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1. Executive Summary 

1.1. Progress made by each core team member on 
allocated projects 

In agreement with the HLST coordinator the individual core team members have 
been/are working on the projects listed in Table 1.  

Project acronym Core team member Status 
ASCOT-10 Nitya Hariharan finished 
EUTERPE Nicolay Hammer prolonged 
GYNVIZ Matthieu Haefele running 
ITM-EU4IA Nicolay Hammer finished 
MGEDGE Kab Seok Kang finished 
KINSOLD Kab Seok Kang prolonged 
ZOFLIN Nitya Hariharan scheduled 

 

Table 1 Projects mapped to the HLST core team members.  

Roman Hatzky has contributed in particular to the projects ASCOT-10 and 
EUTERPE. Furthermore, he was occupied in management and dissemination tasks, 
e.g. the development of the HLST web site, due to his position as core team leader.    

Matthieu Haefele worked on the GYNVIZ project. The aim of the GYNVIZ project is 
to unify and to provide support for the whole hardware and software chain concerned 
with the visualization process of large datasets being produced by the major 
European gyrokinetic codes. 
Three main components can be identified. The first one consists of a uniform data 
format, namely XDMF. It has been decided to use this format as standard because a 
wide spectrum of data types can be expressed and its design is very flexible implying 
rather low effort on the code developer side. A collaboration with the XDMF team in 
the U.S. has been set up in order to improve parts of the implementation to our 
concerns. A new release is expected soon. 
The second component consists of a suite of post-processing software. The main 
part is intended to turn 3D time-varying datasets in 4D compressed ones in order to 
explore them with 4D visualization. The 4D compression and visualization are 
technologies transferred from a former EUFORIA project. The post-processing tool is 
being developed within the GYNVIZ project and is nearly finished.  
Finally, network and computing infrastructures hosted by the computer centers RZG 
and JSC are the third component. In close collaboration with RZG, a DEISA project 
involving JSC has been established and DEISA accounts have been created for each 
GYNVIZ user. As a result, data generated by HPC-FF can be easily and efficiently 
transferred from JSC to RZG via the DEISA file system with a simple cp

 

command. 
Subsequently, a remote visualization session can be started on the newly built 
visualization cluster at RZG to explore the transferred data. This infrastructure is 
already up and running.  

Nicolay Hammer worked primarily on the ITM-EU4IA and EUTERPE projects. In 
addition, he did some supplementary work to the former OPTGS2 project.   

The aim of the ITM-EU4IA project was to port the Unified Access Layer (UAL) to 
HPC-FF. The UAL is a software library developed by the Integrated Tokamak 
Modelling (ITM) task force of EFDA. It is designed to serve as a unified 
communication platform for numerical physics codes which are used in Europe to 
simulate the different physical aspects of tokamak fusion devices. A working local 
installation of the UAL library package was generated and tested on HPC-FF. 
However, an internal component of the UAL the so-called MDSplus library does not 
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work properly. Accordingly, the problem has been passed to the MDSplus developers 
from ITM.  

The EUTERPE code is a global gyrokinetic particle-in-cell code aimed at simulating 
turbulence in fully 3D stellarator geometry. In a first step the code was successfully 
ported to HPC-FF. Different problems like e.g. a memory leak in the Parastation MPI 
had to be fixed. Next we targeted the performance improvement of the EUTERPE 
code by making use of the Single Instruction, Multiple Data (SIMD) capabilities of the 
Intel Nehalem processor also known under the term of vectorization. Such SIMD 
capabilities will be further extended in future CPU design e.g. by Intel AVX 
(Advanced Vector Extensions) and are in line with the Single Instruction, Multiple 
Thread (SIMT) concept of Graphics Processing Units (GPUs). The two main particle 
loops of EUTERPE had to be restructured for vectorization. In addition, it was 
necessary to get detailed information of the performance of the vector registers. 
Corresponding results were achieved with a self programmed test bed of common 
intrinsic functions both on Intel s Nehalem and IBM s POWER6. Detailed results of 
these tests have been published in the HLST report Performance Tuning Using 
Vectorization  as a contribution for training of young scientists to the use of upcoming 
new computer architectures. Unfortunately, in the special case of the EUTERPE 
code, the performance improvement due to vectorization was cancelled by its own 
overhead so that the overall performance did not change significantly. However, the 
new code structure made a more detailed performance analysis possible which 
revealed further potential for performance improvement. Currently we are focusing on 
optimizing the access time to the look-up tables of the magnetic field data.  

Nitya Hariharan worked primarily on the ASCOT-10 project to reduce the memory 
consumption of the code. The code uses a large amount of memory to store 
histogram data for diagnostical purpose, i.e. data which have been produced by the 
binning of Monte Carlo particles. We have used linked lists to implement a new data 
compression algorithm for the histogram data using a sparse format which 
significantly reduces memory consumption and also allows the user to use up to 
seven dimensional histograms. The input magnetic field data, represented by splines, 
also consume a large amount of memory per MPI process. We have used Shared 
Memory Segments (SMS) to represent the spline data. The user can now keep a 
single copy of the magnetic field data within each node on HPC-FF and share it 
among the MPI processes within that node. With the new much more efficient 
memory management the ASCOT code is able now to simulate more detailed 
magnetic field configurations which results in more accurate physical simulations.  

Some further work was done on the JOREK-HR project. We were able to find out that 
the problems we faced during porting of JOREK to HPC-FF were due to the level of 
thread support available on ParTec MPI. ParTec has now provided to our request a 
working version of the library and JOREK has been benchmarked successfully on 
HPC-FF by HLST member Florent Sourbier.   

The benchmark of the former BEUPACK project was revisited and we investigated 
the effect of having more memory and bandwidth, per core, on the benchmark codes. 
Codes that use a large amount of memory seem to benefit to some extent.  

Kab Seok Kang worked on the MGEDGE and KINSOLD projects.  

In the MGEDGE project, we have worked on the efficient implementation of the 
multigrid method in the GEMZ (Gyrofluid ElectroMagnetic) code of Bruce D. Scott 
which solves nonlinear gyrofluid equations for electrons and one or more ion species 
in tokamak geometry. Starting from an already existing implementation of the 
multigrid method we amended the intergrid transfer operators and the linear solver. 
We further continued with detailed adaptation and testing of the implemented 
multigrid algorithm on the VIP machine at RZG and the HPC-FF machine at JSC. 



 

5

 
Over all, we proved that our implementation of the multigrid method using the 
conjugated gradient method as a lowest level solver and first-order intergrid transfer 
operators has very good strong and weak scaling properties up to 2048 cores. Thus, 
it is suitable for usage on massively parallel machines like HPC-FF. For details 
please see the HLST report Parallelization of the Multigrid Method on High 
Performance Computers

  
which has been published as IPP report 5/123.  

The Particle-in-Cell (PIC) code BIT1 is restricted so far to 1D3V plasma and 2D3V 
neutral particle modeling with a reasonable scaling up to 1000 and more processors. 
Hence, ongoing work is focused on enhancement of the code to 2D3V plasma 
simulations of the Scrape-Off-Layer (SOL). However, the Poisson solver in 2D has 
been identified as a bottleneck for the scaling properties. So the work plan is to 
develop a good scaling Poisson solver in 2D either with the multigrid method itself as 
a solver or as a multigrid preconditioner for a PGMRES solver. The method as it has 
been tested so far has still some limitations. Good convergence of the multigrid and 
PGMRES solvers is achieved so far only for an inner empty space and internal 
conducting area which matches the coarsest grid. Hence, it will be of interest how 
these limitations can be overcome.  

1.2. Further tasks and activities of the core team 

1.2.1. Dissemination 
Haefele, M.: Post-processing and visualization: general issues and some solutions, 
Theory Meeting, 2nd  5th November 2010, Ringberg, Germany.  

Hatzky, R.: The High Level Support Team, Munich Computational Science Center 
Meeting (MCSC): Kooperation Anwenderbetreuung, 3rd February 2010, Garching, 
Germany.  

Hatzky, R.: The High Level Support Team, IFERC Special Working Group 1 (SWG1), 
16th February 2010, Garching, Germany.  

Hatzky, R. and Günter, S.: The EFDA HPC project, Inertial Fusion Energy Keep-in-
Touch (ITE-KiT) Meeting, 22nd March 2010, Madrid, Spain.  

Hatzky, R. and Günter, S.: The EFDA HPC project, ITM-TF meeting, 15th September 
2010, Lisbon, Portugal.  

Hatzky, R. and Günter, S.: The EFDA HPC project, GoTiT Training Course on 
Modern Programming and Visualization Techniques, 18th 

 

29th October 2010, 
Garching, Germany.  

1.2.2. Training 
Haefele, M.: CEMRACS scientific event - Numerical Modelling of fusion, Research 
session, 26th  30th July 2010, Marseille, France.  

Haefele, M.: Parallel I/O, RZG seminar, 4th October 2010, Garching, Germany.  

Haefele, M.: GoTiT Training Course on Modern Programming and Visualization 
Techniques, 18th  29th October 2010, Garching, Germany.  

Haefele, M.: Comparison of Different Methods for Performing Parallel I/O, HLST web 
site, [online], 2010.  
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Hammer, N.J. and Hatzky, R.: Combining Runge-Kutta discontinuous Galerkin 
methods with various limiting methods, IPP report 5/124, Max Planck Society eDoc 
Server, [online], 2010.  

Hammer, N.J.: Combining Runge-Kutta discontinuous Galerkin methods with various 
limiting methods, GOTiT e-Seminar, April 14th 2010, Garching, Germany.  

Hammer, N.J.: Performance Tuning Using Vectorization, IPP report 5/126, Max 
Planck Society eDoc Server, [online], 2011.  

Hariharan, N.: HPC-FF - Overview and Experience, GoTiT Training Course on 
Modern Programming and Visualization Techniques, 18th 

 

29th October 2010, 
Garching, Germany.  

Hariharan, N.: HPC-FF - Overview and Experience, GOTiT e-Seminar, December 
15th 2010, Garching, Germany.  

Hatzky, R. and Bottino, A.: Particle-in-Cell methods in plasma physics, HLST 
seminar, 11th November 2010, Garching, Germany.  

Kang, K.S.: Parallelization of the Multigrid Method on High Performance Computers, 
IPP report 5/123, Max Planck Society eDoc Server, [online], 2010.  

1.2.3. Workshops and conferences 
Arter, W., Barnes, M.A., Roach, C.M., Knight, P., Hammer, N.J., and Hatzky, R.: 
Optimisation of the GS2 Gyro-kinetic code, 2010 International Sherwood Fusion 
Theory Conference, 19th  21st April, Seattle, USA: 2010.  

Haefele, M., Navaro, P., Kos, L., and Sonnendrucker, E.: Euforia Integrated 
Visualization, 18th Euromicro International Conference on Parallel, Distributed and 
Network-based Processing (PDP 2010), 17th  19th  February 2010, Pisa, Italy.  

Haefele, M.: La problématique du post-traitement, introduction à HDF5 et XDMF, 
Workshop "Masse de données : I/O, format de fichier, visualisation et archivage", 13th 

January 2011, Lyon, France.  

Hatzky, R.: HPC Simulations of Microturbulence in Fusion Plasmas, International 
Supercomputing Conference 10, 2nd June 2010, Hamburg, Germany.  

Hatzky, R. and Bottino, A.: Particle-in-Cell methods in plasma physics, European-US 
Summer School on HPC Challenges in Computational Sciences, 4th 

 

7th October 
2010, Acireale, Italy.  

Kang, K.S.: On finite volume multigrid method, European Multi-Grid Conference EMG 
2010,19th  23th September 2010, Isola d Ischia, Italy.  

1.2.4. Internal training 
The HLST core team has attended: 

 

The HLST meeting at IPP, 14th January 2010, Garching, Germany. 

 

PRACE Workshop on New Languages and Future Technology Prototypes 
at LRZ , 1st  2nd March 2010, Garching, Germany. 

 

5th VI-HPS Tuning Workshop at TUM, 7th 

 

9th March 2010, Garching, 
Germany. 

 

Colloquium in the framework of a Symposium on New Trends in Numerical 
Methods for Plasma Physics  at IPP, 8th July 2010, Garching, Germany. 
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The HLST meeting at IPP, 29th September 2010, Garching, Germany.  

Roman Hatzky and Kab Seok Kang have attended: 

 
Theory Meeting, 2nd  5th November 2010, Ringberg, Germany.  

Matthieu Haefele has attended: 

 
IPP Summer University on Plasma Physics and Fusion research, 20th 

 
24th 

September 2010, Garching, Germany.  

1.2.5. Visits to collaborators 
Nitya Hariharan has visited the ASCOT group: 
Aalto University of Science and Technology, April 25th 

 

7th May 2010, Helsinki, 
Finland.  

1.3. Recommendations for the year 2011 
The call for the use of High Level Support Team resources will close on 31st January, 
2011. The core team leader will present a recommendation on how to distribute the 
work load over the HLST members. The corresponding spreadsheet will be passed 
to the HLST coordinator. The final decision will be made by the HPC board. 
Until the new projects are approved by the HPC board Nicolay Hammer and Kab 
Seok Kang will, in agreement with the HLST coordinator, continue with the 
EUTERPE project and the KINSOLD project, respectively. Nitya Hariharan will start 
at 1st February with the ZOFLIN project. 
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2. Report on HLST project GYNVIZ 
The aim of the project is to unify and to provide support for the whole hardware and 
software chain that comes from the current codes output to the interactive and 
remote visualization software. Fig. 1 presents a global picture over the whole project.  

  

Fig. 1 Overview of the overall project  

2.1. File format technology review 
From the visualization point of view, the existing software VisIt, Paraview, Ensight, 
Avizio and AVS Express are the main ones in this field. They are now mature 
technologies and cover almost all visualization requirements for the GYNVIZ project. 
So the key issue is the definition of a common data file format. It has to be 
technologically up to date and it must be understood by visualization software (at 
least VisIt and Paraview).  

The latest versions of several libraries have been tested. They can be split into two 
categories. The first one focuses on computer science objects and is mainly 
composed of HDF5 and NetCDF4. Both are C libraries that can be called mainly from 
Fortran, C and C++. They are intended to create portable binary files containing 
regular arrays of data. The second category focuses on computational modeling 
objects and provides for the user a higher level of abstraction interface. It aims at 
describing, with meta-data, how the actual data represent computational meshes or 
variables that are defined on some meshes. When this kind of library actually writes 
this data/meta-data it can make use of either HDF5 or NetCDF4.   

Table 2 shows the different libraries that have been tested and the criterion that have 
been used to evaluate them. In general, the marks represent how a technology fits 
with the purpose of the project and go from 1 (very bad) to 5 (very good). Details of 
the criterion and general comments on each technology can be found below. 
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Library 
(category) 

Writing 
technology 

Relia. Durabi. Port. Intrus. Vis

 
Test Eff. Mark

 
HDF5 (1) Kernel, STD 

lib 
5 5 5 2-4 2 5 2 4 

NetCDF4  
(1-2) 

STD lib, 
HDF5 

5 4-5 ? 2 1 1 2 2 

Silo (2) HDF5 5 5 4 1 3 5 4 3 
Exodus II 
(2) 

NetCDF4 ? ? ? 1 5 1 5 1 

XDMF (2) STD lib, 
HDF5 

4 3 5 4 4 4 2 4 

 

Table 2 Evaluation of the different technologies.  

Reliability: 5=very good, 1=very poor 
Durability, long term maintenance: 5=very good, 1=very poor 
Portability on different systems: 5=very good, 1=very poor 
Code intrusive: if such a technology should be embedded into existing codes, how 
intensive will be this intrusion. 5=very small, 1=very large 
Visualization software support: is the technology already supported by several 
visualization programs. 5=fully supported by many programs, 1=not supported 
Level of Test: how far we have evaluated the technology. 5=very far, 1=only 
documentation reading 
Efforts required in order to adapt/extend this technology for the project purpose: 
5=no effort, technology can be used as it is, 1=big effort. 
The Mark is simply a rating of the different technologies according to our context: 
5=very good, 1=bad.  

HDF5 is becoming a standard for writing data in different computational sciences. 
However it is not a format that is able to describe high level concept, only basic 
datasets are supported in the different visualization software.  
NetCDF4 was a competitor of HDF5 and HDF5 seems to have won even if NetCDF 
provides some more high level representations. 
Silo is a very good high level library. However, data must go through the silo 
interface in order to create a silo file and it can be quite intrusive from the code point 
of view. 
Exodus2 is a well established format in the finite element community and it is very 
well supported. However, it really focuses on unstructured meshes which are not the 
general case in our context. 
XDMF separates clearly meta-data from data and then introduces a very nice 
flexibility at different levels. Although, it is supported by a wide range of visualization 
software, the implementation is not perfect and the roadmap of this format is unclear.   

XDMF technology offers several advantages. The first one is that the migration from 
the existing format of the different codes to the unified one will be easier with XDMF 
than with HDF5. With HDF5, either codes I/O are left untouched and a probably 
costly post-processing step becomes mandatory, or, codes I/O need to implement 
the HDF5 format. With XDMF, the different codes will only need to write on disk a 
small text file in addition to the current data file. This text file describes, with XDMF 
XML syntax, how the data are structured within the data file. As a result, the current 
format of the data file in the different codes is kept intact and the need for post-
processing step and the development of a post-processing tool has become 
obsolete. Another advantage is that the plug-ins for different visualization software do 
not need to be developed as XDMF plug-ins already exist for several visualization 
software tools.  
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On the other hand, the technology review has shown some reliability and durability 
issues. That is why we have started a collaboration with the XDMF team in the USA 
in order to improve some aspects of their technology. The idea is to implement a 
semantic checker tool that checks the consistency between the XML description of 
the data and what is actually in the data file. On the end-user side, it will help to 
identify and to correct any semantic errors. On the developer side, this tool will help 
to validate/correct all the XDMF examples and accordingly will help to correct all the 
existing XDMF plug-ins. HLST and XDMF teams agreed on the facts that HLST will 
develop the checker tool, the XDMF team will correct the plug-ins and the examples 
validation/documentation will be done together. So, instead of investing the man 
power in the development of post-processing tools and the plug-ins, it has been 
shifted to this collaboration.   

At the time of writing this report, the collaboration with the XDMF team starts 
smoothly. A first version of the XDMF checker has been implemented and has 
successfully been tested by the XDMF team. The XDMF team is currently developing 
a new interface for accessing data in XDMF format from different programming 
languages. A pre-alpha version has been tested and looks promising.   

2.2. Visualization cluster at RZG 
The visualization cluster at RZG has entered its production phase middle of October 
2010. Reservation system, collaborative work within a single session and use of 3D 
visualization software are the main functionalities that have already been 
successfully tested1. Installation of the EUFORIA 4D visualization plug-in for VisIt is 
ongoing work.   

2.3. Data transfer between JSC and RZG computer centers 
As the codes run on HPC-FF, they produce data on HPC-FF. In order to be 
visualized on the RZG visualization cluster, data have to be transferred from JSC at 
Jülich to RZG, Garching. The dedicated 10 Gb/s DEISA network is used for that 
purpose. As the DEISA filesystem is now mounted on the GPFS nodes in Jülich, it is 
possible, with an appropriate DEISA account, to transfer data from the HPC-FF 
Lustre filesystem to Garching GPFS filesystem. As the DEISA filesystem is also 
mounted on the visualization cluster, users can access directly their data. We are still 
in the process of getting every GYNVIZ members equipped with such a DEISA 
account.  

2.4. GYNVIZ tool development 

2.4.1. Automatic comparison tool 
It aims at comparing either the results from the same code for two different runs or 
the result of two different codes that simulate the same physics test case. Three main 
issues have to be handled. Firstly, relevant physical quantities have to be selected 
and an agreement on their definition has to be found among the different codes. This 
issue is not addressed within GYNVIZ but some work has been done within the 
Integrated Modelling Project 4 (IMP4) of the Integrated Tokamak Modeling (ITM) 
initiative. Secondly, data have to be written in the same format and this is exactly the 
purpose of the GYNVIZ project. Finally, comparison methods have to be applied to 
decide if the results agree or not. As a first implementation, only norms of the 
difference of the 1D quantities are computed. This can be extended in the next phase 

                                                

 

1 http://www.rzg.mpg.de/computing/hardware/miscellaneous/hp_vizcluster 

http://www.rzg.mpg.de/computing/hardware/miscellaneous/hp_vizcluster
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of the project. A first version of this tool is already implemented and is waiting for 
testing. 

2.4.2. Visualization 
Fig. 2 shows a screenshot of the 4D visualization tool displaying a 4D particles 
distribution function f(r,theta,phi,vpar). It shows four 2D slices of the function: from 
top to bottom and left to right, we have r-theta slice, r-phi slice, r-vpar slice and 
phi-vpar slice. To define completely the r-theta slice for example, one has to give a 
value to phi and vpar coordinates. These values are shown on the phi-vpar slice 
accordingly on the position of the white cross. The whole idea of this 4D visualization 
method is to enable the user to move interactively these crosses in the different 2D 
views in order to explore interactively the 4D volume. The challenge is to refresh 
interactively these slices. This is achieved by 4D compression and parallel 
processing.  

  

Fig. 2 Screenshot of the 4D visualization method  

This visualization method has been developed within the EUFORIA project as a VIsIt 
plug-in. It is planned to install this plug-in on the RZG visualization cluster.  

2.4.3. 3D + t  4D conversion tool 
The first implementation of this tool will focus on the conversion of 3D time varying 
data in XDMF format into 4D compressed data. This will enable the possibility to 
interactively explore the dataset both in space and time using several 2D slices. This 
tool will be built on top of libraries and software developed by the EUFORIA project. 
The development is nearly finished.   

2.5. Parallel I/O study 
The current trend of computational power growth is mainly based on the increase in 
the number of cores. This phenomenon modifies deeply the way applications should 
be programmed. Indeed, to benefit from this computational power, applications must 
be parallelized and must scale very well. In particular, applications I/O will definitely 
become an issue on the next generation of machines. Although this topic is not the 
core of the GYNVIZ project, it is strongly related as the data must be first written on 
disk before their visualization.  
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The purpose of the study is to evaluate 13 different I/O methods that write a 2D array 
on disk from a distributed application using a block-block distribution layout. 
Evaluations have been performed on two different architectures: HPC-FF at JSC 
(Lustre file system) and VIP at RZG (GPFS file system). Interpretation of the results 
and programming advices are given in a separate report available on HLST website2. 
This report has been disseminated within HLST, the GYNVIZ project, RZG and 
EUFORIA.  
The study has improved our knowledge on parallel I/O in general and in particular on 
HPC-FF. This is of key interest for next generation computers, especially IFERC.  

2.6. Conclusions and future work 
The visualization cluster is up and running, the data transfer mechanism is now 
settled and each GYNVIZ member is in the process of getting an appropriate DEISA 
account to access both the cluster and the data transfer mechanism. Most of the 
tools planned to be developed are already implemented or nearly finished. The only 
missing piece is the new version of the XDMF format. The pre-alpha version being 
tested so far seems to be promising. 
After having a first working version of the whole framework, the next step will consist 
in teaching GYNVIZ users how to bring their data into the XDMF framework. It is 
planned to give individual support to each group and to guide them until they are 
autonomous. Depending on the feedback achieved by helping the GYNVIZ users, the 
continuation of the project will follow one or several of the following ways: to extend 
post-processing tools based on XDMF, to continue the improvement of XDMF format 
by implementing a test suite and to go into more detail in the parallel I/O study.   

                                                

 

2
 http://www.efda-hlst.eu/training/HLST_scripts/comparison-of-different-methods-for-performing-parallel-i-o/at_download/file  

http://www.efda-hlst.eu/training/HLST_scripts/comparison-of-different-methods-for-performing-parallel-i-o/at_download/file
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3. Supplementary Report on HLST project OPTGS2 

3.1. Introduction 
The major long-term objective of the GS2 [1]

 
code developers is to resolve the 

performance bottleneck of the gyrokinetics code, which arises from the implicit finite 
difference scheme used in the solver.  As discontinuous Galerkin finite element 
methods (DG-FEM) became quite popular in the last decade, it was suggested by the 
project coordinator, Wayne Arter, that this method could resolve the aforementioned 
numerical obstacle.  

The basic aims and results of the first parts of project OPTGS2 can be found in the 
HLST annual report 2009 which covers the topics: basic properties and performance 
of DG-FEM schemes, control of numerical artefacts using various limiter methods, 
and solving the (1+1)D GS2 model problem using a DG-FEM scheme.  

Another long-term objective of the code developers, which is expected to be on a 
much longer time scale than the primary objectives, is to integrate an adaptive mesh 
refinement method into the GS2 code. Since this is a large project involving many 
development steps, the aim of this part of the project was simply to test some of 
DG-FEM s prospects concerning grid complexity and adaptivity.  

Since the GS2 code solves a time dependent problem, suitable time integration 
schemes for the DG-FEM spatial discretisation method are of great interest in the 
OPTGS2 project as well. Here the aim of the project is to investigate the behaviour of 
the DG-FEM in combination with simple Eulerian time discretisation as well as with 
explicit and implicit higher order time discretisation methods. Thus, the strengths and 
weaknesses of the time discretisation schemes regarding efficiency and accuracy 
should be explored.  

For further details please see the HLST report Combining Runge-Kutta 
discontinuous Galerkin methods with various limiting methods [2].  

3.2. Implicit Runge-Kutta time integrators 
Higher order explicit time integration schemes require a rather restrictive time step 
( t ~ 0.1) for well resolved numerical results [3]. Thus, it was of interest to investigate 
higher order implicit time integrators for the DG-FEM method, especially, higher order 
implicit Runge-Kutta (IRK) time discretisation schemes. We implemented implicit 
Runge-Kutta schemes of different types: Gauss-Legendre IRK schemes up to four 
stages and eighth order accuracy, multistage IRK schemes of Radau type up to fifth 
order and finally two fourth order accurate singly-diagonally-implicit Runge-Kutta 
(SDIRK) schemes.   

In our first approach in the DG-FEM-IMPLICIT solver the IRK equation system was 
solved using a fixed point iteration method, which has some disadvantages. In 
contrast to the Eulerian backward scheme the implemented IRK schemes are not 
unconditionally stable when solved iteratively. Moreover, with increasing number of 
stages of the IRK scheme and increasing size of the time step, the number of 
iteration steps for the fixed point iteration increases drastically, especially for the fully 
implicit IRK schemes, i.e. the Gauss-Legendre and the Radau IRK scheme. On the 
contrary, those schemes are unconditionally stable for very large time steps, when 
the solution of the IRK equation system is obtained directly by matrix inversion. This 
is possible for linear differential operators as in the case of the linear advection 
equation.  
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To include the IRK scheme into matrix inversions for implicit schemes by the used 
direct solver package (LAPACK), the matrix vector form of the implicit solver had to 
be rewritten in a block-matrix-vector form. Afterwards, both the directly and the 
iteratively solved IRK schemes were successfully tested with our standard advection 
equation test problem used already for the explicit solver.   

However, all implicit schemes, independent whether solved directly or iteratively, 
showed with increasing time step growing spurious oscillations. Although, these 
wiggles can be controlled to a certain extent with the moment limiter methods [4], this 
fact sets an upper limit to the size of the time step which can be practically used. 
Although, some higher order IRK schemes were able to produce equivalent accurate 
results as higher order explicit schemes, in any case the implicit methods were 
numerically more expensive. This statement persists, even though solving the 
equation system of the fully implicit schemes directly is more efficient than solving 
them iteratively. Especially due to the practical time step limit mentioned above the 
ability to use larger time steps for IRK methods compared to ERK methods is not 
feasible.  

3.3. Non-equidistant moving grid 
The first step of this part of the project was to study the prospect of the DG-FEM to 
handle non-equidistant grids. Therefore, a grid with globally modulated grid cell size, 
as well as a locally refined grid were implemented in the DG-FEM solver and tested 
successfully. Here globally modulated denotes that the size of the grid cells was 
defined by a global sine function having a periodicity of the grid length. In contrast to 
that locally refined means here that single grid cells were split into smaller grid cells 
which fit in total into the size of the replaced grid cells. The implemented DG-FEM 
solver [5]

 

produced good results when solving the one dimensional linear advection 
equation on non-equidistant grids.  

For any modification of a numerical grid at run-time, an additional routine is needed 
which can project it onto the polynomial basis of the modified grid. We have 
implemented such a routine and tested it successfully.  

Afterwards, both methods described above were tested together. However, the 
results delivered by this non-equidistant moving grid method are not very promising. 
The remapping scheme using the polynomial bases on both, the old and the new 
grid, is equivalent to a polynomial interpolation scheme with the same order as the 
used polynomial bases. The interpolation process introduces additional numerical 
viscosity due to the fact that the interpolated solution is smeared out over 
neighbouring grid cells by the interpolation process.  

The method was finally tested with a setup using a grid which was refined at the 
position where steep gradients were present in the initial conditions and which was 
co-moving with the advection velocity. The setup for the comparison calculations was 
using a static grid having approximately the same resolution as the co-moving grid in 
the non-refined parts. In the end, the numerical solution of the advection equation 
using the co-moving grid with refinement and the solution using a static non-refined 
grid did not differ significantly. The reason seems to be again the introduced 
numerical viscosity by the remapping scheme. Since the new HLST projects were 
allocated in March 2010, the work was stopped at this point with the acceptance of 
the project coordinator W. Arter.  

3.4. References and applicable documents 
[1] GS2 homepage at sourceforge.net

 

http://gs2.sourceforge.net

 

http://gs2.sourceforge.net
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[2] HLST Report: Combining Runge-Kutta discontinuous Galerkin methods with 
various limiting methods

 
http://edoc.mpg.de/display.epl?mode=doc&id=446381

  
[3] HLST annual report 2009, Sec. 4.4.1  

[4] HLST annual report 2009, Sec. 4.4.2  

[5] HLST annual report 2009   

http://edoc.mpg.de/display.epl?mode=doc&id=446381
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4. Final Report on HLST project ITM-EU4IA 

4.1. Introduction 
The aim of this project was to port the Unified Access Layer (UAL, [1]) to HPC-FF, 
which was installed in the mid of 2009 at the Jülich Supercomputing Centre (JSC).   

The UAL is a software library developed by the Integrated Tokamak Modelling (ITM) 
task force of EFDA. It is designed to serve as a unified communication platform for 
numerical physics codes which are used in Europe to simulate the different physical 
aspects of tokamak fusion devices. HPC-FF will become the testing and production 
platform for fusion simulations in Europe, therefore, it is essential to make the UAL 
available on HPC-FF.   

This report will give the final status of this project. Additional information, 
experiences, and remarks on the topic can be found in the more detailed final report 
of project ITMEU4IA [2].  

4.2. Final status of the library porting 
The following parts of the current UAL version, i.e. version 4.08a, have been 
successfully ported to HPC-FF:  

 

Low Level Library based on the MDSplus Library 

 

C++ interface 

 

FORTRAN interface 

 

Python interface 

 

Java interface  

To do so, additionally the following software packages had to be installed on 
HPC-FF, either locally or globally. The packages are listed below:  

 

MDSplus 2.2 (www.mdsplus.org) 

 

Java Development Kit (JDK6) 1.6.022 (http://jdk6.dev.java.net) 

 

Blitz++ 0.9  

  

a C++ Scientific Library (www.oonumerics.org/blitz/) 

 

HDF5 (recompiled) (www.hdfgroup.org/HDF5/) 

 

SZIP compression library (www.compressconsult.com/szip/) 

 

g95 FORTRAN Compiler (www.g95.org) 

 

SWIG  

  

The Simplified Wrapper and Interface Generator (www.swig.org)  

All listed UAL library parts have been compiled and tested successfully with a local 
installation.  

The UAL requires a locking mechanism on the file system level. Such a locking 
mechanism, in case of a Lustre file system this is FLOCKING, is not provided on 
HPC-FF, because it causes I/O performance penalties. Moreover, the Lustre users

 

guide disadvises the usage of FLOCKING explicitly, thus it will be most likely not 
provided at all.   

However, there is a mechanism called LOCAL FLOCKING which could be used 
instead. It acts as a kind of pseudo locking mechanism having no or only a slightly 
negative impact on the performance of the Lustre file system.  For that purpose on 
our request a testbed with a Lustre file system partition supporting the LOCAL 
FLOCKING mechanism had been set up on a test cluster system at JSC. It differs 
from HPC-FF just in size, i.e. the total number of nodes. Using this setup the UAL 
passed the I/O tests which come with the UAL package without any problem. As a 

http://www.mdsplus.org
http://jdk6.dev.java.net
http://www.oonumerics.org/blitz/
http://www.hdfgroup.org/HDF5/
http://www.compressconsult.com/szip/
http://www.g95.org
http://www.swig.org
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result, LOCAL FLOCKING has now been enabled on the Lustre file systems useable 
on the JUROPA/HPC-FF cluster.  

4.3. Conclusions and additional comments 
The proposal estimated that the porting of the UAL library package could be done 
within the project time span of three months. However, it turned out that many 
problems and issues had to be solved for that aim. Ultimately, the HLST project 
provided the developers of the UAL with detailed feedback on the UAL s portability to 
other environments.  

Finally, a working local installation of the UAL library package was generated and 
tested. A test shot file was generated and filled using test software written in C and 
FORTRAN. However, due to internal errors of MDSplus it was not possible to read 
the newly generated shot files, even if, the same shot files could be read after 
transferring them to the ITM gateway cluster. The problem will be further investigated 
by the MDSplus developers.  

A final project meeting was held together with the UAL development team, where an 
oral presentation on the results was given. The UAL source code modified during this 
project was checked-in in a new branch of the UAL SVN repository and a TAR 
archive of the local installation of MDSplus and the UAL was given to the project 
collaboration.  

4.4. References and applicable documents 
[1] G. Manduchi, F. Iannone, F. Imbeaux, G. Huysmans, J. Lister, B. Guillerminet, P. 
Strand, L.-G. Eriksson, and M. Romanelli, Fusion Engineering and Design 83, 462 
(2008), Proceedings of the 6th IAEA Technical Meeting on Control, Data Acquisition, 
and Remote Participation for Fusion Research.  

[2] HLST Report: HLST Project ITMEU4IA - Porting the ITM UAL to HPC-FF

 

http://www.efda-hlst.eu/internal/reports/annual-hlst-report-2010/reports-of-the-
projects-2010/itmeu4ia-report/view

 

http://www.efda-hlst.eu/internal/reports/annual-hlst-report-2010/reports-of-the-
projects-2010/itmeu4ia-report/view
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5. Report on HLST project EUTERPE 

5.1. Introduction 
The EUTERPE code is a global gyrokinetic particle-in-cell code aimed at simulating 
turbulence in fully 3D stellarator geometry. It was created at the Centre de Recher-
ches en Physique des Plasmas (CRPP) [1]

 
and afterwards developed further at the 

Max-Planck-Institut für Plasmaphysik (IPP) [2]. Beside these institutions it is currently 
used as well at the Centro de Investigaciones Energéticas, Medioambientales y 
Tecnológicas (CIEMAT) in Madrid.   

The performance improvement of the EUTERPE code started with a scan for 
potential improvements of the single processor performance. For identification of the 
most CPU time consuming routines the code has been instrumented by the simple 
but efficient perf library. The perf library was programmed by the RZG scientist 
Reinhard Tisma and gives information about the time spent and the Mflop rate 
achieved in a detected region. Therewith, two most work intensive parts have been 
identified. It is the part which prepares the particle pushing (FORTRAN subroutine 
PUSH) and the part which does the charge assignment (FORTRAN subroutine 
CCASSIGN) for the different orders of B-splines., e.g. for quadratic B-splines 
(subroutine QUAD_ASS).  

These subroutines, including calls to further subroutines inside, have been chosen to 
be targeted for optimization by Single Instruction, Multiple Data (SIMD) capabilities of 
the Intel Nehalem processor. The Nehalem processor supports a number of SIMD 
instructions by the SSE4.2 instruction set to access small-scale SIMD with 128 bit 
registers. The Streaming SIMD Extensions (SSE) is a SIMD instruction set extension 
to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III 
series processors. The capability of SIMD in Intel and AMD processors will be further 
extended in the future as Intel has already announced the Advanced Vector 
Extensions (AVX) which will be the new 256 bit instruction set successor to SSE and 
is designed for applications that are floating point intensive. In addition, modern 
Graphics Processing Units (GPUs) are using Single Instruction, Multiple Thread 
(SIMT) implementations, capable of branches, loads, and stores on 128 or 256 bits at 
a time. If a code has been programmed for SIMD it will automatically run on a SIMT 
architecture but not the other way round. Hence, it is of key interest to investigate 
today s Nehalem s SIMD capabilities for realistic double precision (64 bit) problems to 
be in line with future hardware development.   

5.2. Cleaning, porting and testing the code 
The code is written in Fortran 95 and consists of approximately 30,000 code lines 
localized in about 20 different files. Compilation is done with the GMAKE utility which 
makes it necessary to define the dependencies between the different source files. 
Hence, it is very important that the dependency list is updated during code 
development. To prevent overlooking some dependencies the so-called Automake 
utility from Polyhedron has been used. It analyzes the set of source files and 
constructs automatically a consistent dependency list. Minor issues in the original 
dependency list have been corrected.  

In addition, the static Fortran source code analyzer FORCHECK was used to find 
errors and development debris which had been piled up over code development. 
Many improvements and corrections have been suggested leading to a better 
readability and portability of the code.  

After testing the code with the direct solver from IBM WSMP on HPC-FF it became 
obvious that cases with larger grids could only be run by using the option 
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dist_solver=1. In this mode the matrix is distributed over all clones and thus the code 
can use the whole distributed memory to store the Cholesky factorization. However, 
a segmentation fault occurred in the ordering routine of WSMP.  After constructing a 
separate test case the problem was reported to the lead developer of WSMP, Anshul 
Gupta and finally solved.  

Consistency checks of the MPI usage have been done by the MARMOT tool. No 
errors could be detected. However, it became clear that the usage of the MPI 
standard was not consistent. The code has a pre-processor switch to select between 
exclusive usage of the MPI routines of the MPI-1.2 standard and the MPI-2.1 
standard, respectively. Unfortunately, this selection turned out not to be rigorous. It 
has been corrected and the MPI-2.1 standard usage has been made the default.  

The code crashed unexpectedly during long simulations on HPC-FF. After applying a 
memory diagnostic it became obvious the code suffered from a memory leak. 
Surprisingly, the leak was not caused by the code itself but instead by the 
Parastation MPI from ParTec. Tests using Intel MPI clearly showed that there was no 
memory problem. After consultations with the lead developer of the Parastation MPI, 
Jens Hauke, the problem could be identified. The bug was corrected in the 
Parastation MPI version psmpi2-5.0.22-1. Later it was found that the ORB5 code on 
HPC-FF had also suffered from the same problem which had been circumvented by 
using Intel MPI instead of Parastation MPI.  

Test runs with an executable compiled with the -check all option of the Intel Fortran 
compiler ifort had revealed two uninitialized variables in the BCPART routine which 
now have been initialized correctly.  

5.3. Reduction of communication overhead 
In the EUTERPE code, several global sums are performed as MPI_ALL_REDUCE 
operations. These global sums are very often executed consecutively. Thus, small 
chunks of data are communicated over the whole network several times. Instead, it is 
much more efficient to assemble the data first in a buffer which is then communicated 
as a whole. By doing so, a few tens of global sums could be saved. In addition, it is 
not necessary to provide an MPI_ALL_REDUCE operation if an MPI_REDUCE is 
already sufficient. This is the case if data are only summed up for diagnostic purpose 
to be printed out or to be written on file by the master process. Accordingly changes 
in the code have been made.    

5.4. Source code changes to enhance the vectorizability  
In the case of the original subroutine QUAD_ASS, already some parts of the source 
code were vectorized by the auto-compiler unit. However, the impact onto the total 
execution time of the QUAD_ASS subroutine is negligible. In the subroutine PUSH, the 
auto-vectorizer does not vectorize the source code at all. This is due to the fact that 
these subroutines are dominated by loops over all particles residing on one core. The 
content of the loops is very long and complicated with many calls to other 
subroutines and makes it unsuited for vectorization. Thus, the original subroutines 
had to be restructured for vectorization.  

In a first step the main particle loop inside the VEC_QUAD_ASS and VEC_PUSH 
subroutines, which are clones of the subroutines QUAD_ASS and PUSH, respectively, 
has been split into an outer loop providing chunks of vector data and an inner loop 
working on those chunks. The size of those data chunks can be controlled by a 
parameter. Thus, the outer loop enables a complete control over the amount of work 
load which will be processed by the SIMD capabilities, i.e. vector registers, of the 
CPU. 
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In a subsequent number of working steps, the inner loop was split into several 
smaller block loops. Accordingly scalar variables used inside the former main loop 
have been exchanged by vector variables. This is mandatory for vectorization, no 
matter whether done by the auto-vectorizer of the compiler, e.g. the auto-vectorizer 
of the Intel Fortran compiler ifort [3]

 
or done manually by the programmer, using e.g. 

the Vector Mathematical Functions (VMF) of the Intel Math Kernel Library (MKL) [4]. 
This is due to the fact that on the one hand, statements which shall be replaced by a 
vector version have to be isolated within the source code. On the other hand, the 
auto-vectorizer unit of the compiler has certain limitations when analysing complex 
code structures. Even if the code structure has the potential for vectorization it could 
simply fail because the source code structure is simply too complex for the auto-
vectorizer. 
In general, making use of the auto-vectorizer of a compiler is the preferred way in the 
first place, since no compiler dependent code structures are required. However, there 
exist code structures where the auto-vectorizer fails or may not achieve the expected 
performance (compare [5]). In those cases it is preferable to manually implement the 
vectorization concepts and to pay the price of generating compiler dependent code 
which restricts the universality of the code [6]. Furthermore, in some cases it is 
advantageous to use compiler vectorization pragma statements. They can help the 
compiler to analyse source code statements and can correct for misinterpretations 
concerning the efficiency of the vectorization [3].  

5.5. Performance study of vectorization on the Intel 
Nehalem versus the IBM POWER6 architecture 

Generally, vectorization can only be advantageous if a significant speed-up is 
achieved in the vectorized loops. This is necessary to compensate the overhead 
generated by introducing vector variables which have to be read in and written out for 
each vector operation statement block.  Hence, the memory access of vector 
processors is highly optimized for such operations to minimize such overhead. 
However, this is not the case for RISC processors like the Intel Nehalem and IBM 
POWER6.  

Before changing the subroutines QUAD_ASS and PUSH for vectorization it was 
necessary to get detailed information of the performance data of the vector registers 
of Intel s Nehalem and IBM s POWER6 hardware. Especially the speed-up factor 
between the scalar and vector registers is of interest. Hence, test cases for common 
intrinsic functions as e.g. SQRT, SIN, LOG, etc., as well as some other statements and 
operations of interest, e.g. packing operations, have been investigated in great detail. 
Of basic interest is the dependence of the speed-up factor as a function of the vector 
length of double precision (64 bit) input data.  

In the presented case of a vector multiplication we achieved the following result on 
the Intel Nehalem CPU shown in Fig. 3. Here the measurements without 
vectorization (Intel novec) are compared with cases were the vector registers have 
been involved. For this purpose we used the auto-vectorizer of the Intel Fortran 
compiler suite [3]

 

(Intel autovec) together with the vector functions of the Intel MKL 
[4] library (Intel MKL VMF) and the IPP (Integrated Performance Primitives) [7] library 
(Intel IPP-Vec). In general it shows that best results on the Intel Nehalem can be 
achieved by the auto-vectorizer. Corresponding tests on the IBM POWER6 
architecture have been done with the IBM XL Fortran compiler [8]

 

together with the 
IBM Math Acceleration Sub-System (MASS) [9]

 

version optimised for the IBM 
POWER6 architecture by linking with lmassvp6.   

In the following we concentrated on the most efficient results of the vector registers. 
For numerically relatively cheap intrinsic functions this is reached typically for vector 
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lengths approximately between 50 and 1000 when the data still fit into the private L1 
cache of each core.  For such cases the ratios of execution time on the scalar units in 
comparison to the vector registers have been calculated for different intrinsic function 
statements on the Intel Xeon X5570 and the IBM POWER6 CPU. The complete 
study is summarized in Table 3.  

   

Fig. 3  Run time of a vector multiplication versus vector length compiled with the ifort compiler 
shown for a non-vectorized loop (blue) and loops vectorized by auto-vectorizer (red) and 
manual implementation of the Vector Math Functions in the Intel MKL (yellow) and Intel IPP 
(green) library on the Intel Nehalem (Xeon X5570) CPU of HPC-FF. The basic structure 
shows inefficient behaviour for very small loop sizes, followed by a broad minimum in 
execution time for vector sizes fitting into the Data Cache (L1). For larger vector sizes the 
behaviour is dominated by the cache hierarchy which leads to a step like structure. To 
emphasize this, the effective cache sizes of the Intel Xeon X5570 per used vector have been 
plotted in terms of double precision (64 bit) vector arguments as black dashed lines. For a 
multiplication, two arguments and one result vector are used and therefore the effective cache 
size is one third of the actual cache size.  

It shows that on the Intel Nehalem the gain using the vector registers for the intrinsic 
functions under consideration can be between 0.75 and 2.51 with an average value 
of 1.6. This is remarkable because for some intrinsic function there is actually a loss 
of one quarter when using the vector registers. In contrast to this one always gains a 
speed-up on the IBM POWER6 which is between a factor of 1.01 and 6.37 with an 
average of 3.3 (we did not take into account the ATAN2 result). So on average the 
speed-up on the IBM POWER6 is around a factor two higher than on the Intel 
Nehalem. The reason cannot be the length of the vector registers which is, on both 
architectures, 128 bits. Instead the programming of the vector registers on the IBM 
POWER6 seems to be compared to the standard mathematical library 
implementation more efficient as on the Intel Nehalem.  

Further details please see the IPP report Performance Tuning Using Vectorization

 

[5]. 
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Function HPC-FF 

(Intel Xeon X5570) 
VIP 

(IBM POWER6) 
HPC-FF/VIP 

scalar operations 
Abs 1.26 

  
Add 1.21 

  
Atan2 1.49 (41.0) 

 
0.09 

Div 1.82 1.33 1.75 
Exp 2.22 5.35 0.66 

Floor 2.33 

  

Int 1.00 

  

Lim-Min 0.75 1.01 

 

0.38 
Madd 1.72 

  

Min 1.00 1.01 

 

0.57 
Modulo 1.87 

  

Mult 1.19 

  

Nint 1.00 

  

Pow 1.92 6.37 0.51 
Pow3o2 2.03 

  

Real 1.64 

  

Sin 2.51 5.94 0.75 
Sqr 1.40 

  

Sqrt 2.23 2.15 

 

1.76 
Vpackm 1.00 

   

Table 3 Listing of the ratios of execution time on the scalar units in comparison to the vector 
registers for different double precision intrinsic function statements on an Intel Nehalem, i.e. 
Xeon X5570 CPU (left column) and an IBM POWER6 (middle column) CPU, respectively. For 
this purpose, we used the scalar and vector execution times corresponding to the vector 
length which yields the overall smallest execution time. The right column shows the ratio 
between the execution time on the scalar unit on both, the Intel Nehalem and the IBM 
POWER6 CPU. Please note that not all intrinsic functions listed here were available on the 
vector pipeline of the IBM POWER6 and that the scalar computation of the Atan2 on the IBM 
POWER6 is relatively slow.  

5.6. Performance results of vectorized routines 
A speed-up of the vectorized subroutines VEC_QUAD_ASS and VEC_PUSH can be only 
expected if the loss due to overhead of the vectorization can be overcompensated by 
the gain by the vectorized parts of the routines. One part of the overhead is 
introduced by the loop splitting and the use of vector variables as described in 
Sec. 5.4 which causes many read and write operations on the L1 cache instead of 
reusing values in the registers of the CPU. The other part is caused by the data 
structure of the particles which was optimized for cache reuse and not vectorization. 
The first index loops over the attributes of each particle, as e.g. position in phase 
space x, y, z, v_par and mu, the second index loops over the particles. This data 
structure pays off essentially when the particles are communicated between cores. 
Instead, it is necessary for vectorization to have for each particle s attribute its own 
vector array. Hence, the data have to be reordered by a copying procedure which 
causes overhead.  

To make sure that the auto-vectorizer recognizes the parts of the code to be 
vectorized the code has to be restructured in an appropriate way. This can be a 
delicate task where experience is required. However, if the code structure becomes 
too complex a vectorization can become impossible. For that reason, in both 
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subroutines, VEC_QUAD_ASS and VEC_PUSH, there exists still a significant fraction of 
source code which cannot be vectorized. These parts are especially look-up tables 
for the equilibrium quantities of the magnetic field which are stored in a large 4-dim 
array. Here the problem is the memory bandwidth as this array usually does not fit 
into the L1 and L2 cache levels. Other strategies than vectorization are necessary to 
improve the performance in these parts of the code.  

After all these changes for vectorization have being made the overall performance 
could not be increased for a typical test run of 128 million ions and electrons on 64 
cores of HPC-FF. Strictly speaking, the vectorized subroutine VEC_QUAD_ASS is 
running 4% slower than the non-vectorized QUAD_ASS subroutine and the vectorized 
subroutine VEC_PUSH is running 1% slower the than the non-vectorized subroutine 
PUSH. The gained speed-up by vectorization was not able to overcompensate the 
introduced overhead. The main reason seems to be the relatively small length of the 
vector registers on the Intel Nehalem CPU which can only store two double precision 
data simultaneously. Hence, the speed-up gained by vectorization is limited. 
Compared to the size of classical vector super computers, e.g. the NEC SX series 
with a vector (register) length in the order of 256 vector elements, the vector registers 
of both, the Intel Nehalem architecture and the IBM POWER6 architecture, having a 
total length to store two double precision numbers are small.  

Also the results on the IBM POWER6 architecture are not encouraging. The 
vectorized subroutine VEC_QUAD_ASS is running 1% faster than the non-vectorized 
QUAD_ASS subroutine and the vectorized subroutine VEC_PUSH is running 1% slower 
than the non-vectorized subroutine PUSH. Here an additional problem is that the auto-
vectorizer of the XLF IBM compiler seems to have problems to recognize all 
structures which have been recognized for vectorization by the Intel ifort compiler. 
Hence, it would be necessary to introduce direct calls to the MASS vector library by 
hand. We will avoid this strategy as this would produce code being exclusively 
optimized for the IBM environment while we have performance optimization for the 
HPC-FF computer in our focus.  

However, the restructuring of the dominant subroutines VEC_QUAD_ASS and 
VEC_PUSH of the EUTERPE code carried out so far are an investment into the future. 
On the one hand, the size of the hardware vector registers will grow already within 
the next generations of hardware architectures. And on the other hand, the 
vectorization capabilities of the compilers will get more sophisticated. In addition, the 
contributed HLST report Performance Tuning Using Vectorization [5]

 

gives detailed 
information on how different intrinsic functions react to the auto-vectorizer. Thus, the 
vectorization capability of the SIMD instructions of the Intel Nehalem CPU can 
achieve under other circumstances, than being present in the PIC code EUTERPE, a 
significant speed-up.  

5.7. Future plans 
Unfortunately the vectorization of the dominant routines in EUTERPE did not 
increase the performance of the code. However, the new structure of the vectorized 
particle loops offered the chance of a detailed performance analysis. It shows that 
especially the calls to the look-up tables for the equilibrium quantities of the magnetic 
field are very costly due to the memory access speed. This means that the dominant 
routines are memory bound. Hence, the data locality should be increased. One 
possibility would be to copy the relevant equilibrium quantities needed in a certain 
subroutine into a work array. Then it would be possible to gain all equilibrium 
quantities at the particle position with one call instead of calling the interpolation 
routine for each quantity separately.  For better cache reuse this could be done for 
thousands of particles in one sweep. This would also decrease the subroutine calling 
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overhead introduced by separate calls for each particle. A speed-up of the routines in 
the range of more than ten per cent seems to be achievable.   
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6. Final report on the ASCOT-10 project 
During the period 25th April to 7th May, Nitya Hariharan s visit to Helsinki was 
scheduled to get used to the ASCOT code and to familiarize with the procedure to 
create the necessary input files, execute the code and check results. Also, 
discussions on the project requirements were to be done to get an overall view of 
how the project should be approached in the best possible manner. The initial work 
plan was to refactor the code to make use of local variable paradigm instead of a 
global variable paradigm. This would provide the possibility to use shared memory 
parallelism like OpenMP.  Using OpenMP would, in turn, enable ASCOT to simulate 
more detailed magnetic fields and also improve the runtime of the existing 
simulations.  

Use of OpenMP not only improves efficiency, in certain cases, but also reduces 
memory consumption. However, it can also be intrusive in the sense that one needs 
to determine parts of code that can be parallelized using threads and data that can 
be shared among the threads. We found that the runtime benefits to the code with 
both MPI and OpenMP was not much and so decided to look at other parts of 
ASCOT to find out if the memory consumption could be reduced without much 
intervention to the code. We found that the program used large datasets of magnetic 
field data as input and during the post-processing phase made use of a large amount 
of memory to store the histogram data for diagnostical purposes. The histogram data 
are typically produced by binning the Monte Carlo particles being distributed over the 
phase space. Hence, we have concentrated our efforts to improve the memory 
consumption of the code for the input and output data. Incorporating OpenMP into 
ASCOT was thus no longer required.  

While trying to port the code to HPC-FF, we encountered some FPEs (Floating Point 
Exceptions). Following our feedback to the ASCOT team about the FPEs, they 
looked into the code to fix the issues.   

6.1. Histogram module 
The original version of ASCOT stored the histogram data in multi-dimensional arrays. 
Given that a seven dimensional histogram consumes a large amount of memory, it 
made it imperative that we provide a solution that requires the minimal amount of 
memory.  

The histogram module for the ASCOT code would provide substantial savings of 
memory and also allow data to be collected for up to seven dimensions. Some 
features of the module included creating histograms with user specified data such as 
min and max in each dimension, number of slots in each dimension etc., copy, free 
and summing up of the histogram data. In addition to that, the module would also 
have I/O routines that could be used to write out the histogram data into a file in a 
portable format.   

The histogram module is also general enough that it can be used for other future 
projects as well. The code has been put into the SVN repository under the 
ASCOT-10 directory for future HLST use.  

6.1.1. Linked list 
Since, the histogram data that has to be binned has a sparse structure, using linked 
lists to store the histogram data is an optimum solution to save memory. We only 
need to store those index values at which the data has been binned. In addition, we 
need to store the weight at each index point. 



 

26

  
A linked list consists of a set of nodes. Each node in the list, in turn, is a derived data 
type containing information. In our case, the derived data type consists of the index 
and weight values of the histogram. A pointer from one node in the list to the next 
allows for traversing the list. A 1D linked list is the simplest case of a linked list with a 
header node that points to the start of the list. Each node then points to the next node 
in the list. A 2D linked list has a matrix structure with nodes representing rows and 
columns. Fig. 4 and Fig. 5 give a simple example.         

                                                             Head                                                                  End  

Head                                          End       
   Head                                                                  End  

Fig. 4 A 1D linked list with four nodes.        

  Head                   End                

Fig. 5 A 2D linked list.   

A linked list is a sparse representation of a one or multi-dimensional array. 
Implementing a 1D linked list is fairly simple. The level of complexity increases for a 
2D linked list, and it is very expensive to implement and maintain higher dimensional 
linked lists. However, we can use certain properties of the index value to simplify the 
representation of a multi-dimensional array as a linked list.   

An index into an array can be represented as a tuple. This is generated by knowing 
the index and the size of the array in each dimension. For example, in an array of 
size nxm the tuple for index (1, 2) will be 1 + (2-1)*n = 5. This tuple value is always 
unique for a set of index values. Since the size of each dimension of the histogram is 
known, we can, therefore, store the index into a multi-dimensional array as a tuple 
and use a 1D linked list structure to store the histogram data. This in effect means 
that we compress the multi-dimensional array into a 1D linked list which makes it 
easier to maintain. We also build the linked list in a sorted order so that it is easy to 
insert values into the list.  

One of the disadvantages of using a sorted linked list is, that the time taken to 
traverse and insert a new node in a linked list increases linearly with the number of 
nodes. We need to compare the index value to be inserted, with each value in the 
linked list till we reach the correct position in the list. To get around this problem, we 
use a pointer to the node that was last inserted. We also split the linked list into four 
quadrants, according to the number of nodes, by maintaining pointers that point to 
each quadrant of the linked list. Then, while inserting a new node, we compare its 
index value with the value of the last inserted node and with the values in the 
quadrant nodes. Hence, instead of searching the list from the start, we start from the 
best possible location and scan only the remaining parts of the list. We also update 
the positions of the quadrant pointers when the list has grown by a certain size, i.e., 
number of nodes.  

We have implemented a 1D and a 2D linked list. Instead of using tuples for a 2D list 
or the structure in Fig. 5, we have implemented an improved version by creating an 
array that represents the number of rows in the histogram. Fig. 6 shows the structure 
of our 2D linked list implementation. The columns in each row are represented by the 
linked list. A pointer to the head of each linked list is stored in the array. This reduces 
the number of pointers to be maintained and also makes traversing the list easier. 
The 2D linked list is used only for the 2D case. Histograms with three and higher 



 

27

 
dimensions have their index values stored as a tuple, and the structure of a 1D linked 
list is used. We also maintain the list in a sorted order of the index values.               

Linked list 0    
Row 0              

Row 1                                                                   Linked list 1 
                                           

Row 2       
                                                                                                         Linked list 2 
                                                                                                            

Fig. 6 An alternate implementation of a 2D linked list.   

6.1.2. Merging the local linked lists 
The histogram data needs to be written out in a file for post-processing. In order to 
write out the histogram data, we need to sum up the contents of the histogram on 
each processor, at a single processor. In other words, we need to merge the 
contents of the linked lists. This requires communicating the contents of a linked list 
between processors which is a non-trivial task. Since linked lists make use of derived 
data types with pointer components, the memory location is no longer contiguous like 
an array. This has two implications   

1) Functions like MPI_Reduce can no longer be used due to the sparse 
structure of the data. The assembly of the histogram data over all processors 
is no longer straightforward. 

2) Use of pointers to the nodes of the list means that the contents of the linked 
list need to be packed before sending it to another processor.   

For the first case, we make use of a binary tree structure to reduce the data at one 
processor. To do so, we create MPI communicators in advance that define the 
processors involved in communication at each stage. For 2n processors this is trivial. 
However, we have also provided functionality for cases where the number of 
processors is not a power of 2. In such cases, we define an extra communicator at a 
level where we have an odd number of processors. This includes the master 
processor and the highest ranked processor. Fig. 7 shows a simple example with 
seven processors. The levels indicate the stage of data reduction.  

We create an extra communicator at Level 2, for processor 0 and 6. At Level 3, we 
create two communicators for processors 0, 2 and 0, 4.  

Finally we loop over all these pre-defined communicators to reduce the data at one 
processor. To deal with the second case, we make use of the fact that MPI allows the 
user to create user-defined structures for a data type. Also MPI has the 
MPI_GET_ADDRESS function which returns the address of a variable. We can use 
this to calculate the displacement of each value stored in the linked list and create an 
MPI Struct. This can then be sent to the receiving processor in the form of an array. 
The sending processor determines the rank of the receiving processor using the 
communicator to which they belong at the level the communication is taking place.  
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                                        Level 1         

  Send data            
      Level 2a             

        
    Level 2b              

      Level 3a             

      Level 3b   

Fig. 7 MPI communication among processors.  

At the receiving end, the array is merged back into the linked list contents of the 
receiving processor. If an index value is already present in the linked list, then the 
corresponding weight value from the array is added to the linked list node. A new 
index value is inserted into the list when the index value is not present. We can, at 
this point, make use of the pointers to the different locations in the linked list to speed 
up the merging process as well. This however, will be done only for the 1D linked list 
structure. For the 2D structure, we have the row index that we can use to get to the 
appropriate linked list and then scan the list with the column values to get the right 
position into the list.  

In addition to the normal histogram, we have also implemented vector histograms. 
These are used to simultaneously store the data for up to ten histograms with the 
same bin size, min and max values etc. This has the advantage that we only need to 
calculate the index into the histogram once, and then use a vector of weight values to 
store each value into the histograms.   

6.1.3. I/O 
The output data i.e., the histogram data has to be written out in a format that is 
portable. The user should be able to load the histogram data in another program and 
analyze it. We have decided, in agreement with the ASCOT team to make use of the 
HDF5 file format. It provides a high level interface for Fortran 90 programs and is 
also readable by Octave, the JET alternative for MATLAB.   

HDF5 files allow complex data types, for example, derived data types to be written 
out as datasets. ASCOT requires a simple dataset that includes the index and weight 
values. The meta-data of the histogram, for example, the name of the histogram, its 
dimensions, name of dimensions, units, min and max of each dimension, etc., are 
written out as attributes and attached to a dataset. HDF5 provides tools such as 
h5dump, hdfview that can be used to look at the contents of an HDF5 file. The user 
can write out multiple histogram data into a single HDF5 file.   

The histogram module has been delivered to the ASCOT group and Simppa 
Äkäslompolo, who is the contact person for ASCOT, was able to carry out initial tests 
with it. They are in the process of restructuring their code to make it more modular 
and are adding more features to it. They plan to incorporate the histogram module 
into the new version of ASCOT, i.e. ASCOT4, once it is completed. We have, 
meanwhile, done some stress tests on the module and found it to be stable. The 
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code has also been analyzed using the FORCHECK analyzer to remove any bugs. 
Further performance tests will be done on the module by the ASCOT group.  

6.2. Shared Memory Segments 
The other major improvement that we were able to suggest to the ASCOT group, in 
terms of memory usage, was the use of Shared Memory Segments (SMS). These 
are areas of memory that can be shared by processes within the same SMP node. In 
the case of HPC-FF, this essentially means that up to 8 cores/processes within the 
node can share a particular area of memory.   

SMS are a part of the System V IPC framework that provides techniques to 
communicate data among different processes running in one or more computers 
connected through a network. SMS have the advantage that they are easier to 
incorporate into an MPI program than OpenMP. Also, they do not require the use of a 
thread-safe MPI library. This justifies their use in the ASCOT code as well instead of 
using OpenMP.  

FORTRAN and C interoperability is a part of the FORTRAN 2003 standard that 
allows a FORTRAN variable to be represented as a C pointer and vice versa. This 
allows the user to declare a variable in FORTRAN and convert it to an equivalent C 
variable. Since the IPC framework has subroutines in the C language, use of this 
feature of FORTRAN 2003 makes it easier to use SMS in FORTRAN.  

Dr. Ian Bush, from NAG, has written a FORTRAN IPC module (FIPC) [1]

 

that makes 
use of the System V IPC framework and the interoperability between FORTRAN and 
C. This creates a SMS segment from a FORTRAN 1D or multi-dimensional array and 
returns a pointer to it. The module makes use of the MPI library to create a context 
similar to the MPI_COMM_WORLD context in MPI. This context, called the 
fipc_ctxt_world, is a structure that contains different communicators including all 
processes (similar to MPI_COMM_WORLD), all processes in each node, and a 
designated Master process in each node. The structure is shown diagrammatically 
in Fig. 8. Similar to the mpi_init and mpi_finalize calls, the module also has fipc_init 
and fipc_finalize calls to create and destroy the fipc_ctxt_world context. More 
information about the module can be found in his report [1].   

Fig. 8 fipc_ctxt_world, shown for 2 nodes with 8 cores each.   

Fig. 8 shows the fipc_ctxt_world for two nodes with 8 cores each. As mentioned 
earlier, there are multiple communicators in the fipc_ctxt_world. The base_comm is 
similar to MPI_COMM_WORLD and includes all processes that call fipc_init. Each 

      MPI_COMM_WORLD Base comm

 

     Node 0

  

      Node 1

 

Node comm

  

Root comm
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process then determines the node it belongs to by using the hostname command. All 
the processes belonging to the same node create another communicator 
node_comm. For the case in Fig. 8, there will be two communicators for Node 0 and 
Node 1. Finally, a Master process is selected in each node and they form the 
root_comm. In our example, the two Master processes are highlighted in orange in 
Fig. 8.  

Once the communicator structure is created, the user can then make calls to 
fipc_seg_create specifying the memory block that needs to be created as a SMS. 
The Master process in each node creates the segment and the rest of the 
processes use the segment id to attach to the segment created within that SMP 
node. When all related processing is complete, the SMS can be either deleted 
through calls to fipc_seg_destroy, or they are automatically deleted when a call is 
made to fipc_finalized.  

The module also provides calls to fipc_allreduce to send the SMS data from one 
node to another. This only involves the processes in the root_comm level. To ensure 
synchronization while accessing the segments, the user can make use of critical 
regions through calls to fipc_critical_start and fipc_critical_end. A barrier is provided 
through a call to fipc_barrier. It should be noted that these synchronization 
subroutines only act across a single SMP node since only those processes attached 
to an SMS need to synchronize their access to the SMS. Also, the size of a 
communicator and the rank of a process within that communicator can be found 
through calls to fipc_ctxt_size and fipc_ctxt_rank. For example, from Fig. 8, the size 
of base_comm will be 16, the size of node_comm will be 8 for each node and the 
size of root_comm will be 2.  

The pros of using SMS are obvious. We can now use a single designated area of 
memory that can be shared among processes. The use of SMS has a greater benefit 
in those cases where we have large input data or data that is generated only once 
throughout the execution of the program and then only read subsequently. In such a 
case, a critical region or a semaphore is not necessary to access the segment, 
whereas a write to the segment will require synchronization and thus increase the 
execution time. The ASCOT code makes use of such data, for example the magnetic 
field. This data is not changed during execution and makes it an ideal candidate to be 
used as a SMS. The code makes use of Splines to represent the magnetic field and 
one can determine the magnetic field strength at a particular point using Spline 
interpolation.   

We did some tests with the cubic spline functions provided by Numerical Recipes 
(NR) library. The library provides two functions, spline

 

to calculate the second 
derivative of the interpolating function and the splint

 

function to get the value of the 
interpolated function at a particular point. To calculate the second derivative, we 
need the input points x and the value of the function y at each point x, given by 
y = f(x). Since, the value of the input points x and f(x) are required only once, we can 
allocate a SMS to store them. The spline function needs to be called only by 
process 0 and the output of the function, say spline_out, can be used by all the other 
processes within the same SMP node, as a SMS as well, during interpolation. Our 
use of SMS was found to work well with the Spline functions from the NR library.   

The ASCOT code makes use of the EzSplines library which can also use the SMS in 
the same way. With our input, Simppa Äkäslompolo was able to write an initial 
version of the module combining EzSplines and the FIPC module. It needs to be 
further extended to cater to different kinds of EzSpline objects and multi-dimensional 
arrays.   
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6.2.1. Fault safe termination of SMS 

One of the issues that a user needs to keep in mind while using SMS is that they are 
not deleted automatically in the case of a segmentation fault. The operating system 
might not recognize that such segments exist and can cause the system to run short 
of memory. We informed HPC-FF support at Jülich and were advised that ParTec 
has provided a solution to clean up the segments after a job has terminated. 
However, this will not help in cases where we have a batch script that has multiple 
calls to mpiexec. For example, if the batch script does independent runs of a program 
with different parameters, then a crash during one of the runs will affect the rest of 
the runs as well. Due to the persisting SMS, the subsequent program executions 
might run out of memory. We have included a clean-up mechanism that cleans up 
these segments after a program terminates abnormally even when the node is in 
use.   

The System V IPC framework provides functions that are used for handling SMS. It 
also provides methods to implement locks or critical regions that can be used to 
access the SMS in a synchronized manner, through semaphores. Semaphores are 
created by one process only and do not require attaching to unlike SMS where each 
process in the node has to attach to the SMS in order to be able to use it. The FIPC 
module creates a semaphore initially which is used while accessing the SMS. The 
clean-up mechanism has to take care of both the semaphore and the SMS in case of 
an abnormal termination.   

The function shmctl which is part of the IPC framework, marks an SMS to be 
destroyed. Passing the IPC_RMID parameter along with the SMS id to shmctl marks 
the segment for destruction. However, the segment is only destroyed after all 
processes have detached from it. The FIPC module has been changed to mark the 
SMS for destruction once it has been created and all processes have been attached 
to it. If the program exits normally, then the segments will be deleted automatically. In 
the case of an abnormal termination, the segments will be deleted if all the processes 
have detached from it.  

There could be instances where the processes do not detach from the SMS after an 
abnormal termination. Also, semaphores unlike SMS cannot be marked for 
destruction. In such cases, the segments and semaphores need to be deleted 
manually using the Linux ipcrm command. The FIPC module was also changed to 
write out the SMS and semaphore ids to a file soon after they are created. The file is 
then used as an input to a C program that deletes these segments through calls to 
the ipcrm command via the system() call. This C program can be executed after the 
execution of the ASCOT program to ensure that any remaining SMS and 
semaphores from the program are properly cleaned up.  

6.2.2. References 
[1] Portable use of Shared Memory Segments, Dr. Ian Bush 
www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf

  

6.3. Conclusions on the ASCOT-10 project 
The initial working plan envisaged an implementation of a hybrid parallelization 
model of OpenMP and MPI. However, it became clear that just for reducing memory 
consumption it was not necessary to implement OpenMP in addition to MPI. The 
program used large datasets of magnetic field data as input and during the post-
processing phase made use of a large amount of memory to store the histogram data 
for diagnostical purposes. To prevent each core to have its own copy of the magnetic 
field data, we implemented Shared Memory Segments (SMS) to share the data 

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf
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among the eight cores within each node on HPC-FF. For the histogram data we 
implemented a data compression algorithm using a sparse format which significantly 
reduces memory consumption and also allows the user to use up to seven 
dimensional histograms. These changes result in a much more efficient memory 
management of the ASCOT code. As a result it is possible now to simulate more 
detailed magnetic field configurations which results in more accurate physical 
simulations.  

We would like to thank the project coordinator, Taina Kurki-Suonio, for the good 
collaboration. 
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7. Contribution to the JOREK-HR project 
JOREK was to be benchmarked as part of the BEUPACK benchmark suite. 
However, our attempts to port the code to HPC-FF were not successful since the 
code encountered a deadlock when run on 96 cores or more. We also tested a new 
version of JOREK which had some issues related to OpenMP fixed and also used a 
new version of the direct sparse solver PastiX library. Unfortunately, this version also 
did not run on HPC-FF in the hybrid mode for large problem sizes. A deadlock was 
encountered with this setup while using ParTec MPI.   

To ensure that this was not an issue with the setup on HPC-FF, we tested the code 
on the IBM Power6 and the AIMS cluster of RZG. Tests were done on 32 MPI tasks 
with 8 OpenMP threads each, and the job ran to completion on both machines. A 
difference in these three machines was the MPI library available. IBM Power6 uses 
the default IBM implementation of MPI, the AIMS machine uses Intel MPI and 
HPC-FF uses ParTec MPI.   

On our request, the HPC-FF support at Jülich installed Intel MPI on HPC-FF for our 
testing purposes. We then did tests using Intel MPI as well, and these were 
successful. The code ran through on 8 OMP threads per MPI task even on 512 cores 
using Intel MPI.   

We found that the major difference between the MPI libraries on IBM Power6, Intel 
MPI and ParTec MPI was that the former two supported MPI_THREAD_MULTIPLE 
(MTM) level whereas ParTec MPI only supported up to the 
MPI_THREAD_SERIALIZED (MTS) level. The MTM level is required for the proper 
functioning of the PastiX library. Hence, we asked HPC-FF support to provide the 
MTM level of support for ParTec MPI. This requires recompiling the MPI library again 
with flags that enable the MTM level of support. The code did not run through even 
with the MTM enabled version of ParTec MPI.  

To rule out any program errors, we analyzed the code using the tool Marmot on        
HPC-FF, which is an MPI correctness checking tool. We were provided a new 
version of Marmot 2.4.0 which had some bugs in version 2.3.1 fixed, however this 
was also not functioning correctly. Along with the help of the developer of Marmot, 
we were able to fix the issue and used the corrected version installed locally on 
HPC-FF. Analyzing the code with Marmot gave just warnings:   

1) Use of MPI_ANY_SOURCE can cause race conditions  usage of 
MPI_ANY_SOURCE can cause deadlocks and should be avoided if possible.   

2) Marmot also reported that the number of elements being sent through 
MPI_Scatter was less than 0.   

These anomalies were reported to Guido Huysmans who is the project coordinator of 
JOREK.  

Since JOREK ran on most machines we tested, and even on HPC_FF with Intel MPI, 
we came to a conclusion that the problem was in the MTM version of Partec MPI we 
had available on HPC-FF. For completeness, we also suggested that the code 
should be looked at by the PastiX developers who could rule out any problems with 
the library. The library was found to be functioning correctly. The issue was found to 
be with the MTM level support of ParTec MPI, which they have now fixed, on our 
request, and is available on HPC-FF as a module that can be loaded by the user. 
JOREK was finally ported to HPC-FF and Florent Sourbier was able to benchmark it 
successfully as well.  
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8. Memory bandwidth on HPC-FF BEUPACK 

benchmark revisited 
We had to revisit the BEUPACK benchmark in the light of additional information on 
the memory bandwidth that was available on HPC-FF.    

On HPC-FF, the compute nodes have a NUMA (Non Uniform Memory Architecture) 
design. Each node has two Intel Nehalem quad-core processors. The memory is 
separated into two memory nodes of size 12 GB and each memory node is bound to 
one of the processors and sockets respectively. Hence, the amount of memory 
available to one core is approximately 3 GB. The core-MPI task mapping within a 
node is determined by the MPI execution environment. In the case of HPC-FF, this is 
determined by the settings Parastation mpiexec provides. Due to the NUMA 
architecture, this mapping can have an effect on the amount of memory and 
bandwidth available for an application. The BEUPACK benchmark suite has codes 
that are memory intensive and we chose them to test the mapping strategy used by 
the mpiexec environment. To know how the total available bandwidth impacts the 
runtime of an application, we need to understand how the cores in an HPC-FF node 
are attached to a process so that we have an approximate idea of how core mapping 
can impact memory bandwidth.  

HPC-FF also has an environment variable PSI_TPP that can be used to change the 
distribution of tasks across a node. It is similar to a skip factor which determines how 
to assign tasks in a compute node of eight cores. The default behavior on HPC-FF is 
similar to setting PSI_TPP to 1.   

Note that it is only important to know the rank of the MPI tasks that are scheduled on 
each processor. Within a processor, it does not make a difference if the cores are 
allocated alternately or not since they share the L3 cache and can access the same 
memory attached to the processor.   

The default setting on HPC-FF does not allow a task that is scheduled on Processor 
0 to access the memory attached to Processor 1. This can however be changed by 
setting a value to a variable __PSI_NO_MEMBIND which allows tasks in one 
processor to access the memory attached to another processor in a node. With this 
information, we can find out the MPI tasks that are allocated to a processor for 
varying number of active cores and PSI_TPP values by some simple tests.   

We tested a program, on a node on HPC-FF, which uses a maximum of eight active 
cores and a minimum of two active cores by setting ppn (processes per node) to 
eight and two respectively. The program tries to allocate about 7 GB of memory each 
to MPI task with rank 0 and another MPI task. If they are both scheduled on the same 
processor, then the program will terminate with an out of memory exception since a 
processor has only 12 GB of memory attached to it. Two tasks that are on the same 
processor will not be able to allocate 14 GB of memory in total with the default 
setting. This way, we can find out which MPI tasks are allocated on the same 
processor.   

Table 4 shows the mapping of cores to MPI tasks when we have different number of 
active cores and values of PSI_TPP set, within a node.  

From Table 4, when the number of active cores is eight, MPI tasks 0, 1, 2 and 3 are 
scheduled on Processor 0 and the rest are on Processor 1. We see a difference in 
the mapping when we have four active cores and PSI_TPP has the default value of 1 
or it is set to 2. In the former case all the MPI tasks from 0 to 3 are scheduled on 
Processor 0 and Processor 1 is idle. When PSI_TPP is set to 2, tasks 0 and 1 are on 
Processor 0 and tasks 2 and 3 on Processor 1. 
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Table 4 Mapping of cores to MPI tasks for different number of active cores in a node and 
PSI_TPP values.   

The same difference can be seen when we have two active cores and PSI_TPP is 
set to 1 or 4. When PSI_TPP is 1, we have both the MPI tasks set on Processor 0 
and Processor 1 has no active cores.   

The scheduling pattern for two and four active cores with the PSI_TPP set to its 
default value, implies that the MPI processes have access to less memory than is 
actually available. In the case of four active cores, one processor is completely idle 
and its 12 GB memory cannot be accessed by default. The active cores have access 
to only 3 GB of memory each on Processor 0. In the case of two active cores, they 
can use only up to 6 GB each even though the other 12 GB of memory attached to 
Processor 1 are available. One has to use the __PSI_NO_MEMBIND variable to be 
able to use the memory available on the other processor in both cases. However, 
when we set PSI_TPP to 2 or 4, the tasks are scheduled on different processors in 
the node. This automatically means that all 24 GB of available memory is distributed 
equally among the active cores.  

The findings above have been tabulated in Table 5. Applications can benefit from 
double the amount of memory that is available per core, and also more bandwidth. 
This can be done by using a suitable number of cores and utilizing the benefits that 
PSI_TPP can provide to the application.  

To use PSI_TPP, the user needs to export the PSI_TPP variable in the shell script. 
The number of active cores being used is equal to   

Number of active cores = Total number of cores / PSI_TPP  

For example, to use 512 active cores, the user must specify nodes=128, ppn=8, 
PSI_TPP=2 and number of tasks=512. This will ensure that the job is run on 512 
active cores. The remaining 512 cores are left idling. 

Cores Active cores PSI_TPP Core-MPI task mapping 
    Processor 0             Processor 1 

 
8  8  1         0  1  2  3                  4  5  6  7 

 
8 / 4  4  1         0  1  2  3  

 

8 / 2  2  1             0   1  

 

8  4  2             0   1                         2  3 

 

8  2  4                0                             1  



 

36

   

Table 5 Number of cores per node and memory available per core for different values of 
PSI_TPP.  

The advantage of using PSI_TPP is that the user has a certain degree of freedom 
while specifying the number of cores during execution. Setting ppn will restrict the 
user to the number of cores requested. For example, the user can set ppn=8 and set 
PSI_TPP to two, using only four cores. The user can also run another mpiexec within 
the same batch script that could use eight cores, by setting PSI_TPP to one (default 
on HPC-FF). However, if ppn is set to four, then the user will have to use a new 
batch script to submit a job of eight cores.  

8.1. BEUPACK Benchmark 
We have repeated some tests on the BEUPACK benchmark codes to determine the 
impact of the usage of PSI_TPP on the run times. The tests have been done on 512 
cores. The codes JOREK and GYSELA have not been tested as part of this.   

The results of using PSI_TPP have been shown in Table 6. The run times are 
compared to the original benchmark runs where PSI_TPP had its default setting of 
one.  

The timings in Table 6 are as expected. Both MDCASK and ORB5 are Monte Carlo 
codes where the data locality is high enough to make efficient use of the cache 
hierarchy. Hence the number of direct requests to access main memory is moderate. 
Both GENE and GEMR are grid based codes and thus require a large number of 
direct requests to main memory to sweep through the large grids. The advantage of 
using PSI_TPP=2 for such codes can be clearly seen as they benefit from a larger 
memory bandwidth per core.   

Users should however note that the percentage gain should be considered carefully 
before they decide to let every second core run idle in all their jobs. Even though the 
gain for some codes in Table 6 is obvious, the real benefit in letting every other core 
idle is only in those cases where the bandwidth gain is more than 100% for a code 
that already has an ideal scaling curve. If this is not the case, the benefit of using 
double the number of cores instead of double bandwidth will be higher for the user. 

ppn PSI_TPP Number of active 
cores per 

compute node 

Memory per 
core (GB) 

Explanation 

8 1 (default) 8 3 1 core allocated 
per task. 

8 or 4 1 (default) 4 3 1 core allocated 
per task.  

8 or 2 1 (default) 2 6 2 cores allocated 
per task. 

8 2 4 6 2 cores allocated 
per task, 2*3GB 

memory 
available per 

core. Doubled 
bandwidth. 

8 4 2 12 4 cores allocated 
per task. 
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Benchmark Run time in 

seconds  
(PSI_TPP=1) 

Run time in 
seconds 

(PSI_TPP=2) 

%Gain 

ORB5  309.34 280.12  9.45 
MDCASK  250 

Million atoms 
4.80 (per time step) 4.64 (per time step)  3.33 

MDCASK  500 
Million atoms 

9.26 (per time step) 8.82 (per time step)  4.75 

GEMR  ITER 
case (problem size 

4096x2048) 

2730.28 1985.62 27.27 

GEMR  ITER 
case (problem size 

2048x1024) 

682.37 428.7 37.17 

GENE 74.87 49.99 33.23 

 

Table 6 Run times on 512 cores with default value PSI_TPP=1 and with PSI_TPP=2. 
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9. Final report on the MGEDGE project 

9.1. Introduction 
The multigrid method is a well-known, fast and efficient algorithm to solve many 
classes of problems including the linear elliptic, nonlinear elliptic, parabolic, 
hyperbolic, Navier-Stokes equation and Magnetohydrodynamics (MHD). Although the 
multigrid method is complex to implement, researchers in many areas think of it as 
an essential algorithm and apply it to their codes because the number of operations 
of the multigrid method depends on the degree of freedom times the number of levels 
(log of the degree of freedom).  

To implement and analyze the multigrid method, we have to consider two main parts 
of the multigrid algorithm, the smoothing operator and the intergrid transfer operator, 
separately.  

To parallelize the program and to get a good performance, we need to have a good 
load balance over all cores. In general, the ratio of communication to computation on 
a coarse level grid is larger than the ratio on a fine level grid. Since the multigrid 
method works on both coarse and fine grid levels, we need to consider, in detail, the 
balance between computational work and communication. Usually, the multigrid 
method requires more work on coarse problems in comparison to other iterative and 
direct methods. The balance between computation and communication is highly 
dependent on machine architecture and problem sizes, so we need to determine the 
level at which we need to stop coarsening according to the number of cores on each 
machine and problem size.      

In this project, we have worked on the efficient implementation of the multigrid 
method in the GEMZ (Gyrofluid ElectroMagnetic) code of Bruce D. Scott, which 
solves nonlinear gyrofluid equations for electrons and one or more ion species in 
tokamak geometry. Starting from an already existing implementation of the multigrid 
method we amended the intergrid transfer operators and the linear solver. We further 
continued with detailed adaptation and testing of the implemented multigrid algorithm 
on the VIP machine at RZG and HPC-FF machine at JSC to finally improve its 
parallel scalability significantly.  

9.2. Implementation of the multigrid method 
As part of our efforts, we have assessed the multigrid method to solve the Poisson 
problem on a rectangular domain with uniform meshes using cell-centered finite 
differences (CCFD). In focus was the performance of the implemented multigrid 
algorithm on massively parallel machines with up to many thousands of processors.               

Table 7 The number of iterations and average error reduction factor of the multigrid method. 
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Initially, it was not clear if the zeroth- or first-order intergrid transfer operators would 
give better performance for the CCFD method. Corresponding tests revealed that in 
the case of the first-order intergrid transfer operator the average error reduction 
factor, i.e., the ratio of post-error to pre-error after passing a V-cycle averaged over 
the number of iterations and the number of iterations did not change with the number 
of multigrid levels (see Table 7).   

Instead the zeroth-order intergrid transfer operator imposes a strong correlation of 
these quantities to the number of multigrid levels. Thus, we conclude that the first-
order intergrid transfer operator should be preferred for larger problems.  

We investigated four popular solvers as coarsest problem solvers on the lowest 
level ; the Red-Black Gauss-Seidel Relaxation method, sparse direct solver (IBM 
WSMP), dense direct solver (LAPACK), and Conjugate Gradient Method (CGM). The 
solution time of each solver was measured for several different problem sizes from 28 

to 222 Degrees of Freedom (DoF). For our smallest problem size (28 DoF), CGM, 
relaxation, LAPACK(solving) are faster than the other solvers and CGM is the fastest 
solver for relatively small problem sizes (from 210 to 216 DoF). For larger problem 
sizes (>216 DoF), multigrid and WSMP back substitution give similar good results (see 
Fig. 9).                             

Fig. 9 Solution times of different solvers on a single core of an IBM Power6 757 system.  

In addition, we compared the parallel performance of the solvers. The results show 
that CGM is again the best parallel solver for problem sizes with 210 to 216 DoF. As 
expected, the optimal number of cores increases with the size of the problem.  

Next, we focused on the scaling properties of the parallel WSMP and the multigrid 
algorithm to solve a problem with 220 DoF. The back substitution of WSMP is better 
than the multigrid method on small number of cores, less than four cores for VIP and 
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less than sixteen cores for HPC-FF. For larger numbers of cores, the multigrid 
method is faster than WSMP due to better scaling properties.  

This result suggests that we might get the fastest solution time with one of the 
following strategies. Either we combine the parallel multigrid method with the parallel 
CGM solver as lowest level solver, i.e., using the CGM solver on the coarsest grid 
to get the exact solution. Or we gather the data from all the cores on each core at a 
certain level (called gathering level ) and proceed with the single-core version of the 
multigrid method until we reach the coarsest grid level (see Fig. 10). As lowest level 
solver we would have again the choice between the CGM, relaxation, and 
LAPACK/WSMP solver. The second strategy has the benefit that it can enlarge the 
applicability of the parallel multigrid algorithm for a fixed problem size to very large 
numbers of cores. In such cases, the degree of freedom at certain levels may be less 
than the number of cores when approaching to the lowest level . Hence, one has to 
switch to the single-core version of the multigrid method for calculating the single 
core levels (see Fig. 10).   

  

Fig. 10 A schematic view of the V-cycle multigrid method which starts as a parallel multigrid 
implementation, then after passing the gathering level converts to a single-core multigrid 
version and finally ends up in one of the possible choices for the lowest level solver. 
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9.3. Scaling properties of the multigrid method 

Detailed tests show that within the uncertainty of the measured execution times the 
parallel CGM lowest level solver with a lowest level of five gives the best results 
for a problem size of 224 on HPC-FF up to the maximum chosen number of 512 
cores. Thus, only in cases where the number of cores is larger than the number of 
DoF a single-core multigrid version should be taken into account. A strong scaling of 
the optimal solver shows a perfect linear speed on up to 512 cores on HPC-FF (see 
Fig. 11).                            

Fig. 11 The solution times, speed up, and speed up ratio of the multigrid method according to 
the number of cores on HPC-FF to solve a problem with 224 DoF.  

Finally, we investigated the weak scaling properties of the optimal solver for four 
different test cases, i.e., 218 DoF, 219 DoF, 220 DoF, and 221 DoF per core with a weak 
scaling from one core to 2048 cores on HPC-FF. The multigrid method has very good 
weak scaling properties. The larger the problem size per core the better it scales. For 
the two largest test cases with 220 DoF and 221 DoF per core, the execution time 
increases by less than 5%. This is remarkable as the scaling spans an increase of 
the core number by a factor of 1024 (see Fig. 12). 
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Fig. 12 The relative solution times according to the number of cores on HPC-FF to solve 
problems with a fixed DoF per core (weak scaling).  

9.4. Conclusions on the MGEDGE project 
Over all, we proved that our implementation of the multigrid method with the 
conjugated gradient method as a lowest level solver and with first-order intergrid 
transfer operators has very good strong and weak scaling properties. Thus, it is 
suitable for usage on massively parallel machines like HPC-FF. For details please 
see the HLST report Parallelization of the Multigrid Method on High Performance 
Computers

  

which has been published as IPP report 5/123.  

We have discussed our results with the project coordinator, Bruce D. Scott, and 
given him feedback about the changes we did in his 2-dim multigrid test code 
version. Next step, the implementation of the new multigrid implementation into the 
production version of GEMZ will be done by himself. In addition, we also had fruitful 
discussions with Bruce D. Scott about the multigrid method on a triangle mesh with 
finite volume discretization. 
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10. Report on the KinSOL2D project 

10.1. Introduction 
The Particle-in-Cell (PIC) code BIT1 is restricted so far to 1D3V plasma and 2D3V 
neutral particle modeling with a reasonable scaling up to 1000 and more processors. 
Hence, ongoing work is focused on enhancement of the code to 2D3V plasma 
simulations of the Scrape-Off-Layer (SOL). The increase of the dimensionality of the 
code to 2D or even 3D seems to be straight forward. However, the Poisson solver in 
2D has been identified as a bottleneck for the scaling properties. It is mandatory that 
also this part of the code scales to very high processor numbers to maintain the good 
scaling property of the whole code. So the work plan is to develop a good scaling 
Poisson solver in 2D. Possible candidates as solvers are a multigrid solver or, 
depending on the type of the matrix, a preconditioned Conjugated Gradient (CG) 
method and Generalized Minimal Residual method (GMRES), respectively. A 
combination of both is also thinkable where the multigrid method is used as a 
preconditioner for either the CG or the GMRES method.  

The GMRES method has to be used for non-symmetric or non-positive definite 
systems which can arise e.g. through the boundary condition treatment. In general, 
the preconditioned system of a symmetric system is not symmetric for the same inner 
product. However under certain conditions such a system can be symmetric in a 
different inner product (A-inner product or energy inner product) and the less costly 
CG method can be used.     

The multigrid method is a well-known, fast and efficient algorithm to solve many 
classes of problems including the linear elliptic, nonlinear elliptic, parabolic, 
hyperbolic, Navier-Stokes equation, and Magnetohydrodynamics (MHD). Although 
complex to implement, researchers in many areas think of it as an essential algorithm 
and apply it to their codes because the complexity of the multigrid method is only 
N log(N) , where N is the degrees of freedom (DoF).  

To implement and analyze the multigrid method, we have to consider two main parts 
of the multigrid algorithm separately: the intergrid transfer operators and the 
smoothing operator. The intergrid transfer operators depend on the discretization 
scheme and are highly related with the discretization of the matrix.  The smoothing 
operator will be implemented according to the matrix-vector multiplication. So we 
have to determine the appropriate discretization method which includes the 
generation of the matrix and an efficient implementation of the matrix-vector 
multiplications.  

When a multigrid solver converges, it usually converges very fast which is the case 
on most of the problems. However, the multigrid method as a solver does not 
guarantee convergence. In contrast, iterative Krylov subspace methods which 
include the CG and the GMRES method guarantee convergence and can be further 
improved by preconditioners to speed up the convergence rate. The multigrid method 
is also well-known to act as a very efficient preconditioner. The preconditioned CG 
method can be used only for symmetric and positive definite problems and has to 
use the A-norm instead of the L2-norm. The preconditioned GMRES method works 
for non-symmetric or non-positive definite problems, but needs more working 
memory. To reduce the working memory in the GMRES method the Restart GMRES 
algorithm is an option which does not guarantee convergence, but converges for 
most of the problems.  In the following we will investigate the multigrid method itself 
as a solver or as a multigrid preconditioner for a  Parallel GMRES (PGMRES) solver.  
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10.2. Model problem 

We consider the second order elliptic partial differential equation with the coefficient 
(x,y) being defined on a rectangular domain with an internal conducting structure as 

in Fig. 13. The boundary conditions are as follows: Dirichlet zero boundary condition 
for the outer boundary, Neumann zero boundary condition for the inner empty 
surface and time-dependent Dirichlet boundary condition for the internal conductor.  

The finite difference method is chosen as discretization method. In addition, a 
structured mesh with (x,y) being defined on each cell boundary is used. The 
coefficient (x,y) is time dependent and will change for each time step of the 
simulation.  

 

Fig. 13 Rectangular domain with internal conducting structure [ : internal structure 
(conductor)]  

As the model problem is quite complex it is advantageous to split it first into 
subproblems which can be solved separately. After successful treatment of the 
subproblems they can be used as building blocks to assemble an algorithm for the 
full problem. Hence as a first step, we focus on the convergence property of the 
solver for an internal conducting structure which can be arbitrarily shifted relative to 
the coarsest mesh of the multigrid method. For the multigrid method this is a 
challenging problem as the corners of the conducting structure and inner empty 
space could lead to a poor convergence rate of the multigrid method.  

10.3. Multigrid software framework 
To prevent starting each new multigrid project from scratch, we have started to 
develop a multigrid software framework. So far a preconditioned CG, a 
preconditioned GMRES and a multigrid solver have been implemented. As an 
efficient preconditioner the multigrid method can be used. The discretization method 
has only an impact on the matrix-vector multiplication and the construction of the 
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matrix. Special versions of the vector multiplication for finite volumes, finite elements 
and finite differences have been provided. It is the vector multiplication where the 
parallelism is introduced into the framework. Corresponding tests have been done to 
prove the correctness of the implementation. For the discretization with finite 
difference considered here with a Neumann boundary condition, the generated 
matrix is non symmetric, so the CG method cannot be used. Instead only the 
preconditioned GMRES method and the multigrid method can be used.  

The implementation of the parallel matrix-vector multiplication and the smoothing 
operators, in our case Gauss-Seidel and Jacobi, is highly dependent on the domain 
handling of the parallelization concept. In our case we discretize the whole 
rectangular domain in each direction with a uniform mesh and divide the rectangular 
domain in nx by ny small rectangular sub-domains which are handled by one 
processor each. If a rectangle sub-domain is in the inner empty space, we do not 
need to handle this domain and thus do not assign a processor to such a sub-
domain.  As a result a certain fraction of the processors will idle. In the future this can 
be further refined but at the moment it seems to be justified by the fact that the inner 
empty space is much smaller than the reaming area of the rectangular domain. In 
case of the internal conducting structure no exception is made so that all sub-
domains are assigned to a processor nevertheless they include parts of the internal 
conducting structure or not.  

10.4. Tests with inner conducting structure 
We have tested the correct discretization of the elliptic problem on a rectangular 
domain with an internal conducting structure and an inner empty space by comparing 
the converged numerical solution with the exact solution. To construct an exact 
solution for a zero Neumann boundary condition on the boundary of the inner empty 
space, we chose the following sine function f(x,y):  

The Dirichlet boundary condition of the internal conductor is given by the values f(x,y) 
at the boundary of the conductor. For simplicity we chose for the mesh sizes 
h=hx=hy. The according L2 discretization errors are listed in Table 8. It can be clearly 
seen that the error converges by second order (O(h2)).   

Table 8 The discretization L2 error and the error ratio between succeeding refinements.  

Next we test the multigrid solver and the PGMRES method in combination with the 
multigrid preconditioner. We have implemented the first order intergrid transfer 
operator and tested it. We use the Jacobi iteration and the local Gauss-Seidel 
iteration as smoothing operators. These two smoothing operators are relatively 
simple and well analyzed. The Jacobi iteration does not have a good performance, 
but does not depend on the number of processors. This is beneficial when testing the 
parallelized multigrid method because results do not depend on the number of 
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processors being used. In contrast the local Gauss-Seidel iteration has a good 
performance, but depends slightly on the number of processors.  

As a test case, we chose a 4 by 4 rectangular domain with a 2 by 2 inner empty 
space and a fixed finest mesh with h=hx=hy=0.001953125 and several different 
coarse meshes for the V-cycle. We always chose the inner empty space in such a 
way that it is aligned with the coarsest mesh. In contrast the inner conducting area 
can have an arbitrary shift relative to the coarsest mesh.   

Fig. 14 The positioning of the internal conducting area [ : internal structure (conductor), line: 
coarsest mesh, dotted line: finest mesh]   

We sketch two different configurations of the internal conductor area in Fig. 14, one 
does not match with the coarsest mesh (left) and the other one matches the coarsest 
mesh (right). The average error reduction factors of the multigrid method, i.e., the 
ratio of post-error to pre-error after passing a V-cycle averaged over the number of 
iterations, are listed in Table 9 according to the selected smoothing operator and the 
number of levels of the V-cycle. The solution on the coarsest mesh is computed by 
using the GMRES method.  

The results show that the multigrid method as a solver and the PGMRES method 
with a multigrid preconditioner have a very good performance if the internal 
conducting area matches with the coarse meshes. Otherwise the convergence rate is 
significantly reduced. In some cases this can lead to a non converging multigrid 
solver result. Nevertheless, the corners of the conducting structure and inner empty 
space do not seem to be a problem.     

(a) Unmatched internal conductor area. Note, ** marks a non converged result.  
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                                            (b) Matched internal conductor area.  

Table 9 The average error reduction factor of the multigrid method as a solver and 
preconditioned GMRES with the multigrid preconditioner.  

Next it is interesting to see how the GMRES method behaves without using a 
preconditioner. For this purpose we compared the solution times of the multigrid 
solver and the preconditioned PGMRES solver with the GMRES solver for two 
different mesh spacings of h1 = 0.0078125 and h2 = 0.00390625 on a parallel 24 
cores run on HPC-FF. In this comparison we consider the case that the internal 
conducting area matches with the coarsest mesh. For the multigrid method we use 
the local Gauss-Seidel smoother together with a total number of six levels. The 
corresponding solving times are listed in Table 10 together with the number of 
Degree of Freedoms (DoF). It can be clearly seen how the multigrid preconditioner 
speeds up the GMRES method significantly.    

Table 10 The solving times in seconds on 24 cores on HPC-FF at JSC.    

10.5. Future plans 
The method as it has been tested so far has still some limitations. Good convergence 
of the multigrid and PGMRES solvers is achieved for an inner empty space and 
internal conducting area which matches the coarsest grid. Hence, it will be of interest 
how these limitations can be overcome. Finally, the method will have to prove in a 
weak and strong scaling test how its scaling properties are on the HPC-FF machine. 
In addition, one has to see how the method competes with the parallel direct sparse 
solver from IBM WSMP.  


