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Abstract:
A realtime capable core turbulence tokamak transport model is developed, extending a
previous proof-of-principle (J.Citrin, S.Breton et al., Nucl. Fusion 55 092001, 2015). This
model emulates a quasilinear gyrokinetic turbulent transport code, via regularized nonlinear
regression using neural networks. Calculation of transport fluxes for the entire radial profile
is achieved at sub-millisecond timescales. Experimental validation is presented, including
ion and electron heat transport, and particle transport. The unprecedented combination
of computational speed and relative modelling accuracy provided by these methods opens
up enormous potential for controller design, controller validation, discharge supervision,
offline operational scenario development, and application of model-based predictive control
techniques.

Particle, momentum, and heat transport in the tokamak core is dominated by turbu-
lence driven by plasma microinstabilities [1, 2]. An accurate predictive model for turbu-
lent transport fluxes is thus vital for the interpretation and optimization of present-day
experiments, and extrapolation to and control of future machines.

Nonlinear gyrokinetic simulations succeed in reproducing core transport fluxes with
increasing confidence. However, the cost of such direct numerical simulation – typically
105 CPU hours for a single radial point – precludes the routine use of such codes for
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integrated tokamak transport simulations which demand ∼ 103 flux computations per 1 s
of plasma evolution on JET scale devices.

Quasilinear transport models are thus constructed to increase tractability. These are
proven to be largely valid in the core of tokamak plasmas [3, 4, 5]. Examples are TGLF [6]
and QuaLiKiz [7]. A ∼6 orders of magnitude speedup is gained in quasilinear calculations
compared to nonlinear simulations. For a recent validation fo the QuaLiKiz model on a
JET C-wall hybrid scenario, see figure 1. This simulation of 1 s of JET plasma evolution
cost only 100 CPUh. All channels are well predicted, with the exception of inner-core Ti.
This is due to the lack of ITG nonlinear electromagnetic stabilization in the QuaLiKiz
saturation rule, shown to be important for this discharge [8]. Future work on QuaLiKiz
will focus on this aspect.

FIG. 1: QuaLiKiz simulation within the JETTO [9, 10] integrated modelling suite, of JET
C-wall hybrid scenario 75225 for a time-slice averaged between 6-6.5 s. Heat, particle,
and momentum transport are all simulated. Comparisons between the predictions and
measurements are shown for Ti (top left panel), Te (top right panel), ne (bottom left
panel) and Vtor (bottom right panel). All y-axis error bars are statistical, and are reduced
due to the 0.5 s averaging. Systematic measurement errors may thus be underrepresented
here.

We aim to go further, and provide a realtime-capable transport model without sac-
rificing model accuracy. This will open up a plethora of possibilities and innovation in



3 EX/P6-45

realtime controller design and validation, scenario preparation, and discharge optimiza-
tion. The method is based on neural network emulation of reduced quasilinear transport
models. The central point is to relegate the expensive flux calculations used to train the
neural network to a stage precedent to its use in a transport simulation. An extensive
database of QuaLiKiz outputs is used for the neural network training.

We employ a multilayer perceptron neural network. This is essentially a nonlinear
function with tunable variables (weights and biases), with the property of universal ap-
proximation [11, 12]. Neural networks have found multiple applications in tokamak re-
search. For a summary of earlier work see Ref. [13]. Most related to this work is a
regression of DIII-D heat fluxes from experimental power balance databases [14].

In the neural network, linear combinations of the inputs (e.g., for our application,
local plasma parameters) and biases are propagated through a series of nonlinear transfer
function vectors (named ‘hidden layers’), until eventually linearly combined to an output
layer. With two hidden layers and a single output value (as used in this work), this is
represented as:
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N∑
i

w2
i g

(
b2i +

M∑
j

w1
ijg

(
b1j +

I∑
k

winjkxk

))
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Where y is the output ‘neuron’ containing the output value (e.g. ion heat flux, electron
heat flux), xk the vector of input values, bn the bias vectors, win the M×I weight matrix
connecting the input vector to the 1st hidden layer, w1 the N×M weight matrix connecting
the two hidden layers, and w2 the weight vector connecting the 2nd hidden layer to the
output neuron. g is the nonlinear transfer function, defined as a sigmoid in this work:

g(x) =
2

1 + e−2x
− 1 (2)

The key stage is the determination of the optimized values of the weights and biases.
This is done by minimizing a cost function consisting of the average squared error between
the network output and known target output. This set of target output is known as
the ‘training set’. The BFGS algorithm [15], implementing a quasi-Newton method,
was used for the weight and bias optimization. Following training, the network output
then emulates the original model within the database input parameter envelope. This is
validated by comparison to validation sets sifted from the database, which are different
from the training set.

To avoid overfitting the data, regularization techniques were used in the regression.
This corresponds to adding a penalty term in the cost function related to the sum of
squares of the network weights and biases, leading to smoother output. The use of reg-
ularization ensures that the NN response is smooth (e.g. without strong oscillations) in
sparse regions of training set parameter space or when extrapolating beyond the training
set envelope.

The analytic form of the nonlinear regression function allows for the calculation of
analytical gradients of the outputs with respect to the inputs. This is vital for the efficient
solution of fast implicit schemes in real-time capable core transport simulators such as
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TABLE I: Summary of input parameters for the QuaLiKiz ITG database employed in
this work

Parameter Min value Max value No. of points
R/LT i 2 12 30
Ti/Te 0.3 3 20
q 1 5 20
ŝ 0.1 3 20

kθρs 0.05 0.8 16
Total no. of points 3 840 000

RAPTOR [16]. The regularization also ensures smooth gradients throughout parameter
space, important for the stability of such implicit schemes and for trajectory optimization
applications.

A database of QuaLiKiz solutions was constructed, in the ion temperature gradient
(ITG) instability regime. This instability is often the primary driver of tokamak micro-
turbulence. The database covers four input parameters known to have significant impact
on ITG transport fluxes in this regime: the driving normalized logarithmic ion temper-
ature gradient R/LT i, the ion to electron temperature ratio Ti/Te, the safety-factor q,
and the magnetic shear ŝ ≡ r

q
dq
dr

. In addition, the input normalized wavenumber kθρswas

scanned, constricted to above ion-Larmor-radius scales, where ρs ≡
√
Temi/(ZiqeB). The

following parameters were maintained fixed: the normalized logarithmic density gradient
R/Ln = 3, normalized radial location r/a = 0.5. No Shafranov shift was assumed in the
geometry. The database consists of a dense grid of points summarized in table I, from
which the training sets for the neural network were sifted. The QuaLiKiz outputs we
investigate are: ion heat flux, electron heat flux, electron particle diffusion, and electron
particle pinch. An adiabatic electron version of this same database was previously carried
out [17] (and thus limited to only ion heat flux). Here, we extend the database to kinetic
electron cases.

To capture the instability thresholds with high fidelity, the regression was only carried
out for a training set corresponding to unstable modes. The NN output for the stable
regions in the validation set was then negative, since the regularized network tends to
smoothly extrapolate the trends observed towards the training set envelope. For the final
flux outputs, these negative values were then set to zero to represent stability. This scheme
avoids having the regularized regression network attempt to directly fit the discontinuous
gradients at the instability thresholds, which would be performed poorly due to to the
regularization constraint. This is an important point since tokamak transport often tends
to be maintained near the critical temperature gradient thresholds, especially in high
temperature regimes.

The typical quality of the fits can be seen for the ion heat conductivity in figure 2,
displaying scans of the 4 separate input parameters while the others remained fixed. Neg-
ative outputs of the NN network are set to zero. Note the resulting excellent fit of the
instability thresholds. In addition, extrapolating the NN scans beyond the range of the
training set maintains the trend observed in the data, due to the regularization. This is
very encouraging with regard to extension of this approach to more sparse datasets in
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higher dimensions. However, we do not intend to routinely use NN models in poorly rep-
resented regions of parameter space, as the quality of extrapolation cannot be determined
a priori. Rather, the training sets should be continuously expanded to cover such encoun-
tered sparse or empty regions, and the NN then periodically retrained. Nevertheless, the
smoothness of the regularized NN response when extrapolating ensures its robustness and
stability during practical use as a transport model, including during phases when such
sparse regions are encountered.
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FIG. 2: Comparison of NN parameter scans (blue solid lines) vs the original QuaLiKiz
ion heat flux calculations (red dots). The scans are in R/LT i (top left panel), Ti/Te (top
right panel), q (bottom left panel) and ŝ (bottom right panel). This is for the adiabatic
electron case, and the plot is from Ref. [17]

Each NN output is calculated on a sub 10 µs timescale in MATLAB on a Intel(R)
Xeon(R) E5450 CPU @ 3.00GHz. This is a 6 order of magnitude speedup in comparison
to the original QuaLiKiz calculations.

A transport model based on the trained neural network was constructed, and imple-
mented both in the CRONOS [18] and RAPTOR [16] integrated modelling codes.

In CRONOS, the validity of the NN transport model was assured by a successful
comparison with a JET baseline H-mode shot 73342 with ion and electron heat transport
previously simulated [19] with the full QuaLiKiz model. This is shown in figure 3. The
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level of agreement is extremely encouraging, especially considering that only a reduced
dimensionality ITG QuaLiKiz database was used for the neural network training.

FIG. 3: Comparison between Ti (left panel), Te (center panel), and ne (right panel) pre-
dictions of the original QuaLiKiz model (blue curve) and the NN regression (red curve),
corresponding to JET shot 73342 at 10.1 s, modelled in CRONOS with self-consistent heat
source calculations.

We now focus on realtime applications within RAPTOR. In figure 4, we compare
a RAPTOR simulation of an ITER hybrid scenario, using the QuaLiKiz NN model for
electron heat transport, with a simulation of the same case originally carried out [20] using
CRONOS and the GLF23 [21] transport model. Using GLF23 allows to compare over
ITER-scale discharge times of >100s, which is less tractable using the original QuaLiKiz
model. For heat transport in a pure ITG regime, GLF23 and QuaLiKiz predictions are
expected to be similar, as illustrated in specific single-time-slice comparisons [19].

The RAPTOR simulation uses all the same actuator (source) inputs and density evo-
lution as the CRONOS simulation. Ion temperatures were held fixed at Ti/Te ∼ 0.8 in
L-mode and Ti/Te ∼ 0.9 in H-mode. The NN model was operational within a normalized
toroidal flux coordinate (ρ) range of 0.25 to 0.95. For ρ > 0.95, χe was feedback controlled
to maintain a prescribed edge pedestal temperature of 4 keV. For ρ < 0.25, a constant χe
was assumed to maintain a reasonable level of transport, since GLF23 and QuaLiKiz both
predicted stability within that region. A RAPTOR simulation of an entire 300 s ITER
discharge took 10 s on a single CPU, corresponding to 30x faster than real-time. This
combination of simulation speed and first-principle modelling is unprecedented. With
CRONOS/GLF23, the same simulation took 24 hours.

For the next stage, moving beyond this proof of principle, a higher input dimensionality
QuaLiKiz database is currently under construction. This contains a 10D hypercube of
input parameters consisting of kθρs (ion and electron scales), R/LT i, R/LTe, R/Ln, q,
ŝ, r/R, Ti/Te, Zeff , and collisionality. All ranges are based on typically encountered
experimental parameters. A Be impurity will be assumed, and the density gradients of all
species kept equal. The neural network fit of this database will thus capture the physics of
ITG, TEM, and ETG turbulence, and be valid in more general regimes than our current
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FIG. 4: Comparison between the Te predictions for an ITER hybrid discharge carried
out with CRONOS/GLF23 [20] (red curve) and a RAPTOR simulation using the Qua-
LiKiz NN transport model (blue curve). A typical H-mode profile (left panel) and time
dependence at mid-radius (right panel) are shown. The LH transition was set at 100 s.

proof of principle. The I/O and nonlinear saturation rule in QuaLiKiz has been more
extensively parallelized in preparation for this work, to allow for efficient operation with
large run sizes on HPC architectures.

To summarize, a neural network fit to a restricted subspace of quasilinear gyrokinetic
transport model calculations, relevant in the ITG regime, was carried out and applied as
a transport model for integrated modelling. While the quasilinear model, QuaLiKiz, is 6
orders of magnitude faster than nonlinear simulations, the NN regression leads to a further
5 order of magnitude speedup. This model is thus real-time capable while still being based
on first-principles, which is unprecedented. This model has been coupled to the CRONOS
integrating modelling suite, and validated against a full QuaLiKiz simulation in the ITG
regime. The model is also coupled to the real-time capable RAPTOR tokamak simulation
code, and can model a 300s ITER discharge within 10s, with good agreement with previous
modelling using CRONOS and the GLF23 transport model.

This opens up many new possibilities for real-time controller design and validation,
scenario preparation and optimization, and real-time discharge supervision. Such mod-
els can be used to design controllers for the plasma profiles using model-based controller
design methods (e.g. [22] or [23]). The transport model can be used in closed-loop
simulations to validate the designed controllers. Recent work on plasma ramp-up tra-
jectory optimization [24] was carried out with an ad-hoc transport model, and can now
be improved using this first-principle-based transport model. Also, this transport model
can be used in real-time simulations to verify the measured plasma evolution and warn a
supervisory control system of any unexpected deviations during the discharge [25]. Specif-
ically for ITER, the faster-than-real-time opens up the possibility of (on-line) real-time
optimization of the discharge evolution in response to such unexpected events.
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