
EUROFUSION WPISA-REP(16) 16104

R Hatzky et al.

HLST Core Team Report 2010

REPORT

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.

This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked

HLST Core Team Report 2010

Contents
1. Executive Summary...3

1.1. Progress made by each core team member on allocated projects3
1.2. Further tasks and activities of the core team ..5

1.2.1. Dissemination...5
1.2.2. Training ..5
1.2.3. Workshops and conferences...6
1.2.4. Internal training ..6
1.2.5. Visits to collaborators...7

1.3. Recommendations for the year 2011..7
2. Report on HLST project GYNVIZ...8

2.1. File format technology review ...8
2.2. Visualization cluster at RZG ..10
2.3. Data transfer between JSC and RZG computer centers10
2.4. GYNVIZ tool development..10

2.4.1. Automatic comparison tool ..10
2.4.2. Visualization...11
2.4.3. 3D + t 4D conversion tool ...11

2.5. Parallel I/O study..11
2.6. Conclusions and future work..12

3. Supplementary Report on HLST project OPTGS213
3.1. Introduction ..13
3.2. Implicit Runge-Kutta time integrators ...13
3.3. Non-equidistant moving grid ...14
3.4. References and applicable documents..14

4. Final Report on HLST project ITM-EU4IA ...16
4.1. Introduction ..16
4.2. Final status of the library porting ...16
4.3. Conclusions and additional comments...17
4.4. References and applicable documents..17

5. Report on HLST project EUTERPE...18
5.1. Introduction ..18
5.2. Cleaning, porting and testing the code ...18
5.3. Reduction of communication overhead..19
5.4. Source code changes to enhance the vectorizability19
5.5. Performance study of vectorization on the Intel Nehalem versus the IBM
POWER6 architecture ..20
5.6. Performance results of vectorized routines ..22
5.7. Future plans ..23
5.8. References and applicable documents..24

6. Final report on the ASCOT-10 project ...25
6.1. Histogram module ..25

6.1.1. Linked list...25
6.1.2. Merging the local linked lists ...27
6.1.3. I/O...28

6.2. Shared Memory Segments ...29
6.2.1. Fault safe termination of SMS ...31
6.2.2. References ..31

6.3. Conclusions on the ASCOT-10 project..31
7. Contribution to the JOREK-HR project ..33
8. Memory bandwidth on HPC-FF BEUPACK benchmark revisited34

8.1. BEUPACK Benchmark..36
9. Final report on the MGEDGE project...38

2

9.1. Introduction ..38
9.2. Implementation of the multigrid method ...38
9.3. Scaling properties of the multigrid method..41
9.4. Conclusions on the MGEDGE project ...42

10. Report on the KinSOL2D project ...43
10.1. Introduction ..43
10.2. Model problem ...44
10.3. Multigrid software framework ...44
10.4. Tests with inner conducting structure ..45
10.5. Future plans ..47

3

1. Executive Summary

1.1. Progress made by each core team member on
allocated projects

In agreement with the HLST coordinator the individual core team members have
been/are working on the projects listed in Table 1.

Project acronym Core team member Status
ASCOT-10 Nitya Hariharan finished
EUTERPE Nicolay Hammer prolonged
GYNVIZ Matthieu Haefele running
ITM-EU4IA Nicolay Hammer finished
MGEDGE Kab Seok Kang finished
KINSOLD Kab Seok Kang prolonged
ZOFLIN Nitya Hariharan scheduled

Table 1 Projects mapped to the HLST core team members.

Roman Hatzky has contributed in particular to the projects ASCOT-10 and
EUTERPE. Furthermore, he was occupied in management and dissemination tasks,
e.g. the development of the HLST web site, due to his position as core team leader.

Matthieu Haefele worked on the GYNVIZ project. The aim of the GYNVIZ project is
to unify and to provide support for the whole hardware and software chain concerned
with the visualization process of large datasets being produced by the major
European gyrokinetic codes.
Three main components can be identified. The first one consists of a uniform data
format, namely XDMF. It has been decided to use this format as standard because a
wide spectrum of data types can be expressed and its design is very flexible implying
rather low effort on the code developer side. A collaboration with the XDMF team in
the U.S. has been set up in order to improve parts of the implementation to our
concerns. A new release is expected soon.
The second component consists of a suite of post-processing software. The main
part is intended to turn 3D time-varying datasets in 4D compressed ones in order to
explore them with 4D visualization. The 4D compression and visualization are
technologies transferred from a former EUFORIA project. The post-processing tool is
being developed within the GYNVIZ project and is nearly finished.
Finally, network and computing infrastructures hosted by the computer centers RZG
and JSC are the third component. In close collaboration with RZG, a DEISA project
involving JSC has been established and DEISA accounts have been created for each
GYNVIZ user. As a result, data generated by HPC-FF can be easily and efficiently
transferred from JSC to RZG via the DEISA file system with a simple cp

command.
Subsequently, a remote visualization session can be started on the newly built
visualization cluster at RZG to explore the transferred data. This infrastructure is
already up and running.

Nicolay Hammer worked primarily on the ITM-EU4IA and EUTERPE projects. In
addition, he did some supplementary work to the former OPTGS2 project.

The aim of the ITM-EU4IA project was to port the Unified Access Layer (UAL) to
HPC-FF. The UAL is a software library developed by the Integrated Tokamak
Modelling (ITM) task force of EFDA. It is designed to serve as a unified
communication platform for numerical physics codes which are used in Europe to
simulate the different physical aspects of tokamak fusion devices. A working local
installation of the UAL library package was generated and tested on HPC-FF.
However, an internal component of the UAL the so-called MDSplus library does not

4

work properly. Accordingly, the problem has been passed to the MDSplus developers
from ITM.

The EUTERPE code is a global gyrokinetic particle-in-cell code aimed at simulating
turbulence in fully 3D stellarator geometry. In a first step the code was successfully
ported to HPC-FF. Different problems like e.g. a memory leak in the Parastation MPI
had to be fixed. Next we targeted the performance improvement of the EUTERPE
code by making use of the Single Instruction, Multiple Data (SIMD) capabilities of the
Intel Nehalem processor also known under the term of vectorization. Such SIMD
capabilities will be further extended in future CPU design e.g. by Intel AVX
(Advanced Vector Extensions) and are in line with the Single Instruction, Multiple
Thread (SIMT) concept of Graphics Processing Units (GPUs). The two main particle
loops of EUTERPE had to be restructured for vectorization. In addition, it was
necessary to get detailed information of the performance of the vector registers.
Corresponding results were achieved with a self programmed test bed of common
intrinsic functions both on Intel s Nehalem and IBM s POWER6. Detailed results of
these tests have been published in the HLST report Performance Tuning Using
Vectorization as a contribution for training of young scientists to the use of upcoming
new computer architectures. Unfortunately, in the special case of the EUTERPE
code, the performance improvement due to vectorization was cancelled by its own
overhead so that the overall performance did not change significantly. However, the
new code structure made a more detailed performance analysis possible which
revealed further potential for performance improvement. Currently we are focusing on
optimizing the access time to the look-up tables of the magnetic field data.

Nitya Hariharan worked primarily on the ASCOT-10 project to reduce the memory
consumption of the code. The code uses a large amount of memory to store
histogram data for diagnostical purpose, i.e. data which have been produced by the
binning of Monte Carlo particles. We have used linked lists to implement a new data
compression algorithm for the histogram data using a sparse format which
significantly reduces memory consumption and also allows the user to use up to
seven dimensional histograms. The input magnetic field data, represented by splines,
also consume a large amount of memory per MPI process. We have used Shared
Memory Segments (SMS) to represent the spline data. The user can now keep a
single copy of the magnetic field data within each node on HPC-FF and share it
among the MPI processes within that node. With the new much more efficient
memory management the ASCOT code is able now to simulate more detailed
magnetic field configurations which results in more accurate physical simulations.

Some further work was done on the JOREK-HR project. We were able to find out that
the problems we faced during porting of JOREK to HPC-FF were due to the level of
thread support available on ParTec MPI. ParTec has now provided to our request a
working version of the library and JOREK has been benchmarked successfully on
HPC-FF by HLST member Florent Sourbier.

The benchmark of the former BEUPACK project was revisited and we investigated
the effect of having more memory and bandwidth, per core, on the benchmark codes.
Codes that use a large amount of memory seem to benefit to some extent.

Kab Seok Kang worked on the MGEDGE and KINSOLD projects.

In the MGEDGE project, we have worked on the efficient implementation of the
multigrid method in the GEMZ (Gyrofluid ElectroMagnetic) code of Bruce D. Scott
which solves nonlinear gyrofluid equations for electrons and one or more ion species
in tokamak geometry. Starting from an already existing implementation of the
multigrid method we amended the intergrid transfer operators and the linear solver.
We further continued with detailed adaptation and testing of the implemented
multigrid algorithm on the VIP machine at RZG and the HPC-FF machine at JSC.

5

Over all, we proved that our implementation of the multigrid method using the
conjugated gradient method as a lowest level solver and first-order intergrid transfer
operators has very good strong and weak scaling properties up to 2048 cores. Thus,
it is suitable for usage on massively parallel machines like HPC-FF. For details
please see the HLST report Parallelization of the Multigrid Method on High
Performance Computers

which has been published as IPP report 5/123.

The Particle-in-Cell (PIC) code BIT1 is restricted so far to 1D3V plasma and 2D3V
neutral particle modeling with a reasonable scaling up to 1000 and more processors.
Hence, ongoing work is focused on enhancement of the code to 2D3V plasma
simulations of the Scrape-Off-Layer (SOL). However, the Poisson solver in 2D has
been identified as a bottleneck for the scaling properties. So the work plan is to
develop a good scaling Poisson solver in 2D either with the multigrid method itself as
a solver or as a multigrid preconditioner for a PGMRES solver. The method as it has
been tested so far has still some limitations. Good convergence of the multigrid and
PGMRES solvers is achieved so far only for an inner empty space and internal
conducting area which matches the coarsest grid. Hence, it will be of interest how
these limitations can be overcome.

1.2. Further tasks and activities of the core team

1.2.1. Dissemination
Haefele, M.: Post-processing and visualization: general issues and some solutions,
Theory Meeting, 2nd 5th November 2010, Ringberg, Germany.

Hatzky, R.: The High Level Support Team, Munich Computational Science Center
Meeting (MCSC): Kooperation Anwenderbetreuung, 3rd February 2010, Garching,
Germany.

Hatzky, R.: The High Level Support Team, IFERC Special Working Group 1 (SWG1),
16th February 2010, Garching, Germany.

Hatzky, R. and Günter, S.: The EFDA HPC project, Inertial Fusion Energy Keep-in-
Touch (ITE-KiT) Meeting, 22nd March 2010, Madrid, Spain.

Hatzky, R. and Günter, S.: The EFDA HPC project, ITM-TF meeting, 15th September
2010, Lisbon, Portugal.

Hatzky, R. and Günter, S.: The EFDA HPC project, GoTiT Training Course on
Modern Programming and Visualization Techniques, 18th

29th October 2010,
Garching, Germany.

1.2.2. Training
Haefele, M.: CEMRACS scientific event - Numerical Modelling of fusion, Research
session, 26th 30th July 2010, Marseille, France.

Haefele, M.: Parallel I/O, RZG seminar, 4th October 2010, Garching, Germany.

Haefele, M.: GoTiT Training Course on Modern Programming and Visualization
Techniques, 18th 29th October 2010, Garching, Germany.

Haefele, M.: Comparison of Different Methods for Performing Parallel I/O, HLST web
site, [online], 2010.

6

Hammer, N.J. and Hatzky, R.: Combining Runge-Kutta discontinuous Galerkin
methods with various limiting methods, IPP report 5/124, Max Planck Society eDoc
Server, [online], 2010.

Hammer, N.J.: Combining Runge-Kutta discontinuous Galerkin methods with various
limiting methods, GOTiT e-Seminar, April 14th 2010, Garching, Germany.

Hammer, N.J.: Performance Tuning Using Vectorization, IPP report 5/126, Max
Planck Society eDoc Server, [online], 2011.

Hariharan, N.: HPC-FF - Overview and Experience, GoTiT Training Course on
Modern Programming and Visualization Techniques, 18th

29th October 2010,
Garching, Germany.

Hariharan, N.: HPC-FF - Overview and Experience, GOTiT e-Seminar, December
15th 2010, Garching, Germany.

Hatzky, R. and Bottino, A.: Particle-in-Cell methods in plasma physics, HLST
seminar, 11th November 2010, Garching, Germany.

Kang, K.S.: Parallelization of the Multigrid Method on High Performance Computers,
IPP report 5/123, Max Planck Society eDoc Server, [online], 2010.

1.2.3. Workshops and conferences
Arter, W., Barnes, M.A., Roach, C.M., Knight, P., Hammer, N.J., and Hatzky, R.:
Optimisation of the GS2 Gyro-kinetic code, 2010 International Sherwood Fusion
Theory Conference, 19th 21st April, Seattle, USA: 2010.

Haefele, M., Navaro, P., Kos, L., and Sonnendrucker, E.: Euforia Integrated
Visualization, 18th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP 2010), 17th 19th February 2010, Pisa, Italy.

Haefele, M.: La problématique du post-traitement, introduction à HDF5 et XDMF,
Workshop "Masse de données : I/O, format de fichier, visualisation et archivage", 13th

January 2011, Lyon, France.

Hatzky, R.: HPC Simulations of Microturbulence in Fusion Plasmas, International
Supercomputing Conference 10, 2nd June 2010, Hamburg, Germany.

Hatzky, R. and Bottino, A.: Particle-in-Cell methods in plasma physics, European-US
Summer School on HPC Challenges in Computational Sciences, 4th

7th October
2010, Acireale, Italy.

Kang, K.S.: On finite volume multigrid method, European Multi-Grid Conference EMG
2010,19th 23th September 2010, Isola d Ischia, Italy.

1.2.4. Internal training
The HLST core team has attended:

The HLST meeting at IPP, 14th January 2010, Garching, Germany.

PRACE Workshop on New Languages and Future Technology Prototypes
at LRZ , 1st 2nd March 2010, Garching, Germany.

5th VI-HPS Tuning Workshop at TUM, 7th

9th March 2010, Garching,
Germany.

Colloquium in the framework of a Symposium on New Trends in Numerical
Methods for Plasma Physics at IPP, 8th July 2010, Garching, Germany.

7

The HLST meeting at IPP, 29th September 2010, Garching, Germany.

Roman Hatzky and Kab Seok Kang have attended:

Theory Meeting, 2nd 5th November 2010, Ringberg, Germany.

Matthieu Haefele has attended:

IPP Summer University on Plasma Physics and Fusion research, 20th

24th

September 2010, Garching, Germany.

1.2.5. Visits to collaborators
Nitya Hariharan has visited the ASCOT group:
Aalto University of Science and Technology, April 25th

7th May 2010, Helsinki,
Finland.

1.3. Recommendations for the year 2011
The call for the use of High Level Support Team resources will close on 31st January,
2011. The core team leader will present a recommendation on how to distribute the
work load over the HLST members. The corresponding spreadsheet will be passed
to the HLST coordinator. The final decision will be made by the HPC board.
Until the new projects are approved by the HPC board Nicolay Hammer and Kab
Seok Kang will, in agreement with the HLST coordinator, continue with the
EUTERPE project and the KINSOLD project, respectively. Nitya Hariharan will start
at 1st February with the ZOFLIN project.

8

2. Report on HLST project GYNVIZ
The aim of the project is to unify and to provide support for the whole hardware and
software chain that comes from the current codes output to the interactive and
remote visualization software. Fig. 1 presents a global picture over the whole project.

Fig. 1 Overview of the overall project

2.1. File format technology review
From the visualization point of view, the existing software VisIt, Paraview, Ensight,
Avizio and AVS Express are the main ones in this field. They are now mature
technologies and cover almost all visualization requirements for the GYNVIZ project.
So the key issue is the definition of a common data file format. It has to be
technologically up to date and it must be understood by visualization software (at
least VisIt and Paraview).

The latest versions of several libraries have been tested. They can be split into two
categories. The first one focuses on computer science objects and is mainly
composed of HDF5 and NetCDF4. Both are C libraries that can be called mainly from
Fortran, C and C++. They are intended to create portable binary files containing
regular arrays of data. The second category focuses on computational modeling
objects and provides for the user a higher level of abstraction interface. It aims at
describing, with meta-data, how the actual data represent computational meshes or
variables that are defined on some meshes. When this kind of library actually writes
this data/meta-data it can make use of either HDF5 or NetCDF4.

Table 2 shows the different libraries that have been tested and the criterion that have
been used to evaluate them. In general, the marks represent how a technology fits
with the purpose of the project and go from 1 (very bad) to 5 (very good). Details of
the criterion and general comments on each technology can be found below.

9

Library
(category)

Writing
technology

Relia. Durabi. Port. Intrus. Vis

Test Eff. Mark

HDF5 (1) Kernel, STD

lib
5 5 5 2-4 2 5 2 4

NetCDF4
(1-2)

STD lib,
HDF5

5 4-5 ? 2 1 1 2 2

Silo (2) HDF5 5 5 4 1 3 5 4 3
Exodus II
(2)

NetCDF4 ? ? ? 1 5 1 5 1

XDMF (2) STD lib,
HDF5

4 3 5 4 4 4 2 4

Table 2 Evaluation of the different technologies.

Reliability: 5=very good, 1=very poor
Durability, long term maintenance: 5=very good, 1=very poor
Portability on different systems: 5=very good, 1=very poor
Code intrusive: if such a technology should be embedded into existing codes, how
intensive will be this intrusion. 5=very small, 1=very large
Visualization software support: is the technology already supported by several
visualization programs. 5=fully supported by many programs, 1=not supported
Level of Test: how far we have evaluated the technology. 5=very far, 1=only
documentation reading
Efforts required in order to adapt/extend this technology for the project purpose:
5=no effort, technology can be used as it is, 1=big effort.
The Mark is simply a rating of the different technologies according to our context:
5=very good, 1=bad.

HDF5 is becoming a standard for writing data in different computational sciences.
However it is not a format that is able to describe high level concept, only basic
datasets are supported in the different visualization software.
NetCDF4 was a competitor of HDF5 and HDF5 seems to have won even if NetCDF
provides some more high level representations.
Silo is a very good high level library. However, data must go through the silo
interface in order to create a silo file and it can be quite intrusive from the code point
of view.
Exodus2 is a well established format in the finite element community and it is very
well supported. However, it really focuses on unstructured meshes which are not the
general case in our context.
XDMF separates clearly meta-data from data and then introduces a very nice
flexibility at different levels. Although, it is supported by a wide range of visualization
software, the implementation is not perfect and the roadmap of this format is unclear.

XDMF technology offers several advantages. The first one is that the migration from
the existing format of the different codes to the unified one will be easier with XDMF
than with HDF5. With HDF5, either codes I/O are left untouched and a probably
costly post-processing step becomes mandatory, or, codes I/O need to implement
the HDF5 format. With XDMF, the different codes will only need to write on disk a
small text file in addition to the current data file. This text file describes, with XDMF
XML syntax, how the data are structured within the data file. As a result, the current
format of the data file in the different codes is kept intact and the need for post-
processing step and the development of a post-processing tool has become
obsolete. Another advantage is that the plug-ins for different visualization software do
not need to be developed as XDMF plug-ins already exist for several visualization
software tools.

10

On the other hand, the technology review has shown some reliability and durability
issues. That is why we have started a collaboration with the XDMF team in the USA
in order to improve some aspects of their technology. The idea is to implement a
semantic checker tool that checks the consistency between the XML description of
the data and what is actually in the data file. On the end-user side, it will help to
identify and to correct any semantic errors. On the developer side, this tool will help
to validate/correct all the XDMF examples and accordingly will help to correct all the
existing XDMF plug-ins. HLST and XDMF teams agreed on the facts that HLST will
develop the checker tool, the XDMF team will correct the plug-ins and the examples
validation/documentation will be done together. So, instead of investing the man
power in the development of post-processing tools and the plug-ins, it has been
shifted to this collaboration.

At the time of writing this report, the collaboration with the XDMF team starts
smoothly. A first version of the XDMF checker has been implemented and has
successfully been tested by the XDMF team. The XDMF team is currently developing
a new interface for accessing data in XDMF format from different programming
languages. A pre-alpha version has been tested and looks promising.

2.2. Visualization cluster at RZG
The visualization cluster at RZG has entered its production phase middle of October
2010. Reservation system, collaborative work within a single session and use of 3D
visualization software are the main functionalities that have already been
successfully tested1. Installation of the EUFORIA 4D visualization plug-in for VisIt is
ongoing work.

2.3. Data transfer between JSC and RZG computer centers
As the codes run on HPC-FF, they produce data on HPC-FF. In order to be
visualized on the RZG visualization cluster, data have to be transferred from JSC at
Jülich to RZG, Garching. The dedicated 10 Gb/s DEISA network is used for that
purpose. As the DEISA filesystem is now mounted on the GPFS nodes in Jülich, it is
possible, with an appropriate DEISA account, to transfer data from the HPC-FF
Lustre filesystem to Garching GPFS filesystem. As the DEISA filesystem is also
mounted on the visualization cluster, users can access directly their data. We are still
in the process of getting every GYNVIZ members equipped with such a DEISA
account.

2.4. GYNVIZ tool development

2.4.1. Automatic comparison tool
It aims at comparing either the results from the same code for two different runs or
the result of two different codes that simulate the same physics test case. Three main
issues have to be handled. Firstly, relevant physical quantities have to be selected
and an agreement on their definition has to be found among the different codes. This
issue is not addressed within GYNVIZ but some work has been done within the
Integrated Modelling Project 4 (IMP4) of the Integrated Tokamak Modeling (ITM)
initiative. Secondly, data have to be written in the same format and this is exactly the
purpose of the GYNVIZ project. Finally, comparison methods have to be applied to
decide if the results agree or not. As a first implementation, only norms of the
difference of the 1D quantities are computed. This can be extended in the next phase

1 http://www.rzg.mpg.de/computing/hardware/miscellaneous/hp_vizcluster

http://www.rzg.mpg.de/computing/hardware/miscellaneous/hp_vizcluster

11

of the project. A first version of this tool is already implemented and is waiting for
testing.

2.4.2. Visualization
Fig. 2 shows a screenshot of the 4D visualization tool displaying a 4D particles
distribution function f(r,theta,phi,vpar). It shows four 2D slices of the function: from
top to bottom and left to right, we have r-theta slice, r-phi slice, r-vpar slice and
phi-vpar slice. To define completely the r-theta slice for example, one has to give a
value to phi and vpar coordinates. These values are shown on the phi-vpar slice
accordingly on the position of the white cross. The whole idea of this 4D visualization
method is to enable the user to move interactively these crosses in the different 2D
views in order to explore interactively the 4D volume. The challenge is to refresh
interactively these slices. This is achieved by 4D compression and parallel
processing.

Fig. 2 Screenshot of the 4D visualization method

This visualization method has been developed within the EUFORIA project as a VIsIt
plug-in. It is planned to install this plug-in on the RZG visualization cluster.

2.4.3. 3D + t 4D conversion tool
The first implementation of this tool will focus on the conversion of 3D time varying
data in XDMF format into 4D compressed data. This will enable the possibility to
interactively explore the dataset both in space and time using several 2D slices. This
tool will be built on top of libraries and software developed by the EUFORIA project.
The development is nearly finished.

2.5. Parallel I/O study
The current trend of computational power growth is mainly based on the increase in
the number of cores. This phenomenon modifies deeply the way applications should
be programmed. Indeed, to benefit from this computational power, applications must
be parallelized and must scale very well. In particular, applications I/O will definitely
become an issue on the next generation of machines. Although this topic is not the
core of the GYNVIZ project, it is strongly related as the data must be first written on
disk before their visualization.

12

The purpose of the study is to evaluate 13 different I/O methods that write a 2D array
on disk from a distributed application using a block-block distribution layout.
Evaluations have been performed on two different architectures: HPC-FF at JSC
(Lustre file system) and VIP at RZG (GPFS file system). Interpretation of the results
and programming advices are given in a separate report available on HLST website2.
This report has been disseminated within HLST, the GYNVIZ project, RZG and
EUFORIA.
The study has improved our knowledge on parallel I/O in general and in particular on
HPC-FF. This is of key interest for next generation computers, especially IFERC.

2.6. Conclusions and future work
The visualization cluster is up and running, the data transfer mechanism is now
settled and each GYNVIZ member is in the process of getting an appropriate DEISA
account to access both the cluster and the data transfer mechanism. Most of the
tools planned to be developed are already implemented or nearly finished. The only
missing piece is the new version of the XDMF format. The pre-alpha version being
tested so far seems to be promising.
After having a first working version of the whole framework, the next step will consist
in teaching GYNVIZ users how to bring their data into the XDMF framework. It is
planned to give individual support to each group and to guide them until they are
autonomous. Depending on the feedback achieved by helping the GYNVIZ users, the
continuation of the project will follow one or several of the following ways: to extend
post-processing tools based on XDMF, to continue the improvement of XDMF format
by implementing a test suite and to go into more detail in the parallel I/O study.

2
 http://www.efda-hlst.eu/training/HLST_scripts/comparison-of-different-methods-for-performing-parallel-i-o/at_download/file

http://www.efda-hlst.eu/training/HLST_scripts/comparison-of-different-methods-for-performing-parallel-i-o/at_download/file

13

3. Supplementary Report on HLST project OPTGS2

3.1. Introduction
The major long-term objective of the GS2 [1]

code developers is to resolve the

performance bottleneck of the gyrokinetics code, which arises from the implicit finite
difference scheme used in the solver. As discontinuous Galerkin finite element
methods (DG-FEM) became quite popular in the last decade, it was suggested by the
project coordinator, Wayne Arter, that this method could resolve the aforementioned
numerical obstacle.

The basic aims and results of the first parts of project OPTGS2 can be found in the
HLST annual report 2009 which covers the topics: basic properties and performance
of DG-FEM schemes, control of numerical artefacts using various limiter methods,
and solving the (1+1)D GS2 model problem using a DG-FEM scheme.

Another long-term objective of the code developers, which is expected to be on a
much longer time scale than the primary objectives, is to integrate an adaptive mesh
refinement method into the GS2 code. Since this is a large project involving many
development steps, the aim of this part of the project was simply to test some of
DG-FEM s prospects concerning grid complexity and adaptivity.

Since the GS2 code solves a time dependent problem, suitable time integration
schemes for the DG-FEM spatial discretisation method are of great interest in the
OPTGS2 project as well. Here the aim of the project is to investigate the behaviour of
the DG-FEM in combination with simple Eulerian time discretisation as well as with
explicit and implicit higher order time discretisation methods. Thus, the strengths and
weaknesses of the time discretisation schemes regarding efficiency and accuracy
should be explored.

For further details please see the HLST report Combining Runge-Kutta
discontinuous Galerkin methods with various limiting methods [2].

3.2. Implicit Runge-Kutta time integrators
Higher order explicit time integration schemes require a rather restrictive time step
(t ~ 0.1) for well resolved numerical results [3]. Thus, it was of interest to investigate
higher order implicit time integrators for the DG-FEM method, especially, higher order
implicit Runge-Kutta (IRK) time discretisation schemes. We implemented implicit
Runge-Kutta schemes of different types: Gauss-Legendre IRK schemes up to four
stages and eighth order accuracy, multistage IRK schemes of Radau type up to fifth
order and finally two fourth order accurate singly-diagonally-implicit Runge-Kutta
(SDIRK) schemes.

In our first approach in the DG-FEM-IMPLICIT solver the IRK equation system was
solved using a fixed point iteration method, which has some disadvantages. In
contrast to the Eulerian backward scheme the implemented IRK schemes are not
unconditionally stable when solved iteratively. Moreover, with increasing number of
stages of the IRK scheme and increasing size of the time step, the number of
iteration steps for the fixed point iteration increases drastically, especially for the fully
implicit IRK schemes, i.e. the Gauss-Legendre and the Radau IRK scheme. On the
contrary, those schemes are unconditionally stable for very large time steps, when
the solution of the IRK equation system is obtained directly by matrix inversion. This
is possible for linear differential operators as in the case of the linear advection
equation.

14

To include the IRK scheme into matrix inversions for implicit schemes by the used
direct solver package (LAPACK), the matrix vector form of the implicit solver had to
be rewritten in a block-matrix-vector form. Afterwards, both the directly and the
iteratively solved IRK schemes were successfully tested with our standard advection
equation test problem used already for the explicit solver.

However, all implicit schemes, independent whether solved directly or iteratively,
showed with increasing time step growing spurious oscillations. Although, these
wiggles can be controlled to a certain extent with the moment limiter methods [4], this
fact sets an upper limit to the size of the time step which can be practically used.
Although, some higher order IRK schemes were able to produce equivalent accurate
results as higher order explicit schemes, in any case the implicit methods were
numerically more expensive. This statement persists, even though solving the
equation system of the fully implicit schemes directly is more efficient than solving
them iteratively. Especially due to the practical time step limit mentioned above the
ability to use larger time steps for IRK methods compared to ERK methods is not
feasible.

3.3. Non-equidistant moving grid
The first step of this part of the project was to study the prospect of the DG-FEM to
handle non-equidistant grids. Therefore, a grid with globally modulated grid cell size,
as well as a locally refined grid were implemented in the DG-FEM solver and tested
successfully. Here globally modulated denotes that the size of the grid cells was
defined by a global sine function having a periodicity of the grid length. In contrast to
that locally refined means here that single grid cells were split into smaller grid cells
which fit in total into the size of the replaced grid cells. The implemented DG-FEM
solver [5]

produced good results when solving the one dimensional linear advection
equation on non-equidistant grids.

For any modification of a numerical grid at run-time, an additional routine is needed
which can project it onto the polynomial basis of the modified grid. We have
implemented such a routine and tested it successfully.

Afterwards, both methods described above were tested together. However, the
results delivered by this non-equidistant moving grid method are not very promising.
The remapping scheme using the polynomial bases on both, the old and the new
grid, is equivalent to a polynomial interpolation scheme with the same order as the
used polynomial bases. The interpolation process introduces additional numerical
viscosity due to the fact that the interpolated solution is smeared out over
neighbouring grid cells by the interpolation process.

The method was finally tested with a setup using a grid which was refined at the
position where steep gradients were present in the initial conditions and which was
co-moving with the advection velocity. The setup for the comparison calculations was
using a static grid having approximately the same resolution as the co-moving grid in
the non-refined parts. In the end, the numerical solution of the advection equation
using the co-moving grid with refinement and the solution using a static non-refined
grid did not differ significantly. The reason seems to be again the introduced
numerical viscosity by the remapping scheme. Since the new HLST projects were
allocated in March 2010, the work was stopped at this point with the acceptance of
the project coordinator W. Arter.

3.4. References and applicable documents
[1] GS2 homepage at sourceforge.net

http://gs2.sourceforge.net

http://gs2.sourceforge.net

15

[2] HLST Report: Combining Runge-Kutta discontinuous Galerkin methods with
various limiting methods

http://edoc.mpg.de/display.epl?mode=doc&id=446381

[3] HLST annual report 2009, Sec. 4.4.1

[4] HLST annual report 2009, Sec. 4.4.2

[5] HLST annual report 2009

http://edoc.mpg.de/display.epl?mode=doc&id=446381

16

4. Final Report on HLST project ITM-EU4IA

4.1. Introduction
The aim of this project was to port the Unified Access Layer (UAL, [1]) to HPC-FF,
which was installed in the mid of 2009 at the Jülich Supercomputing Centre (JSC).

The UAL is a software library developed by the Integrated Tokamak Modelling (ITM)
task force of EFDA. It is designed to serve as a unified communication platform for
numerical physics codes which are used in Europe to simulate the different physical
aspects of tokamak fusion devices. HPC-FF will become the testing and production
platform for fusion simulations in Europe, therefore, it is essential to make the UAL
available on HPC-FF.

This report will give the final status of this project. Additional information,
experiences, and remarks on the topic can be found in the more detailed final report
of project ITMEU4IA [2].

4.2. Final status of the library porting
The following parts of the current UAL version, i.e. version 4.08a, have been
successfully ported to HPC-FF:

Low Level Library based on the MDSplus Library

C++ interface

FORTRAN interface

Python interface

Java interface

To do so, additionally the following software packages had to be installed on
HPC-FF, either locally or globally. The packages are listed below:

MDSplus 2.2 (www.mdsplus.org)

Java Development Kit (JDK6) 1.6.022 (http://jdk6.dev.java.net)

Blitz++ 0.9

a C++ Scientific Library (www.oonumerics.org/blitz/)

HDF5 (recompiled) (www.hdfgroup.org/HDF5/)

SZIP compression library (www.compressconsult.com/szip/)

g95 FORTRAN Compiler (www.g95.org)

SWIG

The Simplified Wrapper and Interface Generator (www.swig.org)

All listed UAL library parts have been compiled and tested successfully with a local
installation.

The UAL requires a locking mechanism on the file system level. Such a locking
mechanism, in case of a Lustre file system this is FLOCKING, is not provided on
HPC-FF, because it causes I/O performance penalties. Moreover, the Lustre users

guide disadvises the usage of FLOCKING explicitly, thus it will be most likely not
provided at all.

However, there is a mechanism called LOCAL FLOCKING which could be used
instead. It acts as a kind of pseudo locking mechanism having no or only a slightly
negative impact on the performance of the Lustre file system. For that purpose on
our request a testbed with a Lustre file system partition supporting the LOCAL
FLOCKING mechanism had been set up on a test cluster system at JSC. It differs
from HPC-FF just in size, i.e. the total number of nodes. Using this setup the UAL
passed the I/O tests which come with the UAL package without any problem. As a

http://www.mdsplus.org
http://jdk6.dev.java.net
http://www.oonumerics.org/blitz/
http://www.hdfgroup.org/HDF5/
http://www.compressconsult.com/szip/
http://www.g95.org
http://www.swig.org

17

result, LOCAL FLOCKING has now been enabled on the Lustre file systems useable
on the JUROPA/HPC-FF cluster.

4.3. Conclusions and additional comments
The proposal estimated that the porting of the UAL library package could be done
within the project time span of three months. However, it turned out that many
problems and issues had to be solved for that aim. Ultimately, the HLST project
provided the developers of the UAL with detailed feedback on the UAL s portability to
other environments.

Finally, a working local installation of the UAL library package was generated and
tested. A test shot file was generated and filled using test software written in C and
FORTRAN. However, due to internal errors of MDSplus it was not possible to read
the newly generated shot files, even if, the same shot files could be read after
transferring them to the ITM gateway cluster. The problem will be further investigated
by the MDSplus developers.

A final project meeting was held together with the UAL development team, where an
oral presentation on the results was given. The UAL source code modified during this
project was checked-in in a new branch of the UAL SVN repository and a TAR
archive of the local installation of MDSplus and the UAL was given to the project
collaboration.

4.4. References and applicable documents
[1] G. Manduchi, F. Iannone, F. Imbeaux, G. Huysmans, J. Lister, B. Guillerminet, P.
Strand, L.-G. Eriksson, and M. Romanelli, Fusion Engineering and Design 83, 462
(2008), Proceedings of the 6th IAEA Technical Meeting on Control, Data Acquisition,
and Remote Participation for Fusion Research.

[2] HLST Report: HLST Project ITMEU4IA - Porting the ITM UAL to HPC-FF

http://www.efda-hlst.eu/internal/reports/annual-hlst-report-2010/reports-of-the-
projects-2010/itmeu4ia-report/view

http://www.efda-hlst.eu/internal/reports/annual-hlst-report-2010/reports-of-the-
projects-2010/itmeu4ia-report/view

18

5. Report on HLST project EUTERPE

5.1. Introduction
The EUTERPE code is a global gyrokinetic particle-in-cell code aimed at simulating
turbulence in fully 3D stellarator geometry. It was created at the Centre de Recher-
ches en Physique des Plasmas (CRPP) [1]

and afterwards developed further at the

Max-Planck-Institut für Plasmaphysik (IPP) [2]. Beside these institutions it is currently
used as well at the Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas (CIEMAT) in Madrid.

The performance improvement of the EUTERPE code started with a scan for
potential improvements of the single processor performance. For identification of the
most CPU time consuming routines the code has been instrumented by the simple
but efficient perf library. The perf library was programmed by the RZG scientist
Reinhard Tisma and gives information about the time spent and the Mflop rate
achieved in a detected region. Therewith, two most work intensive parts have been
identified. It is the part which prepares the particle pushing (FORTRAN subroutine
PUSH) and the part which does the charge assignment (FORTRAN subroutine
CCASSIGN) for the different orders of B-splines., e.g. for quadratic B-splines
(subroutine QUAD_ASS).

These subroutines, including calls to further subroutines inside, have been chosen to
be targeted for optimization by Single Instruction, Multiple Data (SIMD) capabilities of
the Intel Nehalem processor. The Nehalem processor supports a number of SIMD
instructions by the SSE4.2 instruction set to access small-scale SIMD with 128 bit
registers. The Streaming SIMD Extensions (SSE) is a SIMD instruction set extension
to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III
series processors. The capability of SIMD in Intel and AMD processors will be further
extended in the future as Intel has already announced the Advanced Vector
Extensions (AVX) which will be the new 256 bit instruction set successor to SSE and
is designed for applications that are floating point intensive. In addition, modern
Graphics Processing Units (GPUs) are using Single Instruction, Multiple Thread
(SIMT) implementations, capable of branches, loads, and stores on 128 or 256 bits at
a time. If a code has been programmed for SIMD it will automatically run on a SIMT
architecture but not the other way round. Hence, it is of key interest to investigate
today s Nehalem s SIMD capabilities for realistic double precision (64 bit) problems to
be in line with future hardware development.

5.2. Cleaning, porting and testing the code
The code is written in Fortran 95 and consists of approximately 30,000 code lines
localized in about 20 different files. Compilation is done with the GMAKE utility which
makes it necessary to define the dependencies between the different source files.
Hence, it is very important that the dependency list is updated during code
development. To prevent overlooking some dependencies the so-called Automake
utility from Polyhedron has been used. It analyzes the set of source files and
constructs automatically a consistent dependency list. Minor issues in the original
dependency list have been corrected.

In addition, the static Fortran source code analyzer FORCHECK was used to find
errors and development debris which had been piled up over code development.
Many improvements and corrections have been suggested leading to a better
readability and portability of the code.

After testing the code with the direct solver from IBM WSMP on HPC-FF it became
obvious that cases with larger grids could only be run by using the option

19

dist_solver=1. In this mode the matrix is distributed over all clones and thus the code
can use the whole distributed memory to store the Cholesky factorization. However,
a segmentation fault occurred in the ordering routine of WSMP. After constructing a
separate test case the problem was reported to the lead developer of WSMP, Anshul
Gupta and finally solved.

Consistency checks of the MPI usage have been done by the MARMOT tool. No
errors could be detected. However, it became clear that the usage of the MPI
standard was not consistent. The code has a pre-processor switch to select between
exclusive usage of the MPI routines of the MPI-1.2 standard and the MPI-2.1
standard, respectively. Unfortunately, this selection turned out not to be rigorous. It
has been corrected and the MPI-2.1 standard usage has been made the default.

The code crashed unexpectedly during long simulations on HPC-FF. After applying a
memory diagnostic it became obvious the code suffered from a memory leak.
Surprisingly, the leak was not caused by the code itself but instead by the
Parastation MPI from ParTec. Tests using Intel MPI clearly showed that there was no
memory problem. After consultations with the lead developer of the Parastation MPI,
Jens Hauke, the problem could be identified. The bug was corrected in the
Parastation MPI version psmpi2-5.0.22-1. Later it was found that the ORB5 code on
HPC-FF had also suffered from the same problem which had been circumvented by
using Intel MPI instead of Parastation MPI.

Test runs with an executable compiled with the -check all option of the Intel Fortran
compiler ifort had revealed two uninitialized variables in the BCPART routine which
now have been initialized correctly.

5.3. Reduction of communication overhead
In the EUTERPE code, several global sums are performed as MPI_ALL_REDUCE
operations. These global sums are very often executed consecutively. Thus, small
chunks of data are communicated over the whole network several times. Instead, it is
much more efficient to assemble the data first in a buffer which is then communicated
as a whole. By doing so, a few tens of global sums could be saved. In addition, it is
not necessary to provide an MPI_ALL_REDUCE operation if an MPI_REDUCE is
already sufficient. This is the case if data are only summed up for diagnostic purpose
to be printed out or to be written on file by the master process. Accordingly changes
in the code have been made.

5.4. Source code changes to enhance the vectorizability
In the case of the original subroutine QUAD_ASS, already some parts of the source
code were vectorized by the auto-compiler unit. However, the impact onto the total
execution time of the QUAD_ASS subroutine is negligible. In the subroutine PUSH, the
auto-vectorizer does not vectorize the source code at all. This is due to the fact that
these subroutines are dominated by loops over all particles residing on one core. The
content of the loops is very long and complicated with many calls to other
subroutines and makes it unsuited for vectorization. Thus, the original subroutines
had to be restructured for vectorization.

In a first step the main particle loop inside the VEC_QUAD_ASS and VEC_PUSH
subroutines, which are clones of the subroutines QUAD_ASS and PUSH, respectively,
has been split into an outer loop providing chunks of vector data and an inner loop
working on those chunks. The size of those data chunks can be controlled by a
parameter. Thus, the outer loop enables a complete control over the amount of work
load which will be processed by the SIMD capabilities, i.e. vector registers, of the
CPU.

20

In a subsequent number of working steps, the inner loop was split into several
smaller block loops. Accordingly scalar variables used inside the former main loop
have been exchanged by vector variables. This is mandatory for vectorization, no
matter whether done by the auto-vectorizer of the compiler, e.g. the auto-vectorizer
of the Intel Fortran compiler ifort [3]

or done manually by the programmer, using e.g.

the Vector Mathematical Functions (VMF) of the Intel Math Kernel Library (MKL) [4].
This is due to the fact that on the one hand, statements which shall be replaced by a
vector version have to be isolated within the source code. On the other hand, the
auto-vectorizer unit of the compiler has certain limitations when analysing complex
code structures. Even if the code structure has the potential for vectorization it could
simply fail because the source code structure is simply too complex for the auto-
vectorizer.
In general, making use of the auto-vectorizer of a compiler is the preferred way in the
first place, since no compiler dependent code structures are required. However, there
exist code structures where the auto-vectorizer fails or may not achieve the expected
performance (compare [5]). In those cases it is preferable to manually implement the
vectorization concepts and to pay the price of generating compiler dependent code
which restricts the universality of the code [6]. Furthermore, in some cases it is
advantageous to use compiler vectorization pragma statements. They can help the
compiler to analyse source code statements and can correct for misinterpretations
concerning the efficiency of the vectorization [3].

5.5. Performance study of vectorization on the Intel
Nehalem versus the IBM POWER6 architecture

Generally, vectorization can only be advantageous if a significant speed-up is
achieved in the vectorized loops. This is necessary to compensate the overhead
generated by introducing vector variables which have to be read in and written out for
each vector operation statement block. Hence, the memory access of vector
processors is highly optimized for such operations to minimize such overhead.
However, this is not the case for RISC processors like the Intel Nehalem and IBM
POWER6.

Before changing the subroutines QUAD_ASS and PUSH for vectorization it was
necessary to get detailed information of the performance data of the vector registers
of Intel s Nehalem and IBM s POWER6 hardware. Especially the speed-up factor
between the scalar and vector registers is of interest. Hence, test cases for common
intrinsic functions as e.g. SQRT, SIN, LOG, etc., as well as some other statements and
operations of interest, e.g. packing operations, have been investigated in great detail.
Of basic interest is the dependence of the speed-up factor as a function of the vector
length of double precision (64 bit) input data.

In the presented case of a vector multiplication we achieved the following result on
the Intel Nehalem CPU shown in Fig. 3. Here the measurements without
vectorization (Intel novec) are compared with cases were the vector registers have
been involved. For this purpose we used the auto-vectorizer of the Intel Fortran
compiler suite [3]

(Intel autovec) together with the vector functions of the Intel MKL
[4] library (Intel MKL VMF) and the IPP (Integrated Performance Primitives) [7] library
(Intel IPP-Vec). In general it shows that best results on the Intel Nehalem can be
achieved by the auto-vectorizer. Corresponding tests on the IBM POWER6
architecture have been done with the IBM XL Fortran compiler [8]

together with the
IBM Math Acceleration Sub-System (MASS) [9]

version optimised for the IBM
POWER6 architecture by linking with lmassvp6.

In the following we concentrated on the most efficient results of the vector registers.
For numerically relatively cheap intrinsic functions this is reached typically for vector

21

lengths approximately between 50 and 1000 when the data still fit into the private L1
cache of each core. For such cases the ratios of execution time on the scalar units in
comparison to the vector registers have been calculated for different intrinsic function
statements on the Intel Xeon X5570 and the IBM POWER6 CPU. The complete
study is summarized in Table 3.

Fig. 3 Run time of a vector multiplication versus vector length compiled with the ifort compiler
shown for a non-vectorized loop (blue) and loops vectorized by auto-vectorizer (red) and
manual implementation of the Vector Math Functions in the Intel MKL (yellow) and Intel IPP
(green) library on the Intel Nehalem (Xeon X5570) CPU of HPC-FF. The basic structure
shows inefficient behaviour for very small loop sizes, followed by a broad minimum in
execution time for vector sizes fitting into the Data Cache (L1). For larger vector sizes the
behaviour is dominated by the cache hierarchy which leads to a step like structure. To
emphasize this, the effective cache sizes of the Intel Xeon X5570 per used vector have been
plotted in terms of double precision (64 bit) vector arguments as black dashed lines. For a
multiplication, two arguments and one result vector are used and therefore the effective cache
size is one third of the actual cache size.

It shows that on the Intel Nehalem the gain using the vector registers for the intrinsic
functions under consideration can be between 0.75 and 2.51 with an average value
of 1.6. This is remarkable because for some intrinsic function there is actually a loss
of one quarter when using the vector registers. In contrast to this one always gains a
speed-up on the IBM POWER6 which is between a factor of 1.01 and 6.37 with an
average of 3.3 (we did not take into account the ATAN2 result). So on average the
speed-up on the IBM POWER6 is around a factor two higher than on the Intel
Nehalem. The reason cannot be the length of the vector registers which is, on both
architectures, 128 bits. Instead the programming of the vector registers on the IBM
POWER6 seems to be compared to the standard mathematical library
implementation more efficient as on the Intel Nehalem.

Further details please see the IPP report Performance Tuning Using Vectorization

[5].

22

Function HPC-FF

(Intel Xeon X5570)
VIP

(IBM POWER6)
HPC-FF/VIP

scalar operations
Abs 1.26

Add 1.21

Atan2 1.49 (41.0)

0.09

Div 1.82 1.33 1.75
Exp 2.22 5.35 0.66

Floor 2.33

Int 1.00

Lim-Min 0.75 1.01

0.38
Madd 1.72

Min 1.00 1.01

0.57
Modulo 1.87

Mult 1.19

Nint 1.00

Pow 1.92 6.37 0.51
Pow3o2 2.03

Real 1.64

Sin 2.51 5.94 0.75
Sqr 1.40

Sqrt 2.23 2.15

1.76
Vpackm 1.00

Table 3 Listing of the ratios of execution time on the scalar units in comparison to the vector
registers for different double precision intrinsic function statements on an Intel Nehalem, i.e.
Xeon X5570 CPU (left column) and an IBM POWER6 (middle column) CPU, respectively. For
this purpose, we used the scalar and vector execution times corresponding to the vector
length which yields the overall smallest execution time. The right column shows the ratio
between the execution time on the scalar unit on both, the Intel Nehalem and the IBM
POWER6 CPU. Please note that not all intrinsic functions listed here were available on the
vector pipeline of the IBM POWER6 and that the scalar computation of the Atan2 on the IBM
POWER6 is relatively slow.

5.6. Performance results of vectorized routines
A speed-up of the vectorized subroutines VEC_QUAD_ASS and VEC_PUSH can be only
expected if the loss due to overhead of the vectorization can be overcompensated by
the gain by the vectorized parts of the routines. One part of the overhead is
introduced by the loop splitting and the use of vector variables as described in
Sec. 5.4 which causes many read and write operations on the L1 cache instead of
reusing values in the registers of the CPU. The other part is caused by the data
structure of the particles which was optimized for cache reuse and not vectorization.
The first index loops over the attributes of each particle, as e.g. position in phase
space x, y, z, v_par and mu, the second index loops over the particles. This data
structure pays off essentially when the particles are communicated between cores.
Instead, it is necessary for vectorization to have for each particle s attribute its own
vector array. Hence, the data have to be reordered by a copying procedure which
causes overhead.

To make sure that the auto-vectorizer recognizes the parts of the code to be
vectorized the code has to be restructured in an appropriate way. This can be a
delicate task where experience is required. However, if the code structure becomes
too complex a vectorization can become impossible. For that reason, in both

23

subroutines, VEC_QUAD_ASS and VEC_PUSH, there exists still a significant fraction of
source code which cannot be vectorized. These parts are especially look-up tables
for the equilibrium quantities of the magnetic field which are stored in a large 4-dim
array. Here the problem is the memory bandwidth as this array usually does not fit
into the L1 and L2 cache levels. Other strategies than vectorization are necessary to
improve the performance in these parts of the code.

After all these changes for vectorization have being made the overall performance
could not be increased for a typical test run of 128 million ions and electrons on 64
cores of HPC-FF. Strictly speaking, the vectorized subroutine VEC_QUAD_ASS is
running 4% slower than the non-vectorized QUAD_ASS subroutine and the vectorized
subroutine VEC_PUSH is running 1% slower the than the non-vectorized subroutine
PUSH. The gained speed-up by vectorization was not able to overcompensate the
introduced overhead. The main reason seems to be the relatively small length of the
vector registers on the Intel Nehalem CPU which can only store two double precision
data simultaneously. Hence, the speed-up gained by vectorization is limited.
Compared to the size of classical vector super computers, e.g. the NEC SX series
with a vector (register) length in the order of 256 vector elements, the vector registers
of both, the Intel Nehalem architecture and the IBM POWER6 architecture, having a
total length to store two double precision numbers are small.

Also the results on the IBM POWER6 architecture are not encouraging. The
vectorized subroutine VEC_QUAD_ASS is running 1% faster than the non-vectorized
QUAD_ASS subroutine and the vectorized subroutine VEC_PUSH is running 1% slower
than the non-vectorized subroutine PUSH. Here an additional problem is that the auto-
vectorizer of the XLF IBM compiler seems to have problems to recognize all
structures which have been recognized for vectorization by the Intel ifort compiler.
Hence, it would be necessary to introduce direct calls to the MASS vector library by
hand. We will avoid this strategy as this would produce code being exclusively
optimized for the IBM environment while we have performance optimization for the
HPC-FF computer in our focus.

However, the restructuring of the dominant subroutines VEC_QUAD_ASS and
VEC_PUSH of the EUTERPE code carried out so far are an investment into the future.
On the one hand, the size of the hardware vector registers will grow already within
the next generations of hardware architectures. And on the other hand, the
vectorization capabilities of the compilers will get more sophisticated. In addition, the
contributed HLST report Performance Tuning Using Vectorization [5]

gives detailed
information on how different intrinsic functions react to the auto-vectorizer. Thus, the
vectorization capability of the SIMD instructions of the Intel Nehalem CPU can
achieve under other circumstances, than being present in the PIC code EUTERPE, a
significant speed-up.

5.7. Future plans
Unfortunately the vectorization of the dominant routines in EUTERPE did not
increase the performance of the code. However, the new structure of the vectorized
particle loops offered the chance of a detailed performance analysis. It shows that
especially the calls to the look-up tables for the equilibrium quantities of the magnetic
field are very costly due to the memory access speed. This means that the dominant
routines are memory bound. Hence, the data locality should be increased. One
possibility would be to copy the relevant equilibrium quantities needed in a certain
subroutine into a work array. Then it would be possible to gain all equilibrium
quantities at the particle position with one call instead of calling the interpolation
routine for each quantity separately. For better cache reuse this could be done for
thousands of particles in one sweep. This would also decrease the subroutine calling

24

overhead introduced by separate calls for each particle. A speed-up of the routines in
the range of more than ten per cent seems to be achievable.

5.8. References and applicable documents
[1] G. Jost, T.M. Tran, W.A. Cooper, L. Villard, K. Appert., Global linear gyrokinetic
simulations in quasisymmetric configurations. Physics of Plasmas 8: 3321, 2001.

[2] V. Kornilov, R. Kleiber, R. Hatzky, L. Villard, G. Jost, Gyrokinetic global three-
dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-
X. Physics of Plasmas 11: 3196, 2004.

[3] Intel® Fortran Compiler User and Reference Guides, Chapter: Automatic
Vectorization Overview

http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-
us/fortran/lin/compiler_f/ index.htm

[4] Intel® Math Kernel Library for Linux* OS User's Guide, Chapter: Vector
Mathematical Functions

http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-
us/fortran/lin/mkl/refman/ index.htm

[5] N. J. Hammer, HLST Report: Performance Tuning Using Vectorization

http://edoc.mpg.de/get.epl?fid=74364&did=536180&ver=0

[6] Aart J. C. Bik, The Software Vectorization Handbook, Chapter 9, Intel® Press
2004

http://www.intel.com/intelpress/excerpts/excerpt_vmmx3.pdf

[7] Intel® Integrated Performance Primitives for Intel® Architecture, Reference
Manual, Volume 1: Signal Processing, Chapters: Essential Functions, Fixed-
Accuracy Arithmetic Functions

http://software.intel.com/sites/products/documentation/hpc/ipp/index.htm

[8] Language Reference of XL Fortran for AIX, V13.1

http://publib.boulder.ibm.com/infocenter/comphelp/v111v131/index.jsp?noscript=1

[9] MASS vector libraries for AIX -- Overview

http://www-01.ibm.com/support/docview.wss?uid=swg27018490

http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-
us/fortran/lin/compiler_f/
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-
us/fortran/lin/mkl/refman/
http://edoc.mpg.de/get.epl?fid=74364&did=536180&ver=0
http://www.intel.com/intelpress/excerpts/excerpt_vmmx3.pdf
http://software.intel.com/sites/products/documentation/hpc/ipp/index.htm
http://publib.boulder.ibm.com/infocenter/comphelp/v111v131/index.jsp?noscript=1
http://www-01.ibm.com/support/docview.wss?uid=swg27018490

25

6. Final report on the ASCOT-10 project
During the period 25th April to 7th May, Nitya Hariharan s visit to Helsinki was
scheduled to get used to the ASCOT code and to familiarize with the procedure to
create the necessary input files, execute the code and check results. Also,
discussions on the project requirements were to be done to get an overall view of
how the project should be approached in the best possible manner. The initial work
plan was to refactor the code to make use of local variable paradigm instead of a
global variable paradigm. This would provide the possibility to use shared memory
parallelism like OpenMP. Using OpenMP would, in turn, enable ASCOT to simulate
more detailed magnetic fields and also improve the runtime of the existing
simulations.

Use of OpenMP not only improves efficiency, in certain cases, but also reduces
memory consumption. However, it can also be intrusive in the sense that one needs
to determine parts of code that can be parallelized using threads and data that can
be shared among the threads. We found that the runtime benefits to the code with
both MPI and OpenMP was not much and so decided to look at other parts of
ASCOT to find out if the memory consumption could be reduced without much
intervention to the code. We found that the program used large datasets of magnetic
field data as input and during the post-processing phase made use of a large amount
of memory to store the histogram data for diagnostical purposes. The histogram data
are typically produced by binning the Monte Carlo particles being distributed over the
phase space. Hence, we have concentrated our efforts to improve the memory
consumption of the code for the input and output data. Incorporating OpenMP into
ASCOT was thus no longer required.

While trying to port the code to HPC-FF, we encountered some FPEs (Floating Point
Exceptions). Following our feedback to the ASCOT team about the FPEs, they
looked into the code to fix the issues.

6.1. Histogram module
The original version of ASCOT stored the histogram data in multi-dimensional arrays.
Given that a seven dimensional histogram consumes a large amount of memory, it
made it imperative that we provide a solution that requires the minimal amount of
memory.

The histogram module for the ASCOT code would provide substantial savings of
memory and also allow data to be collected for up to seven dimensions. Some
features of the module included creating histograms with user specified data such as
min and max in each dimension, number of slots in each dimension etc., copy, free
and summing up of the histogram data. In addition to that, the module would also
have I/O routines that could be used to write out the histogram data into a file in a
portable format.

The histogram module is also general enough that it can be used for other future
projects as well. The code has been put into the SVN repository under the
ASCOT-10 directory for future HLST use.

6.1.1. Linked list
Since, the histogram data that has to be binned has a sparse structure, using linked
lists to store the histogram data is an optimum solution to save memory. We only
need to store those index values at which the data has been binned. In addition, we
need to store the weight at each index point.

26

A linked list consists of a set of nodes. Each node in the list, in turn, is a derived data
type containing information. In our case, the derived data type consists of the index
and weight values of the histogram. A pointer from one node in the list to the next
allows for traversing the list. A 1D linked list is the simplest case of a linked list with a
header node that points to the start of the list. Each node then points to the next node
in the list. A 2D linked list has a matrix structure with nodes representing rows and
columns. Fig. 4 and Fig. 5 give a simple example.

 Head End

Head End
 Head End

Fig. 4 A 1D linked list with four nodes.

 Head End

Fig. 5 A 2D linked list.

A linked list is a sparse representation of a one or multi-dimensional array.
Implementing a 1D linked list is fairly simple. The level of complexity increases for a
2D linked list, and it is very expensive to implement and maintain higher dimensional
linked lists. However, we can use certain properties of the index value to simplify the
representation of a multi-dimensional array as a linked list.

An index into an array can be represented as a tuple. This is generated by knowing
the index and the size of the array in each dimension. For example, in an array of
size nxm the tuple for index (1, 2) will be 1 + (2-1)*n = 5. This tuple value is always
unique for a set of index values. Since the size of each dimension of the histogram is
known, we can, therefore, store the index into a multi-dimensional array as a tuple
and use a 1D linked list structure to store the histogram data. This in effect means
that we compress the multi-dimensional array into a 1D linked list which makes it
easier to maintain. We also build the linked list in a sorted order so that it is easy to
insert values into the list.

One of the disadvantages of using a sorted linked list is, that the time taken to
traverse and insert a new node in a linked list increases linearly with the number of
nodes. We need to compare the index value to be inserted, with each value in the
linked list till we reach the correct position in the list. To get around this problem, we
use a pointer to the node that was last inserted. We also split the linked list into four
quadrants, according to the number of nodes, by maintaining pointers that point to
each quadrant of the linked list. Then, while inserting a new node, we compare its
index value with the value of the last inserted node and with the values in the
quadrant nodes. Hence, instead of searching the list from the start, we start from the
best possible location and scan only the remaining parts of the list. We also update
the positions of the quadrant pointers when the list has grown by a certain size, i.e.,
number of nodes.

We have implemented a 1D and a 2D linked list. Instead of using tuples for a 2D list
or the structure in Fig. 5, we have implemented an improved version by creating an
array that represents the number of rows in the histogram. Fig. 6 shows the structure
of our 2D linked list implementation. The columns in each row are represented by the
linked list. A pointer to the head of each linked list is stored in the array. This reduces
the number of pointers to be maintained and also makes traversing the list easier.
The 2D linked list is used only for the 2D case. Histograms with three and higher

27

dimensions have their index values stored as a tuple, and the structure of a 1D linked
list is used. We also maintain the list in a sorted order of the index values.

Linked list 0
Row 0

Row 1 Linked list 1

Row 2
 Linked list 2

Fig. 6 An alternate implementation of a 2D linked list.

6.1.2. Merging the local linked lists
The histogram data needs to be written out in a file for post-processing. In order to
write out the histogram data, we need to sum up the contents of the histogram on
each processor, at a single processor. In other words, we need to merge the
contents of the linked lists. This requires communicating the contents of a linked list
between processors which is a non-trivial task. Since linked lists make use of derived
data types with pointer components, the memory location is no longer contiguous like
an array. This has two implications

1) Functions like MPI_Reduce can no longer be used due to the sparse
structure of the data. The assembly of the histogram data over all processors
is no longer straightforward.

2) Use of pointers to the nodes of the list means that the contents of the linked
list need to be packed before sending it to another processor.

For the first case, we make use of a binary tree structure to reduce the data at one
processor. To do so, we create MPI communicators in advance that define the
processors involved in communication at each stage. For 2n processors this is trivial.
However, we have also provided functionality for cases where the number of
processors is not a power of 2. In such cases, we define an extra communicator at a
level where we have an odd number of processors. This includes the master
processor and the highest ranked processor. Fig. 7 shows a simple example with
seven processors. The levels indicate the stage of data reduction.

We create an extra communicator at Level 2, for processor 0 and 6. At Level 3, we
create two communicators for processors 0, 2 and 0, 4.

Finally we loop over all these pre-defined communicators to reduce the data at one
processor. To deal with the second case, we make use of the fact that MPI allows the
user to create user-defined structures for a data type. Also MPI has the
MPI_GET_ADDRESS function which returns the address of a variable. We can use
this to calculate the displacement of each value stored in the linked list and create an
MPI Struct. This can then be sent to the receiving processor in the form of an array.
The sending processor determines the rank of the receiving processor using the
communicator to which they belong at the level the communication is taking place.

28

 Level 1

 Send data
 Level 2a

 Level 2b

 Level 3a

 Level 3b

Fig. 7 MPI communication among processors.

At the receiving end, the array is merged back into the linked list contents of the
receiving processor. If an index value is already present in the linked list, then the
corresponding weight value from the array is added to the linked list node. A new
index value is inserted into the list when the index value is not present. We can, at
this point, make use of the pointers to the different locations in the linked list to speed
up the merging process as well. This however, will be done only for the 1D linked list
structure. For the 2D structure, we have the row index that we can use to get to the
appropriate linked list and then scan the list with the column values to get the right
position into the list.

In addition to the normal histogram, we have also implemented vector histograms.
These are used to simultaneously store the data for up to ten histograms with the
same bin size, min and max values etc. This has the advantage that we only need to
calculate the index into the histogram once, and then use a vector of weight values to
store each value into the histograms.

6.1.3. I/O
The output data i.e., the histogram data has to be written out in a format that is
portable. The user should be able to load the histogram data in another program and
analyze it. We have decided, in agreement with the ASCOT team to make use of the
HDF5 file format. It provides a high level interface for Fortran 90 programs and is
also readable by Octave, the JET alternative for MATLAB.

HDF5 files allow complex data types, for example, derived data types to be written
out as datasets. ASCOT requires a simple dataset that includes the index and weight
values. The meta-data of the histogram, for example, the name of the histogram, its
dimensions, name of dimensions, units, min and max of each dimension, etc., are
written out as attributes and attached to a dataset. HDF5 provides tools such as
h5dump, hdfview that can be used to look at the contents of an HDF5 file. The user
can write out multiple histogram data into a single HDF5 file.

The histogram module has been delivered to the ASCOT group and Simppa
Äkäslompolo, who is the contact person for ASCOT, was able to carry out initial tests
with it. They are in the process of restructuring their code to make it more modular
and are adding more features to it. They plan to incorporate the histogram module
into the new version of ASCOT, i.e. ASCOT4, once it is completed. We have,
meanwhile, done some stress tests on the module and found it to be stable. The

 0 1 6 5 4 3 2

 0 6

 0 1

 5 4 3 2

 0 4

 0 2

29

code has also been analyzed using the FORCHECK analyzer to remove any bugs.
Further performance tests will be done on the module by the ASCOT group.

6.2. Shared Memory Segments
The other major improvement that we were able to suggest to the ASCOT group, in
terms of memory usage, was the use of Shared Memory Segments (SMS). These
are areas of memory that can be shared by processes within the same SMP node. In
the case of HPC-FF, this essentially means that up to 8 cores/processes within the
node can share a particular area of memory.

SMS are a part of the System V IPC framework that provides techniques to
communicate data among different processes running in one or more computers
connected through a network. SMS have the advantage that they are easier to
incorporate into an MPI program than OpenMP. Also, they do not require the use of a
thread-safe MPI library. This justifies their use in the ASCOT code as well instead of
using OpenMP.

FORTRAN and C interoperability is a part of the FORTRAN 2003 standard that
allows a FORTRAN variable to be represented as a C pointer and vice versa. This
allows the user to declare a variable in FORTRAN and convert it to an equivalent C
variable. Since the IPC framework has subroutines in the C language, use of this
feature of FORTRAN 2003 makes it easier to use SMS in FORTRAN.

Dr. Ian Bush, from NAG, has written a FORTRAN IPC module (FIPC) [1]

that makes
use of the System V IPC framework and the interoperability between FORTRAN and
C. This creates a SMS segment from a FORTRAN 1D or multi-dimensional array and
returns a pointer to it. The module makes use of the MPI library to create a context
similar to the MPI_COMM_WORLD context in MPI. This context, called the
fipc_ctxt_world, is a structure that contains different communicators including all
processes (similar to MPI_COMM_WORLD), all processes in each node, and a
designated Master process in each node. The structure is shown diagrammatically
in Fig. 8. Similar to the mpi_init and mpi_finalize calls, the module also has fipc_init
and fipc_finalize calls to create and destroy the fipc_ctxt_world context. More
information about the module can be found in his report [1].

Fig. 8 fipc_ctxt_world, shown for 2 nodes with 8 cores each.

Fig. 8 shows the fipc_ctxt_world for two nodes with 8 cores each. As mentioned
earlier, there are multiple communicators in the fipc_ctxt_world. The base_comm is
similar to MPI_COMM_WORLD and includes all processes that call fipc_init. Each

 MPI_COMM_WORLD Base comm

 Node 0

 Node 1

Node comm

Root comm

30

process then determines the node it belongs to by using the hostname command. All
the processes belonging to the same node create another communicator
node_comm. For the case in Fig. 8, there will be two communicators for Node 0 and
Node 1. Finally, a Master process is selected in each node and they form the
root_comm. In our example, the two Master processes are highlighted in orange in
Fig. 8.

Once the communicator structure is created, the user can then make calls to
fipc_seg_create specifying the memory block that needs to be created as a SMS.
The Master process in each node creates the segment and the rest of the
processes use the segment id to attach to the segment created within that SMP
node. When all related processing is complete, the SMS can be either deleted
through calls to fipc_seg_destroy, or they are automatically deleted when a call is
made to fipc_finalized.

The module also provides calls to fipc_allreduce to send the SMS data from one
node to another. This only involves the processes in the root_comm level. To ensure
synchronization while accessing the segments, the user can make use of critical
regions through calls to fipc_critical_start and fipc_critical_end. A barrier is provided
through a call to fipc_barrier. It should be noted that these synchronization
subroutines only act across a single SMP node since only those processes attached
to an SMS need to synchronize their access to the SMS. Also, the size of a
communicator and the rank of a process within that communicator can be found
through calls to fipc_ctxt_size and fipc_ctxt_rank. For example, from Fig. 8, the size
of base_comm will be 16, the size of node_comm will be 8 for each node and the
size of root_comm will be 2.

The pros of using SMS are obvious. We can now use a single designated area of
memory that can be shared among processes. The use of SMS has a greater benefit
in those cases where we have large input data or data that is generated only once
throughout the execution of the program and then only read subsequently. In such a
case, a critical region or a semaphore is not necessary to access the segment,
whereas a write to the segment will require synchronization and thus increase the
execution time. The ASCOT code makes use of such data, for example the magnetic
field. This data is not changed during execution and makes it an ideal candidate to be
used as a SMS. The code makes use of Splines to represent the magnetic field and
one can determine the magnetic field strength at a particular point using Spline
interpolation.

We did some tests with the cubic spline functions provided by Numerical Recipes
(NR) library. The library provides two functions, spline

to calculate the second
derivative of the interpolating function and the splint

function to get the value of the
interpolated function at a particular point. To calculate the second derivative, we
need the input points x and the value of the function y at each point x, given by
y = f(x). Since, the value of the input points x and f(x) are required only once, we can
allocate a SMS to store them. The spline function needs to be called only by
process 0 and the output of the function, say spline_out, can be used by all the other
processes within the same SMP node, as a SMS as well, during interpolation. Our
use of SMS was found to work well with the Spline functions from the NR library.

The ASCOT code makes use of the EzSplines library which can also use the SMS in
the same way. With our input, Simppa Äkäslompolo was able to write an initial
version of the module combining EzSplines and the FIPC module. It needs to be
further extended to cater to different kinds of EzSpline objects and multi-dimensional
arrays.

31

6.2.1. Fault safe termination of SMS

One of the issues that a user needs to keep in mind while using SMS is that they are
not deleted automatically in the case of a segmentation fault. The operating system
might not recognize that such segments exist and can cause the system to run short
of memory. We informed HPC-FF support at Jülich and were advised that ParTec
has provided a solution to clean up the segments after a job has terminated.
However, this will not help in cases where we have a batch script that has multiple
calls to mpiexec. For example, if the batch script does independent runs of a program
with different parameters, then a crash during one of the runs will affect the rest of
the runs as well. Due to the persisting SMS, the subsequent program executions
might run out of memory. We have included a clean-up mechanism that cleans up
these segments after a program terminates abnormally even when the node is in
use.

The System V IPC framework provides functions that are used for handling SMS. It
also provides methods to implement locks or critical regions that can be used to
access the SMS in a synchronized manner, through semaphores. Semaphores are
created by one process only and do not require attaching to unlike SMS where each
process in the node has to attach to the SMS in order to be able to use it. The FIPC
module creates a semaphore initially which is used while accessing the SMS. The
clean-up mechanism has to take care of both the semaphore and the SMS in case of
an abnormal termination.

The function shmctl which is part of the IPC framework, marks an SMS to be
destroyed. Passing the IPC_RMID parameter along with the SMS id to shmctl marks
the segment for destruction. However, the segment is only destroyed after all
processes have detached from it. The FIPC module has been changed to mark the
SMS for destruction once it has been created and all processes have been attached
to it. If the program exits normally, then the segments will be deleted automatically. In
the case of an abnormal termination, the segments will be deleted if all the processes
have detached from it.

There could be instances where the processes do not detach from the SMS after an
abnormal termination. Also, semaphores unlike SMS cannot be marked for
destruction. In such cases, the segments and semaphores need to be deleted
manually using the Linux ipcrm command. The FIPC module was also changed to
write out the SMS and semaphore ids to a file soon after they are created. The file is
then used as an input to a C program that deletes these segments through calls to
the ipcrm command via the system() call. This C program can be executed after the
execution of the ASCOT program to ensure that any remaining SMS and
semaphores from the program are properly cleaned up.

6.2.2. References
[1] Portable use of Shared Memory Segments, Dr. Ian Bush
www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf

6.3. Conclusions on the ASCOT-10 project
The initial working plan envisaged an implementation of a hybrid parallelization
model of OpenMP and MPI. However, it became clear that just for reducing memory
consumption it was not necessary to implement OpenMP in addition to MPI. The
program used large datasets of magnetic field data as input and during the post-
processing phase made use of a large amount of memory to store the histogram data
for diagnostical purposes. To prevent each core to have its own copy of the magnetic
field data, we implemented Shared Memory Segments (SMS) to share the data

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf

32

among the eight cores within each node on HPC-FF. For the histogram data we
implemented a data compression algorithm using a sparse format which significantly
reduces memory consumption and also allows the user to use up to seven
dimensional histograms. These changes result in a much more efficient memory
management of the ASCOT code. As a result it is possible now to simulate more
detailed magnetic field configurations which results in more accurate physical
simulations.

We would like to thank the project coordinator, Taina Kurki-Suonio, for the good
collaboration.

33

7. Contribution to the JOREK-HR project
JOREK was to be benchmarked as part of the BEUPACK benchmark suite.
However, our attempts to port the code to HPC-FF were not successful since the
code encountered a deadlock when run on 96 cores or more. We also tested a new
version of JOREK which had some issues related to OpenMP fixed and also used a
new version of the direct sparse solver PastiX library. Unfortunately, this version also
did not run on HPC-FF in the hybrid mode for large problem sizes. A deadlock was
encountered with this setup while using ParTec MPI.

To ensure that this was not an issue with the setup on HPC-FF, we tested the code
on the IBM Power6 and the AIMS cluster of RZG. Tests were done on 32 MPI tasks
with 8 OpenMP threads each, and the job ran to completion on both machines. A
difference in these three machines was the MPI library available. IBM Power6 uses
the default IBM implementation of MPI, the AIMS machine uses Intel MPI and
HPC-FF uses ParTec MPI.

On our request, the HPC-FF support at Jülich installed Intel MPI on HPC-FF for our
testing purposes. We then did tests using Intel MPI as well, and these were
successful. The code ran through on 8 OMP threads per MPI task even on 512 cores
using Intel MPI.

We found that the major difference between the MPI libraries on IBM Power6, Intel
MPI and ParTec MPI was that the former two supported MPI_THREAD_MULTIPLE
(MTM) level whereas ParTec MPI only supported up to the
MPI_THREAD_SERIALIZED (MTS) level. The MTM level is required for the proper
functioning of the PastiX library. Hence, we asked HPC-FF support to provide the
MTM level of support for ParTec MPI. This requires recompiling the MPI library again
with flags that enable the MTM level of support. The code did not run through even
with the MTM enabled version of ParTec MPI.

To rule out any program errors, we analyzed the code using the tool Marmot on
HPC-FF, which is an MPI correctness checking tool. We were provided a new
version of Marmot 2.4.0 which had some bugs in version 2.3.1 fixed, however this
was also not functioning correctly. Along with the help of the developer of Marmot,
we were able to fix the issue and used the corrected version installed locally on
HPC-FF. Analyzing the code with Marmot gave just warnings:

1) Use of MPI_ANY_SOURCE can cause race conditions usage of
MPI_ANY_SOURCE can cause deadlocks and should be avoided if possible.

2) Marmot also reported that the number of elements being sent through
MPI_Scatter was less than 0.

These anomalies were reported to Guido Huysmans who is the project coordinator of
JOREK.

Since JOREK ran on most machines we tested, and even on HPC_FF with Intel MPI,
we came to a conclusion that the problem was in the MTM version of Partec MPI we
had available on HPC-FF. For completeness, we also suggested that the code
should be looked at by the PastiX developers who could rule out any problems with
the library. The library was found to be functioning correctly. The issue was found to
be with the MTM level support of ParTec MPI, which they have now fixed, on our
request, and is available on HPC-FF as a module that can be loaded by the user.
JOREK was finally ported to HPC-FF and Florent Sourbier was able to benchmark it
successfully as well.

34

8. Memory bandwidth on HPC-FF BEUPACK

benchmark revisited
We had to revisit the BEUPACK benchmark in the light of additional information on
the memory bandwidth that was available on HPC-FF.

On HPC-FF, the compute nodes have a NUMA (Non Uniform Memory Architecture)
design. Each node has two Intel Nehalem quad-core processors. The memory is
separated into two memory nodes of size 12 GB and each memory node is bound to
one of the processors and sockets respectively. Hence, the amount of memory
available to one core is approximately 3 GB. The core-MPI task mapping within a
node is determined by the MPI execution environment. In the case of HPC-FF, this is
determined by the settings Parastation mpiexec provides. Due to the NUMA
architecture, this mapping can have an effect on the amount of memory and
bandwidth available for an application. The BEUPACK benchmark suite has codes
that are memory intensive and we chose them to test the mapping strategy used by
the mpiexec environment. To know how the total available bandwidth impacts the
runtime of an application, we need to understand how the cores in an HPC-FF node
are attached to a process so that we have an approximate idea of how core mapping
can impact memory bandwidth.

HPC-FF also has an environment variable PSI_TPP that can be used to change the
distribution of tasks across a node. It is similar to a skip factor which determines how
to assign tasks in a compute node of eight cores. The default behavior on HPC-FF is
similar to setting PSI_TPP to 1.

Note that it is only important to know the rank of the MPI tasks that are scheduled on
each processor. Within a processor, it does not make a difference if the cores are
allocated alternately or not since they share the L3 cache and can access the same
memory attached to the processor.

The default setting on HPC-FF does not allow a task that is scheduled on Processor
0 to access the memory attached to Processor 1. This can however be changed by
setting a value to a variable __PSI_NO_MEMBIND which allows tasks in one
processor to access the memory attached to another processor in a node. With this
information, we can find out the MPI tasks that are allocated to a processor for
varying number of active cores and PSI_TPP values by some simple tests.

We tested a program, on a node on HPC-FF, which uses a maximum of eight active
cores and a minimum of two active cores by setting ppn (processes per node) to
eight and two respectively. The program tries to allocate about 7 GB of memory each
to MPI task with rank 0 and another MPI task. If they are both scheduled on the same
processor, then the program will terminate with an out of memory exception since a
processor has only 12 GB of memory attached to it. Two tasks that are on the same
processor will not be able to allocate 14 GB of memory in total with the default
setting. This way, we can find out which MPI tasks are allocated on the same
processor.

Table 4 shows the mapping of cores to MPI tasks when we have different number of
active cores and values of PSI_TPP set, within a node.

From Table 4, when the number of active cores is eight, MPI tasks 0, 1, 2 and 3 are
scheduled on Processor 0 and the rest are on Processor 1. We see a difference in
the mapping when we have four active cores and PSI_TPP has the default value of 1
or it is set to 2. In the former case all the MPI tasks from 0 to 3 are scheduled on
Processor 0 and Processor 1 is idle. When PSI_TPP is set to 2, tasks 0 and 1 are on
Processor 0 and tasks 2 and 3 on Processor 1.

35

Table 4 Mapping of cores to MPI tasks for different number of active cores in a node and
PSI_TPP values.

The same difference can be seen when we have two active cores and PSI_TPP is
set to 1 or 4. When PSI_TPP is 1, we have both the MPI tasks set on Processor 0
and Processor 1 has no active cores.

The scheduling pattern for two and four active cores with the PSI_TPP set to its
default value, implies that the MPI processes have access to less memory than is
actually available. In the case of four active cores, one processor is completely idle
and its 12 GB memory cannot be accessed by default. The active cores have access
to only 3 GB of memory each on Processor 0. In the case of two active cores, they
can use only up to 6 GB each even though the other 12 GB of memory attached to
Processor 1 are available. One has to use the __PSI_NO_MEMBIND variable to be
able to use the memory available on the other processor in both cases. However,
when we set PSI_TPP to 2 or 4, the tasks are scheduled on different processors in
the node. This automatically means that all 24 GB of available memory is distributed
equally among the active cores.

The findings above have been tabulated in Table 5. Applications can benefit from
double the amount of memory that is available per core, and also more bandwidth.
This can be done by using a suitable number of cores and utilizing the benefits that
PSI_TPP can provide to the application.

To use PSI_TPP, the user needs to export the PSI_TPP variable in the shell script.
The number of active cores being used is equal to

Number of active cores = Total number of cores / PSI_TPP

For example, to use 512 active cores, the user must specify nodes=128, ppn=8,
PSI_TPP=2 and number of tasks=512. This will ensure that the job is run on 512
active cores. The remaining 512 cores are left idling.

Cores Active cores PSI_TPP Core-MPI task mapping
 Processor 0 Processor 1

8 8 1 0 1 2 3 4 5 6 7

8 / 4 4 1 0 1 2 3

8 / 2 2 1 0 1

8 4 2 0 1 2 3

8 2 4 0 1

36

Table 5 Number of cores per node and memory available per core for different values of
PSI_TPP.

The advantage of using PSI_TPP is that the user has a certain degree of freedom
while specifying the number of cores during execution. Setting ppn will restrict the
user to the number of cores requested. For example, the user can set ppn=8 and set
PSI_TPP to two, using only four cores. The user can also run another mpiexec within
the same batch script that could use eight cores, by setting PSI_TPP to one (default
on HPC-FF). However, if ppn is set to four, then the user will have to use a new
batch script to submit a job of eight cores.

8.1. BEUPACK Benchmark
We have repeated some tests on the BEUPACK benchmark codes to determine the
impact of the usage of PSI_TPP on the run times. The tests have been done on 512
cores. The codes JOREK and GYSELA have not been tested as part of this.

The results of using PSI_TPP have been shown in Table 6. The run times are
compared to the original benchmark runs where PSI_TPP had its default setting of
one.

The timings in Table 6 are as expected. Both MDCASK and ORB5 are Monte Carlo
codes where the data locality is high enough to make efficient use of the cache
hierarchy. Hence the number of direct requests to access main memory is moderate.
Both GENE and GEMR are grid based codes and thus require a large number of
direct requests to main memory to sweep through the large grids. The advantage of
using PSI_TPP=2 for such codes can be clearly seen as they benefit from a larger
memory bandwidth per core.

Users should however note that the percentage gain should be considered carefully
before they decide to let every second core run idle in all their jobs. Even though the
gain for some codes in Table 6 is obvious, the real benefit in letting every other core
idle is only in those cases where the bandwidth gain is more than 100% for a code
that already has an ideal scaling curve. If this is not the case, the benefit of using
double the number of cores instead of double bandwidth will be higher for the user.

ppn PSI_TPP Number of active
cores per

compute node

Memory per
core (GB)

Explanation

8 1 (default) 8 3 1 core allocated
per task.

8 or 4 1 (default) 4 3 1 core allocated
per task.

8 or 2 1 (default) 2 6 2 cores allocated
per task.

8 2 4 6 2 cores allocated
per task, 2*3GB

memory
available per

core. Doubled
bandwidth.

8 4 2 12 4 cores allocated
per task.

37

Benchmark Run time in

seconds
(PSI_TPP=1)

Run time in
seconds

(PSI_TPP=2)

%Gain

ORB5 309.34 280.12 9.45
MDCASK 250

Million atoms
4.80 (per time step) 4.64 (per time step) 3.33

MDCASK 500
Million atoms

9.26 (per time step) 8.82 (per time step) 4.75

GEMR ITER
case (problem size

4096x2048)

2730.28 1985.62 27.27

GEMR ITER
case (problem size

2048x1024)

682.37 428.7 37.17

GENE 74.87 49.99 33.23

Table 6 Run times on 512 cores with default value PSI_TPP=1 and with PSI_TPP=2.

38

9. Final report on the MGEDGE project

9.1. Introduction
The multigrid method is a well-known, fast and efficient algorithm to solve many
classes of problems including the linear elliptic, nonlinear elliptic, parabolic,
hyperbolic, Navier-Stokes equation and Magnetohydrodynamics (MHD). Although the
multigrid method is complex to implement, researchers in many areas think of it as
an essential algorithm and apply it to their codes because the number of operations
of the multigrid method depends on the degree of freedom times the number of levels
(log of the degree of freedom).

To implement and analyze the multigrid method, we have to consider two main parts
of the multigrid algorithm, the smoothing operator and the intergrid transfer operator,
separately.

To parallelize the program and to get a good performance, we need to have a good
load balance over all cores. In general, the ratio of communication to computation on
a coarse level grid is larger than the ratio on a fine level grid. Since the multigrid
method works on both coarse and fine grid levels, we need to consider, in detail, the
balance between computational work and communication. Usually, the multigrid
method requires more work on coarse problems in comparison to other iterative and
direct methods. The balance between computation and communication is highly
dependent on machine architecture and problem sizes, so we need to determine the
level at which we need to stop coarsening according to the number of cores on each
machine and problem size.

In this project, we have worked on the efficient implementation of the multigrid
method in the GEMZ (Gyrofluid ElectroMagnetic) code of Bruce D. Scott, which
solves nonlinear gyrofluid equations for electrons and one or more ion species in
tokamak geometry. Starting from an already existing implementation of the multigrid
method we amended the intergrid transfer operators and the linear solver. We further
continued with detailed adaptation and testing of the implemented multigrid algorithm
on the VIP machine at RZG and HPC-FF machine at JSC to finally improve its
parallel scalability significantly.

9.2. Implementation of the multigrid method
As part of our efforts, we have assessed the multigrid method to solve the Poisson
problem on a rectangular domain with uniform meshes using cell-centered finite
differences (CCFD). In focus was the performance of the implemented multigrid
algorithm on massively parallel machines with up to many thousands of processors.

Table 7 The number of iterations and average error reduction factor of the multigrid method.

39

Initially, it was not clear if the zeroth- or first-order intergrid transfer operators would
give better performance for the CCFD method. Corresponding tests revealed that in
the case of the first-order intergrid transfer operator the average error reduction
factor, i.e., the ratio of post-error to pre-error after passing a V-cycle averaged over
the number of iterations and the number of iterations did not change with the number
of multigrid levels (see Table 7).

Instead the zeroth-order intergrid transfer operator imposes a strong correlation of
these quantities to the number of multigrid levels. Thus, we conclude that the first-
order intergrid transfer operator should be preferred for larger problems.

We investigated four popular solvers as coarsest problem solvers on the lowest
level ; the Red-Black Gauss-Seidel Relaxation method, sparse direct solver (IBM
WSMP), dense direct solver (LAPACK), and Conjugate Gradient Method (CGM). The
solution time of each solver was measured for several different problem sizes from 28

to 222 Degrees of Freedom (DoF). For our smallest problem size (28 DoF), CGM,
relaxation, LAPACK(solving) are faster than the other solvers and CGM is the fastest
solver for relatively small problem sizes (from 210 to 216 DoF). For larger problem
sizes (>216 DoF), multigrid and WSMP back substitution give similar good results (see
Fig. 9).

Fig. 9 Solution times of different solvers on a single core of an IBM Power6 757 system.

In addition, we compared the parallel performance of the solvers. The results show
that CGM is again the best parallel solver for problem sizes with 210 to 216 DoF. As
expected, the optimal number of cores increases with the size of the problem.

Next, we focused on the scaling properties of the parallel WSMP and the multigrid
algorithm to solve a problem with 220 DoF. The back substitution of WSMP is better
than the multigrid method on small number of cores, less than four cores for VIP and

40

less than sixteen cores for HPC-FF. For larger numbers of cores, the multigrid
method is faster than WSMP due to better scaling properties.

This result suggests that we might get the fastest solution time with one of the
following strategies. Either we combine the parallel multigrid method with the parallel
CGM solver as lowest level solver, i.e., using the CGM solver on the coarsest grid
to get the exact solution. Or we gather the data from all the cores on each core at a
certain level (called gathering level) and proceed with the single-core version of the
multigrid method until we reach the coarsest grid level (see Fig. 10). As lowest level
solver we would have again the choice between the CGM, relaxation, and
LAPACK/WSMP solver. The second strategy has the benefit that it can enlarge the
applicability of the parallel multigrid algorithm for a fixed problem size to very large
numbers of cores. In such cases, the degree of freedom at certain levels may be less
than the number of cores when approaching to the lowest level . Hence, one has to
switch to the single-core version of the multigrid method for calculating the single
core levels (see Fig. 10).

Fig. 10 A schematic view of the V-cycle multigrid method which starts as a parallel multigrid
implementation, then after passing the gathering level converts to a single-core multigrid
version and finally ends up in one of the possible choices for the lowest level solver.

41

9.3. Scaling properties of the multigrid method

Detailed tests show that within the uncertainty of the measured execution times the
parallel CGM lowest level solver with a lowest level of five gives the best results
for a problem size of 224 on HPC-FF up to the maximum chosen number of 512
cores. Thus, only in cases where the number of cores is larger than the number of
DoF a single-core multigrid version should be taken into account. A strong scaling of
the optimal solver shows a perfect linear speed on up to 512 cores on HPC-FF (see
Fig. 11).

Fig. 11 The solution times, speed up, and speed up ratio of the multigrid method according to
the number of cores on HPC-FF to solve a problem with 224 DoF.

Finally, we investigated the weak scaling properties of the optimal solver for four
different test cases, i.e., 218 DoF, 219 DoF, 220 DoF, and 221 DoF per core with a weak
scaling from one core to 2048 cores on HPC-FF. The multigrid method has very good
weak scaling properties. The larger the problem size per core the better it scales. For
the two largest test cases with 220 DoF and 221 DoF per core, the execution time
increases by less than 5%. This is remarkable as the scaling spans an increase of
the core number by a factor of 1024 (see Fig. 12).

42

Fig. 12 The relative solution times according to the number of cores on HPC-FF to solve
problems with a fixed DoF per core (weak scaling).

9.4. Conclusions on the MGEDGE project
Over all, we proved that our implementation of the multigrid method with the
conjugated gradient method as a lowest level solver and with first-order intergrid
transfer operators has very good strong and weak scaling properties. Thus, it is
suitable for usage on massively parallel machines like HPC-FF. For details please
see the HLST report Parallelization of the Multigrid Method on High Performance
Computers

which has been published as IPP report 5/123.

We have discussed our results with the project coordinator, Bruce D. Scott, and
given him feedback about the changes we did in his 2-dim multigrid test code
version. Next step, the implementation of the new multigrid implementation into the
production version of GEMZ will be done by himself. In addition, we also had fruitful
discussions with Bruce D. Scott about the multigrid method on a triangle mesh with
finite volume discretization.

43

10. Report on the KinSOL2D project

10.1. Introduction
The Particle-in-Cell (PIC) code BIT1 is restricted so far to 1D3V plasma and 2D3V
neutral particle modeling with a reasonable scaling up to 1000 and more processors.
Hence, ongoing work is focused on enhancement of the code to 2D3V plasma
simulations of the Scrape-Off-Layer (SOL). The increase of the dimensionality of the
code to 2D or even 3D seems to be straight forward. However, the Poisson solver in
2D has been identified as a bottleneck for the scaling properties. It is mandatory that
also this part of the code scales to very high processor numbers to maintain the good
scaling property of the whole code. So the work plan is to develop a good scaling
Poisson solver in 2D. Possible candidates as solvers are a multigrid solver or,
depending on the type of the matrix, a preconditioned Conjugated Gradient (CG)
method and Generalized Minimal Residual method (GMRES), respectively. A
combination of both is also thinkable where the multigrid method is used as a
preconditioner for either the CG or the GMRES method.

The GMRES method has to be used for non-symmetric or non-positive definite
systems which can arise e.g. through the boundary condition treatment. In general,
the preconditioned system of a symmetric system is not symmetric for the same inner
product. However under certain conditions such a system can be symmetric in a
different inner product (A-inner product or energy inner product) and the less costly
CG method can be used.

The multigrid method is a well-known, fast and efficient algorithm to solve many
classes of problems including the linear elliptic, nonlinear elliptic, parabolic,
hyperbolic, Navier-Stokes equation, and Magnetohydrodynamics (MHD). Although
complex to implement, researchers in many areas think of it as an essential algorithm
and apply it to their codes because the complexity of the multigrid method is only
N log(N) , where N is the degrees of freedom (DoF).

To implement and analyze the multigrid method, we have to consider two main parts
of the multigrid algorithm separately: the intergrid transfer operators and the
smoothing operator. The intergrid transfer operators depend on the discretization
scheme and are highly related with the discretization of the matrix. The smoothing
operator will be implemented according to the matrix-vector multiplication. So we
have to determine the appropriate discretization method which includes the
generation of the matrix and an efficient implementation of the matrix-vector
multiplications.

When a multigrid solver converges, it usually converges very fast which is the case
on most of the problems. However, the multigrid method as a solver does not
guarantee convergence. In contrast, iterative Krylov subspace methods which
include the CG and the GMRES method guarantee convergence and can be further
improved by preconditioners to speed up the convergence rate. The multigrid method
is also well-known to act as a very efficient preconditioner. The preconditioned CG
method can be used only for symmetric and positive definite problems and has to
use the A-norm instead of the L2-norm. The preconditioned GMRES method works
for non-symmetric or non-positive definite problems, but needs more working
memory. To reduce the working memory in the GMRES method the Restart GMRES
algorithm is an option which does not guarantee convergence, but converges for
most of the problems. In the following we will investigate the multigrid method itself
as a solver or as a multigrid preconditioner for a Parallel GMRES (PGMRES) solver.

44

10.2. Model problem

We consider the second order elliptic partial differential equation with the coefficient
(x,y) being defined on a rectangular domain with an internal conducting structure as

in Fig. 13. The boundary conditions are as follows: Dirichlet zero boundary condition
for the outer boundary, Neumann zero boundary condition for the inner empty
surface and time-dependent Dirichlet boundary condition for the internal conductor.

The finite difference method is chosen as discretization method. In addition, a
structured mesh with (x,y) being defined on each cell boundary is used. The
coefficient (x,y) is time dependent and will change for each time step of the
simulation.

Fig. 13 Rectangular domain with internal conducting structure [: internal structure
(conductor)]

As the model problem is quite complex it is advantageous to split it first into
subproblems which can be solved separately. After successful treatment of the
subproblems they can be used as building blocks to assemble an algorithm for the
full problem. Hence as a first step, we focus on the convergence property of the
solver for an internal conducting structure which can be arbitrarily shifted relative to
the coarsest mesh of the multigrid method. For the multigrid method this is a
challenging problem as the corners of the conducting structure and inner empty
space could lead to a poor convergence rate of the multigrid method.

10.3. Multigrid software framework
To prevent starting each new multigrid project from scratch, we have started to
develop a multigrid software framework. So far a preconditioned CG, a
preconditioned GMRES and a multigrid solver have been implemented. As an
efficient preconditioner the multigrid method can be used. The discretization method
has only an impact on the matrix-vector multiplication and the construction of the

45

matrix. Special versions of the vector multiplication for finite volumes, finite elements
and finite differences have been provided. It is the vector multiplication where the
parallelism is introduced into the framework. Corresponding tests have been done to
prove the correctness of the implementation. For the discretization with finite
difference considered here with a Neumann boundary condition, the generated
matrix is non symmetric, so the CG method cannot be used. Instead only the
preconditioned GMRES method and the multigrid method can be used.

The implementation of the parallel matrix-vector multiplication and the smoothing
operators, in our case Gauss-Seidel and Jacobi, is highly dependent on the domain
handling of the parallelization concept. In our case we discretize the whole
rectangular domain in each direction with a uniform mesh and divide the rectangular
domain in nx by ny small rectangular sub-domains which are handled by one
processor each. If a rectangle sub-domain is in the inner empty space, we do not
need to handle this domain and thus do not assign a processor to such a sub-
domain. As a result a certain fraction of the processors will idle. In the future this can
be further refined but at the moment it seems to be justified by the fact that the inner
empty space is much smaller than the reaming area of the rectangular domain. In
case of the internal conducting structure no exception is made so that all sub-
domains are assigned to a processor nevertheless they include parts of the internal
conducting structure or not.

10.4. Tests with inner conducting structure
We have tested the correct discretization of the elliptic problem on a rectangular
domain with an internal conducting structure and an inner empty space by comparing
the converged numerical solution with the exact solution. To construct an exact
solution for a zero Neumann boundary condition on the boundary of the inner empty
space, we chose the following sine function f(x,y):

The Dirichlet boundary condition of the internal conductor is given by the values f(x,y)
at the boundary of the conductor. For simplicity we chose for the mesh sizes
h=hx=hy. The according L2 discretization errors are listed in Table 8. It can be clearly
seen that the error converges by second order (O(h2)).

Table 8 The discretization L2 error and the error ratio between succeeding refinements.

Next we test the multigrid solver and the PGMRES method in combination with the
multigrid preconditioner. We have implemented the first order intergrid transfer
operator and tested it. We use the Jacobi iteration and the local Gauss-Seidel
iteration as smoothing operators. These two smoothing operators are relatively
simple and well analyzed. The Jacobi iteration does not have a good performance,
but does not depend on the number of processors. This is beneficial when testing the
parallelized multigrid method because results do not depend on the number of

46

processors being used. In contrast the local Gauss-Seidel iteration has a good
performance, but depends slightly on the number of processors.

As a test case, we chose a 4 by 4 rectangular domain with a 2 by 2 inner empty
space and a fixed finest mesh with h=hx=hy=0.001953125 and several different
coarse meshes for the V-cycle. We always chose the inner empty space in such a
way that it is aligned with the coarsest mesh. In contrast the inner conducting area
can have an arbitrary shift relative to the coarsest mesh.

Fig. 14 The positioning of the internal conducting area [: internal structure (conductor), line:
coarsest mesh, dotted line: finest mesh]

We sketch two different configurations of the internal conductor area in Fig. 14, one
does not match with the coarsest mesh (left) and the other one matches the coarsest
mesh (right). The average error reduction factors of the multigrid method, i.e., the
ratio of post-error to pre-error after passing a V-cycle averaged over the number of
iterations, are listed in Table 9 according to the selected smoothing operator and the
number of levels of the V-cycle. The solution on the coarsest mesh is computed by
using the GMRES method.

The results show that the multigrid method as a solver and the PGMRES method
with a multigrid preconditioner have a very good performance if the internal
conducting area matches with the coarse meshes. Otherwise the convergence rate is
significantly reduced. In some cases this can lead to a non converging multigrid
solver result. Nevertheless, the corners of the conducting structure and inner empty
space do not seem to be a problem.

(a) Unmatched internal conductor area. Note, ** marks a non converged result.

47

 (b) Matched internal conductor area.

Table 9 The average error reduction factor of the multigrid method as a solver and
preconditioned GMRES with the multigrid preconditioner.

Next it is interesting to see how the GMRES method behaves without using a
preconditioner. For this purpose we compared the solution times of the multigrid
solver and the preconditioned PGMRES solver with the GMRES solver for two
different mesh spacings of h1 = 0.0078125 and h2 = 0.00390625 on a parallel 24
cores run on HPC-FF. In this comparison we consider the case that the internal
conducting area matches with the coarsest mesh. For the multigrid method we use
the local Gauss-Seidel smoother together with a total number of six levels. The
corresponding solving times are listed in Table 10 together with the number of
Degree of Freedoms (DoF). It can be clearly seen how the multigrid preconditioner
speeds up the GMRES method significantly.

Table 10 The solving times in seconds on 24 cores on HPC-FF at JSC.

10.5. Future plans
The method as it has been tested so far has still some limitations. Good convergence
of the multigrid and PGMRES solvers is achieved for an inner empty space and
internal conducting area which matches the coarsest grid. Hence, it will be of interest
how these limitations can be overcome. Finally, the method will have to prove in a
weak and strong scaling test how its scaling properties are on the HPC-FF machine.
In addition, one has to see how the method competes with the parallel direct sparse
solver from IBM WSMP.

