last phases just before the disruption. This is confirmed by the time
evolution of some of the considered plasma parameters, as can be seen in Figure 15.

In Figure 16 an example is shown of a discharge (Pulse No: 82669) that disrupted due to
impurity accumulation, i.e. the IMC_high-Z class. Figures 17 and 18 report the classmembership
functions calculated through the GTM and the kNN classifiers, and through the conformal predictor,
respectively, for the aforementioned pulse. In this case, the accumulation of W occurs after a step-

down of the Neutral Beam Injection power [10], and the hollowing of the temperature profile can
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be observed. Eventually the instabilities that are triggered by the broadening of the current density
profile lock and a disruption takes place. All the three predictors classify the pulse as IMC_high-Z
according to the manual classification. Furthermore, it is interesting to see that when the mode locks
there are “jumps” in the classmembership calculated by the conformal predictor, and the credibility
in the corresponding time interval drops almost to zero. In the interval prior to the locked mode,

again the three classifiers clearly recognize the new impurity type.

CONCLUSIONS

The challenge to automatically discriminate the type of disruption at JET both in the Carbon wall
campaigns and in the ITER Like wall ones has been tackled using a GTM manifold learning method.
The disruption classes in the JET-ILW have been deeply analysed and compared with those in the
JET-C. In particular, the probability density functions of the different plasma parameters highlight the
different behaviours of the new impurity control problem disruptions, due to tungsten accumulation
in the core of the plasma column, with respect to the old IMC ones. Moreover, the statistical analysis
showed the variation of the JET-ILW operational space with respect to that with JET-C.

For this reason, a new GTM map has been trained for JET-ILW. The latter has been used to
simulate a real time behaviour of the GTM classifier in conjunction with the prediction system
APODIS, which is successfully working on line at JET. The obtained results assess the suitability
of the GTM based classifier for real time applications with very good results: the prediction success
rate is quite high (above 90%) according to the manual classification. However, even if still high,
the performance worsened when the new IMC class is introduced, because it is quite difficult to
distinguish this new class from the previously defined IMC class. Furthermore, in order to validate
and analyse the obtained results, another reference classifier has been developed based on kNN that
uses as kernel the Mahalanobis distance. The performance of the reference classifier is still above
90%, but, also for it, the success rate deteriorates when the new IMC class is introduced. These
excellent results motivate the deployment of this tool in the real time digital network (ATM) of JET.

Several visualization tools have been developed for the GTM such as Pie Plane representation or

Component Plane representation, which make possible to extract relevant information that confirms
the physical characteristics of the different classes. Monitoring the evolution of each disruptive
discharge on the GTM, a class membership has been defined by means of which it is possible to
perform a statistical analysis of the transitions among different classes.
Finally, in order to verify the reliability of the performed classification, a conformal predictor has
been developed which is based on non-conformity measures. The obtained results indicate the
suitability of the conformal predictors to assess the reliability of the GTM classification even if
the computational time allows their use only in an off line fashion. Unlike kNN and Conformal
predictors, GTM model can be exploited for data visualization purposes [5, 7], allowing the analysis
of the operational space where the relevant physics takes place.

Summarizing, the developed tools are able to provide physics insight of a complex multidimensional

space by allowing to pick up changes in the plasma parameters space or transitions among different
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states during the evolution of a discharge. They give the possibility, furthermore, to efficiently retrieve
relations and dependencies among the parameters, making easier to find out particular behaviours
often hidden by the high dimensionality of the data itself.

Future work will be devoted to integrate and refine the proposed approach by considering
different weights for certain parameter on the base of conditions or rules to be defined through both
physical and statistical considerations. Such integration, together, eventually, with the introduction
of constraints, could be fundamental to take into account also additional information such as stability
limits. This would give rise to the “supervision” of an unsupervised system through physics and
statistic.
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Class ASD GWL 1IMC LON NC NTM TOT
Success Rate 100 100 99 100 100 92 97

Table I: Success rates of the automatic classification performed by GTM.
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JET-ILW with

DISRUPTIONS JET-C JETILW (oo ony
Labels Classes num num% num num% num num %
Auxiliary Power
ASD Shut-Domen 50 20,58 2 134 2 134
GWL Greenwald Limit 9 3,70 0 0,00 0 0,00
IMC Impurity Control ¢33/ 16 109 7315 28 1879
Problem
. New Impurity
IMC_high-Z o FB S 0 0,00 0 0,00 82 5503
ITB Internal Transport 4, 0 0.00 0 000
Barrier
LON Low density and 494 7 4,70 74790
low q
NC Density Control 50 93 g7 50 1477 22 1477
problem
Neo-Classical
NTM Teating Mods 21 8,64 9 6,04 8 537

Table II: Composition of the JET-C and JET-ILW non intentional disruption data bases.

Classes  Class samples (%)

ASD 15,86
IMC 93,51
LON 68,16

NC 71,57
NTM 60,38

Table III: Discrimination capability of the GTM model for the considered classes.

Classes Class samples
(%)
ASD 15,86
IMC 72,90
LON 68,16
NC 77,57
NTM 55,36
IMC_high-Z 91,18

Table 1V: Discrimination capability of the GTM model with the IMC_high-Z.



GLOBAL ASD IMC LON NC NTM
GTM 32ms 93 100 94 67 100 86
GTM 64ms 94 100 95 67 100 86

Table V: Success rates of the real time automatic classification performed by GTM on the classes
identified for the JET-C.

GLOBAL ASD IMC LON NC NTM IMC_high-Z

GTM 32ms 87 100 68 67 100 83 93
GTM 64ms 86 100 71 67 100 83 89

Table VI: Success rates of the real time automatic classification performed by GTM considering the
IMC_high-Z disruption class.

GLOBAL ASD IMC LON NC NTM IMC_high

-Z
k-NN 32ms 91 100 82 71 95 83 95
k-NN 64ms 88 100 82 71 90 83 91

Table VII: Success rates of the real time automatic classification performed by kNN classifier
considering the classes identified for the JET-C.

GLOBAL ASD IMC LON NC NTM

k-NN 32ms 93 100 95 71 90 86
K-NN 64ms 92 100 95 71 86 86

Table VIII: Success rates of the real time automatic classification performed by kNN
classifier considering the IMC_high-Z class.
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Figure 1: 2D GTM of the 10D JET-C operational space
(Mode Representation). The safe nodes are blue, the
disruptive nodes are represented with different colours and
symbols as indicated in the legend, empty nodes are white.
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Figure 2: Distribution of disruptions in the JET-C (black)
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Figure 9: Class-membership functions of the Pulse No. 82867 (IMC) for GTM (left side) and kNN (right side). The
vertical green line identifies the thermal quench, the blue line the JET Pulse Termination Network (PTN) alarm, and
the pink line the APODIS alarm.
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Figure 13: Class-membership provided by the conformal predictor for the Pulse No: 82569, credibility (blue) and
confidence level (black). The vertical green line identifies the thermal quench, the blue line the PTN alarm, and the

pink line the APODIS alarm.
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Figure 14: Projection of the Pulse No: 82569 on the GTM  Figure 15: Time evolution of a) plasma current, b) qqs,
map. The nodes are represented with different colours  c¢) line integrated density, d) locked mode amplitude, e)
as indicated in the legend, empty nodes are white; the  poloidal beta, f) total input power and g) total radiated
discharge starts from the yellow dot and terminated in  power measured by bolometer for the Pulse No. 82569.
the magenta dot.
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Figure 16: Example of disruption caused by impurity accumulation (discharge No. 82669).
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Figure 17: Class-membership functions calculated through a) GTM, b) kNN for the Pulse No: 82669.
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Figure 18: a) Class-membership functions calculated for the Pulse No: 82669 through the conformal predictor; in b)
a zoom of a) is reported regarding the confidence level (black) and the credibility (blue).
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