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The implementation of Machine Learning (ML) techniques has considerably improved the prediction of 

disruptions. However, they usually provide outcomes difficult to understand from a physics point of view due to 

their mathematical formulation. In this work an interpretable linear equation has been derived from an accurate ML 

disruption predictor. It can be used for real-time forecasting and the off-line analysis of the variables that contribute 

to the alarm triggering. To create the linear model, in addition to physic quantities, Time Increments (TIs) have 

been considered. TIs represent the variation of two amplitude values of a signal X at two different times divided by 

their temporal difference (i.e. ΔX/Δt). To select the best subset of quantities for training purposes among the wide 

possible combinations of signals and Tis, Genetic Algorithms have been applied. The results, obtained over an 

independent testing database of 131 unintentional disruptive and 1310 non-disruptive shots, are 99,24% of success 

rate (94,66% of them with at least 10 ms of warning time) and 3,51% of false alarms.  
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1. Introduction 

During disruptions [1] the plasma confinement is lost 

in the order of milliseconds. As result, extreme forces 

and heat loads able to provoke severe damages to the 

device are induced and released. In case their occurrence 

unavoidable, the last resort measure to mitigate their 

effects is the fast injection of pellets [2] or gas [3] into 

the vessel. A fundamental pre-requisite to start these 

palliative actions is to anticipate, in real-time, the 

incoming disruption, in this way opening a time window 

to intervene. The prediction of disruptions has improved 

with the application of Machine Learning (ML) 

techniques [4-6]. However, the data-driven models 

created with these methods supply as output a very 

complex mathematical formulation. For a more efficient 

prediction it is required to develop models 

understandable enough to unravel their meaning and to 

apply the most appropriate rescue or mitigation action. 

The aim of this work is to take advantage of ML 

methods to create an accurate predictor of disruptions 

and, at the same time, to force the ML engine to deliver 

an interpretable solution. This implies a trade-off 

between precision (normally reached in ML algorithms 

with highly non-linear formulations) and simplicity (a 

linear equation).  

Raw signals and processed ones (here called Time 

Increments (TIs)), have been computed to provide to the 

ML system (described in Section 3) with a wide variety 

of possible inputs. To select, from this large set of inputs 

(10 signal values plus 70 TIs) an appropriate subset to 

train the predictor, Genetic Algorithms were used (see 

Section 4). The obtained results are detailed in Section 4 

and discussed in Section 5.  

2. The database 

A large database was collected from JET for this 

work. It contains a total of 2541 discharges (231 of them 

are unintentional disruptions and 2310 are non-

disruptive) corresponding to the period between the 

January 2012 and November 2016.  

The database has been divided in two main groups. 

The chronologically first 100 disruptive shots and 1000 

non-disruptive shots have been used to train and validate 

the predictor (T/V database). The last 131 disruptive and 

1310 non-disruptive shots have been saved for testing 

the final model (Testing database).  

The fast terminations of some pulses after the use of 

the Disruption Mitigation Valves (DMVs) could lead the 

discharge towards a disruption. To avoid any bias, these 

pulses have been not included in the database since the 

ML system can learn to detect the firing of the DMVs as 

a disruption precursor and falsely improve its rates.  

For each discharge, the 10 signals shown in Table 1 

were considered for their possible use. Each parameter 

was resampled to 1 ksample/s following the 

methodology detailed in [7]. In general, to achieve a 

predictor with high accuracy using ML techniques, it is 

necessary to generate highly non-linear models which 

are in direct conflict with the main objective of this 

work: linear relationships. 

This problem could be avoided by choosing a proper 

set of parameters (raw signals and processed values from 

those signals). A significant innovation introduced here 

are the Time Increments (TIs). TIs represent the local 

increment of the amplitude values of a signal X (ΔX) 



 

Table 1. List of the considered signals. 

Signal Acronym Unit 

1- Line integrated density Dens m-2 

2- Plasma elongation  ELONG  

3- Plasma current  IPLA A 

4- Plasma internal inductance  LI  

5- Plasma vertical centroid position  PVP m 

6- Toroidal magnetic field  Bt T 

7- Mode lock amplitude  Mlock T 

8- Total radiated power  Rad W 

9- Time increment of the stored 

diamagnetic energy  
Wdia W 

10- Poloidal Beta  BP  

 

over a predefined temporal difference (i.e. ΔX/Δt). In 

this article, TIs use 7 values of Δt: {1; 2; 16; 32; 64; 128; 

256} (ms).  

TIs provide 2 important advantages for the real-time 

application of the model. First, they get rid of possible 

off-sets in the signals: their computation is performed 

between closely separated samples and any inherited DC 

component is avoided. Second, they supply past 

information of the ongoing discharge (past samples are 

involved in their calculation).  

The 10 signals plus the 70 TIs (7 TIs from 10 signals) 

are processed, adding up a total 80 parameters. These 

parameters are computed every 1 ms and condensed in a 

80x1 dimensional vector, called Feature Vector (FV). 

For its computational treatment, each pulse is processed 

as a concatenation of 1 ms FVs, each one of them with 

80 parameters. 

3. The applied machine learning techniques 

3.1 Support Vector Machines 

Support Vector Machines (SVM) [8] is ML 

technique effectively applied in previous works to 

predict disruptions [9].  

During the training phase, SVM computes a hyper-

plane able to split a set of examples with the maximum 

possible margin. The examples can be pre-disruptive 

(extracted 10 ms before the disruption) or non-

disruptive (extracted at a random time from non-

disruptive discharges). Therefore, SVM generates a 

function able to classify whether each example is pre-

disruptive or not. This training process is performed off-

line but once the splitting hyper-plane has been 

calculated, it can be directly applied to new samples 

under analysis from FV of running discharges. In case 

the new sample is placed in the pre-disruptive side of the 

already computed hyper-plane an alarm is triggered. 

In most of the cases the training set is non-linearly 

separable. To solve this problem by applying the 

mathematical principles described in [8], SVM uses non-

linear Kernel functions. Kernels transform the space of 

inputs into a higher dimensional feature space where the 

margin maximization performed by SVM can be applied. 

However, the resulting models are non-linear and of a 

complex formulations.  

To avoid the use of non-linear Kernels and, at the 

same time, to reach a space where a linear separation is 

possible, the inclusion of more parameters (in this case, 

the TIs) is necessary. The goal is to select, among the 

80x1 dimensional FVs, a subset of linearly separable 

variables. A straightforward way to find this arrange of 

parameters would be through a brute force methodology, 

training and testing a different SVM predictor for each 

possible combination of the 80 signals and TIs. 

However, this procedure would carry unaffordable 

computational times due to the immense number of 

possible combinations to be assessed. It has been 

estimated that an exhaustive analysis could take up to 

hundreds of thousands of years [9]. To solve this 

problem in ~4 days Genetic Algorithms (GAs) have 

been applied. 

3.2 Genetic Algorithms 

GAs [10] are optimization methods suitable for 

solving the combinational problem stated at the end of 

the previous Section. Instead of using brute force, the 

heuristic of GAs is based on combining promising 

solutions to create newer and better ones in an iterative 

process. Since the essence of the procedure here applied 

has been described in [9], this Section will be devoted 

only to the main concepts of the methodology. 

GAs optimization is performed by the following set 

of iterative steps: 

Step 1 consists of creating the first population of 

individuals. The size of the population has been pre-

defined as 120 based on the criterion proposed in [9]. 

Each individual of the population is a codified set of 

instructions. The codification consists of summarizing, 

in a 80x1 dimensional string, which signals and TIs must 

be included. Each position/box of the 80x1 string is 

associated to a specific parameter (e.g. box 10 is linked 

to the IPLA8 TI). Only in this first iteration, random 

values of ‘1’ or ‘0’ are placed into each box of the 120 

strings/individuals. Consequently, each individual is 

filled with ones and zeros. A ‘1’ means that the signal or 

TI linked to that specific box must be used to train a 

predictor candidate. The ones tagged with a ‘0’ must not.  

In Step 2 the training of the candidate predictors is 

carried out. Each individual/string (created in Step 1) has 

the set of instructions (ones and zeros) to pick the inputs 

for SVM. The signals and TIs with an associated ‘1’ are 

extracted from randomly selected half of the T/V dataset 

discharges (50 pre-disruptive samples and 500 non-

disruptive samples). Using these samples, SVM creates a 

predictor candidate (hyper-plane). In this step, the 120 

individuals become 120 disruption predictor candidates. 

Step 3 is devoted to evaluate the candidate predictors 

using a Fitness Function (FF). The idea behind GAs is to 

drive the population to evolve towards the pursuit 

objectives defined by this FF. The FF quantifies the 

‘goodness’ of each candidate and may include several 

objectives to be optimized, each one of them with a 

different priority. The scores have been given as follows: 

8 points are added when the candidate predictor correctly 

triggers an alarm at least 10 ms before the disruption 



 

(minimum required time to develop mitigation action in 

JET). 7 points are assigned each time an alarm is NOT 

activated in a NON-disruptive pulse. Finally, since one 

of the main objectives of this work is to derive an 

interpretable and concise equation, the final score of the 

candidate (determined by the sum of all points) is 

increased by 5% in case it uses fewer variables than the 

mean of its generation.  

In Step 4, parents are selected to interchange their 

instructions (ones and zeros). The candidates with higher 

FF values have more chances to be selected as parents. 

This selection was performed using the roulette method, 

explained in [9]. As consequence, 60 pairs of parents are 

chosen. 

The instructions enclosed in the strings of these 60 

parents (ones and zeros) are interchanged in Step 5 to 

create children. To do that computationally, the 

crossover operator [9] is applied. It consists of randomly 

interchanging boxes of parents’ strings to create 2 

children. Then, the children are a mixture of parent’s 

strings. The process is repeated for the 60 pair of parents. 

As result, a new population of 120 children is generated. 

Also, the mutation operation has been also implemented. 

It is useful to increase the diversity of the gene pool. It 

consists of flipping a randomly selected box value in the 

creation of children. A standard value of 0.05% of 

mutation probability was set for this operation. 

Finally, in Step 6 the new population of 120 children 

is used to replace the previous one. The GA iterates 

again with this new population from Step 2 until an 

ending condition is reached. The ending condition is to 

develop 50 generations. 50 iterations were sufficient to 

achieve the expected results in a total time of ~4 days. 

Once that ending condition is fulfilled, the final 

predictor is selected as the one with the highest FF 

score from all 50 generations. 

4. Results 

The final predictor, selected from all the iterations 

of the GAs evolution, is the linear inequality expressed 

in equation 1. This clear formulation makes simple its 

real-time application. It is just necessary to evaluate the 

new ongoing pulses every 1 ms replacing the 

corresponding values in equation 1. In the case that the 

total value is lower than 0, no alarm needs to be 

triggered and the next time slice of 1 ms (next FV of the 

running discharge) is analyzed. Otherwise (equation 1 > 

0) a disruption alarm is activated. 

0,04.BP + 3768.MLock - 342,79.PVP256 +        

260,30.TB128  + 5,87.106.Wdia128 - 2,16 > 0   (1) 

Subscripts in this equation represent the Δt of the TI 

used. In this form the equation is not easy to interpret 

due to the high variability (of several orders of 

magnitude) of the involved variables. For instance, it is 

not evident whether the Wdia128 TI or the ML signal is a 

more important factor (in the sense of relative weight) to 

be taken into account.  

For its better interpretation, this equation has been 

normalized (see equation 2). The normalization was 

performed by extracting the average maximum and 

minimum values (for every parameter of equation 1) of 

the non-disruptive discharges. A standard rescaling for 

each signal and TIs to ~[0, 1] using these averaged 

maximum and minimum values was performed.  

0,07 . BP
norm

 + 0,95.MLock
norm

 – 0,18.PVP256
norm

   

 + 0,06.TB128
norm

 + 0,23.Wdia128
norm

 -1,96 > 0 (2) 

It is important to remark that equation 1 and equation 

2 (with the normalized parameters) are equivalent. Since 

equation 2 is normalized, the contribution of each 

parameter can be directly appreciated as the weight 

multiplying each term.  

According to the formula, the most relevant factor to 

predict disruptions is the amplitude of the raw ML 

signal, with a weight of 0.95. This was an expected 

outcome since this magnitude has been historically used 

in JET as the main parameter to be considered to predict 

disruptions. The accompanying TIs in the formula 

provide smaller contributions (with the exception of the 

Wdia TI) but they are fundamental to reduce the false 

alarms and to achieve the accurate prediction rates 

shown in figure 1. This figure represents the summary of 

the predictor performance over all the disruptive 

discharges of the independent Testing dataset. Each one 

of the pulses was evaluated from the beginning of the 

current flat-top simulating a real-time scenario. In this 

figure warning time represent the anticipation (in s) of 

the alarm with respect to the disruption times. Notice 

that, for 10 ms of warning time (minimum anticipation in 

JET to develop mitigation actions) ~95% of the 

disruptions are predicted. The total rate reaches 99,24%, 

meaning that only 1 disruption was not detected in 

advance by the model (shot #92312, that suffered a 

minor disruption during the termination of the pulse). 

The false alarm rate was computed as the percentage of 

alarms triggered (incorrectly) in discharges that ended 

without a disruption. This error was made in 46 

shots(from the total 1310 of the non-disruptive Testing 

database), representing 3,51%. 

 

 

Fig. 1. Summary of the predictors’ performance over 

the independent Testing dataset. Only 1 disruption is 

not anticipated (total detection rate of 99,24%). The 

~95% of the alarms are triggered at least 10 ms before 

the disruption. 



 

 

Fig. 2. Evolution of the predictor’s output and the 

normalized parameters of equation 2 for shot #92377. 

The alarm is triggered ~300 ms before the disruption. 

An example of a correctly activated alarm is 

provided in figure 2. There, the evolution of the 

normalized quantities in equation 2 and the predictor’s 

output (sum of the weighted normalized variables) are 

shown. The main shape of the predictors’ output follows 

the one of the MLock signal. The TIs contribute to 

automatically adjust a threshold (their changes are less 

sudden and they supply an optimized off-set level) to 

trigger the alarms. In this case the output value of the 

predictor crosses the zero value (thin vertical line) 

activating an alarm ~300 ms before the disruption 

(thicker vertical line). 

5. Summary and conclusions 

In this article a disruption predictor able to catch 130 

of the 131 (99,24%) disruptions was developed. The 

results have been obtained over a wide and independent 

Testing dataset simulating real-time conditions. The 

94,66% of the disruptions were predicted with an 

anticipation of at least 10 ms (minimum time required to 

start mitigation actions in JET) and triggering only a 

3,51% of false alarms.  

Beyond the obtained rates (comparable to the ones 

reached by the best ML predictors developed for JET) 

the main contribution of this work is the clear 

formulation of the final model.  

The inclusion of an innovative signal processing (the 

TIs) and the application of GAs to select the appropriate 

combination of parameters, made it possible to take 

advantage of the precision of ML systems to derive a 

linear equation. The final predictor relays strongly in the 

ML signal but the use of the TIs is fundamental to attain 

higher accuracies with a reduced amount of false alarms. 

In figure 2 it can be observed that the time evolution of 

the TIs is fairly constant. Therefore, they could be 

replaced as constants (they evolution is not rapid) in 

equation 2. This suggests that they are supplying an 

automatic threshold value for the MLock signal (the only 

variable that shows sudden changes in the equation). 

A deeper study of the equation can help to 

understand the reason why almost all the alarms are 

triggered and to develop accurate and robust predictors. 

In sights of ITER, a promising solution is to take 

advantage of an already existing tokamak database, to 

train with it a ML predictor and to extrapolate the 

resulting model to newer devices. This methodology has 

been already suggested in [11] but to reach a precise fit 

of the predictor into the new device it is fundamental to 

find reliable scaling factors, as it is concluded in [12]. 

The analysis of the TIs may provide hints to understand 

these possible scaling factors for the predictors, key to 

develop a general solution able to be applied in ITER. 
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