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Abstract

Feltor is both a numerical library and a scientific software package built on top it. Its main target are two- and three-dimensional
drift- and gyro-fluid simulations with discontinuous Galerkin methods as the main numerical discretization technique. Feltor
allows developing platform independent code that runs on a variety of parallel computer architectures ranging from laptop CPUs to
hybrid CPU+GPU distributed memory systems.

First, we investigate reproducibility. We observe that numerical simulations of a recently developed gyro-fluid model produces
non-deterministic results in parallel computations. We show how we can restore bitwise reproducibility algorithmically and pro-
grammatically. However, we argue that in ill-conditioned physical problems numerical perturbations always grow exponentially
such that convergence can fundamentally only be achieved for reduced physical quantities of interest and invariants of the system.

Furthermore, we explore important performance tuning considerations and discuss latencies and bandwidths of elementary sub-
routines necessary to implement the aforementioned algorithms and equations. We propose a parallel performance model that
predicts the execution time of algorithms implemented in Feltor and test our model on a selection of parallel hardware architec-
tures. We are able to predict the execution time of more complex algorithms with a relative error of less than 25% for problem sizes
between 10−1 and 103MB.

Finally, we qualitatively compare a discontinuous Galerkin over the more traditional finite difference version of Arakawa’s
scheme for the Poisson bracket. We find equivalent results for both an external fourth order finite difference code and our own
discontinuous Galerkin implementation.

1. Introduction

Simulations of phenomena in magnetized plasmas are in gen-
eral highly challenging and require the use of advanced numer-
ical algorithms and the increasing power of high-performance
computers [18]. For the description of low-frequency phenom-
ena drift-reduced Braginskii (also called drift-fluid) [8, 62, 42]
and gyro-fluid models [7, 50, 41, 27] are efficient. Both of
these approaches remove the fast time and spatial scales associ-
ated with the gyration of charged particles in the magnetic field.
Compared to kinetic descriptions the reduced dimensionality in
fluid models significantly lowers the computational cost. There
are several codes implementing drift- and gyro-models in the
literature (among others References [52, 34, 21, 49]) and Refer-
ence [15] provides an actual framework for the implementation
of fluid equations.

In recent years code projects have focused on the capabil-
ity to efficiently invert nonlinear elliptic equations [15, 21].
This feature is especially needed in models that relieve the so-
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called Oberbeck-Boussinesq approximation and do not distin-
guish between fluctuating and background quantities. For ex-
ample in a gyro-fluid model we have the nonlinear elliptic equa-
tion ∇ · (N∇φ) = n − N, where n is the electron density, N is
the ion gyro-center density, and φ the electric potential [60].
Current interest also includes the implementation of the flux-
coordinate independent approach to discretize derivatives along
arbitrary magnetic field lines [22, 51]. This type of scheme
is particularly important if a magnetic field aligned coordinate
system is unavailable. It is then challenging to resolve the in-
herent anisotropy of the plasma dynamics parallel and perpen-
dicular to magnetic field lines.

Let us point out here that in the codes mentioned so far fi-
nite difference numerical methods are prevailing over more ad-
vanced schemes and the efficient use of GPUs or other accelera-
tor cards is largely absent. We also criticize that Reference [15]
is the only code that can be classified as free software in our
community, which severely limits the possibility to reproduce,
verify, interoperate with or reuse published results [61].

In this contribution we present our work with Feltor, a mod-
ular and free software package that we have developed partic-
ularly for the use in full-F (no Oberbeck-Boussinesq approxi-
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mation) drift- and gyro-fluid models [27, 59, 35, 26]. We use
discontinuous Galerkin methods [10, 4] to spatially discretize
model equations. Our efforts to enable three-dimensional simu-
lations include the flux-coordinate independent approach within
the discontinuous Galerkin framework [28], which we are the
first to apply to full-F gyro-fluid models [54, 25]. Recent stud-
ies focus on numerical elliptic grid generation [57, 58]. Both
are important for the efficient description of realistic magnetic
field geometries.

One of the main features of the code are matrix (and in gen-
eral container) free algorithms. This type of algorithm ignores
the exact format or implementation of the matrix (or vector)
type employed. In consequence a matrix-free implementation
offers a highly flexible framework with respect to both the equa-
tions discretized and the hardware the code runs on. It al-
lows the development of platform independent code, with the
compiler choosing implementations for Nvidia GPUs using the
CUDA programming language, the OpenMP parallelized ver-
sion for CPUs [17], or the immediate extension to hybrid paral-
lelization using the message passing interface (MPI).

In Section 2 of this article we give a short overview over the
structure and goals of the Feltor project. Then, in the following
three sections we present three different projects that involve
various aspects of the library. Please note that in order to ease
the reading of the article we moved the introduction to each of
the discussed topics to the respective Section. In Section 3 we
show how round-off errors caused by the machine precision can
destroy reproducibility of a simulation. We demonstrate the im-
plementation steps necessary to restore bitwise reproducibility
and then debate in what ways a simulation of an ill-conditioned
set of equations can be reproducible. In Section 4 we present
a qualitative comparison of the Arakawa algorithm with its dis-
continuous Galerkin version at the example of Euler’s equation
in polar coordinates. Finally, in Section 5 we present results of
a performance study. We briefly discuss important performance
tuning methods and derive a parallel model that can predict the
runtime of any algorithm in feltor on a variety of computer ar-
chitectures. We present an overall discussion and conclusion of
our results in Section 6.

2. Feltor overview

In this Section we give a brief overview of the structure of
the Feltor project and outline its design goals and motivation.
The details of how we realize these goals in code are absent
in this discussion but are available in the accompanying code
repository [56]. In general, we use design principles similarly
found in other existing code projects (e.g. [13]) and as far as
possible try to adhere to established coding practices [43, 44, 2].
The code repository includes instructions on how to compile the
full user documentation, which is also available on our home-
page [1]. We invite the interested reader to explore the docu-
mentation in parallel to the current section for additional infor-
mation and details. We conclude this section with a short dis-
cussion of the most important implications of the project struc-
ture.

2.1. Overview

Feltor (Full-F ELectromagnetic code in TORoidal geome-
try) is a modular scientific software package that can be divided
into six layers. Each layer defines and implements an interface
that can be used by same or higher levels. This structure is
depicted in Fig. 1. In the following we shortly introduce each
layer and the capabilities it adds to the library.

Figure 1: The structure of the project: Feltor is both a numerical library and a
scientific software package built on top of that library.

User Zone A collection of actual simulation projects and diag-
nostic programs for two- and three-dimensional drift- and
gyrofluid models

6 Diagonstics These programs are designed to analyse
the output from the application programs

5 Applications Programs that execute two- and three-
dimensional simulations: read in input file(s), sim-
ulate, and either write results to disc or directly visu-
alize them on screen. Some examples led to journal
publications in the past [60, 27, 38, 59].

Developper Zone The core dg library of optimized (mostly
linear algebra) numerical algorithms and functions cen-
tered around discontinuous Galerkin methods on struc-
tured grids. Can be used as a standalone library.

4 Advanced algorithms Numerical schemes that are
based on the existence of a geometry and/or a topol-
ogy. These include e.g. the discretization of el-
liptic equations in arbitrary coordinates, multigrid
algorithms and a semi-Lagrangian scheme to com-
pute directional derivatives along arbitrary vector
fields [28].

3 Topology and Geometry Here, we introduce data
structures and functions that represent the concepts
of Topology and Geometry and operations defined
on them (e.g. the discontinuous Galerkin discretiza-
tion of derivatives [17]). The geometries extension
implements a large variety of grids and grid genera-
tion algorithms that can be used here [57, 58].

2 Basic algorithms Algorithms like conjugate gradient
(CG) or Runge-Kutta schemes that can be imple-
mented with basic linear algebra functions alone.

1 Vector and Matrix operations In this "hardware ab-
straction" level we define the interface for a set of
various vector and matrix operations like additions,
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multiplications, and scalar products. These functions
are implemented and optimized on a variety of hard-
ware architectures and serve as building blocks for
all higher level algorithms. We study those in Sec-
tion 5 of this contribution.

2.2. Design goals

The structure of Feltor is the result of an ongoing develop-
ment process and subject to frequent changes. In the following
we thus rather describe our goals and guidelines. These have
led to the present state of the code and likely prevail in the fu-
ture.

Code readability Numerical algorithms can be formulated
clearly and concisely. In particular, parallelization strate-
gies or optimization details are absent in application codes.

Ease of use We try to make our interfaces as intuitive and sim-
ple as possible. It is possible for C++beginners to write
useful, fast and reliable code with Feltor. This feature is
enhanced by an exhaustive documentation.

Fast development A particular important feature from the user
perspective is the possibility to quickly set up or change
model equations in a minimum amount of time. We ac-
complish this feature by providing building blocks at Fel-
tor’s core levels, which can be freely combined or rear-
ranged.

Speed Feltor provides specialized versions of the perfor-
mance critical Level 1 functions for various target hard-
ware architectures including for example GPUs and Intel
Xeon Phis. Note that writing parallelized code is the de-
fault in Feltor. We explore and discuss performance criti-
cal issues in Section 5 of this article.

Platform independent Application code runs unchanged on
a large variety of hardware ranging from a desktop envi-
ronment to mid-sized compute clusters with dedicated ac-
celerator cards. The library adapts to the resources present
in the system and chooses correct implementation of func-
tions at compile time. This is possible through a template
traits dispatch system in combination with classic C-style
macros at Feltor’s core level. We demonstrate this feature
explicitly in Section 5 of this article.

Extensibility The library is open for extensions to future hard-
ware, new numerical algorithms and physical model equa-
tions.

Defined scope Our focus lies on efficient discontinuous
Galerkin methods on structured grids and their application
to drift- and gyrofluid equations in two and three dimen-
sions. We outsource any other operation, in particular in-
put/output, to external libraries.

2.3. Discussion

It is possible for several groups to work independently on
and with Feltor on the various levels outlined in Fig. 1. Com-
bining the defined building blocks from lower levels a user can
freely construct and explore new numerical algorithms or phys-
ical equations. At the same time any improvement or upgrade
of the core level routines improves the performance of all appli-
cation codes using it. Of course, the set of primitive functions
also restricts the number of possible numerical algorithms or
equations that can be implemented. For example direct solvers
are absent in Feltor.

Another advantage is the possibility to test functions and
modules separately and independent of each other. We use this
feature extensively throughout the development process on all
levels outlined in Fig. 1. Specifically, our tests encompass unit
tests for low level subroutines, convergence studies of specific
numerical algorithms as well as conservation studies of invari-
ants in our physical models.

3. Reproducibility in numerical simulations

A paradigmatic model to study drift wave turbulence and
zonal flow dynamics in the edge of magnetized fusion plas-
mas is the Hasegawa-Wakatani (HW) model [23, 53, 24, 47].
Recently, this model has been extended to include large rela-
tive density fluctuation amplitudes and steep density gradients
within a full-F gyro-fluid approach, thus facilitating studies in
the non-Oberbeck-Boussinesq regime [26]. The dimensionless
modified full-F HW equations consists of continuity equations
for electron particle density n, ion gyro-center density N and
the polarisation equation

∂tn + {φ, n} = α
(
φ̃ − l̃n (n)

)
, (1a)

∂tN +
{
φ − (∇φ)2/2,N

}
= 0, (1b)

∇ · (N∇⊥φ) = n − N, (1c)

with electric potential φ, adiabaticity parameter α and Poisson
bracket { f , g} := ∂x f∂yg−∂y f∂xg. The Reynolds decomposition
f := 〈 f 〉 + f̃ with Reynolds averaged part 〈 f 〉 := L−1

y

∫ Ly

0 dy f
and fluctuating part f̃ is utilized in the parallel coupling term
on the right hand side of Eq. (1a).
The initial (gyro-center) density fields n(~x, 0) = N(~x, 0) =

nG(x)
(
1 + δn0(~x)

)
consist of the reference background density

profile nG := e−κx, which is perturbed by a turbulent bath δn0(~x).
Here, κ parameterizes the constant background density gradient
length. For further details to the model we refer the reader to
Ref. [26].
We implemented Eqs. 1 in Feltor and now want to test the re-
producibility of our parallel simulations. More precisely, we
want to test if with the exact same input parameters our exe-
cutable reproduces the exact same output in subsequent runs.
To this end we fix a typical set of physical and numerical input
parameters and run our executable twice with the exact same
initial condition and parallelization strategy. In Fig. 2 we com-
pare the output of the two runs at each time step. Initially the
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relative error εrel := ||n1 − n2||2/||n1||2 between the two solutions
vanishes. Here, n1 and n2 is the electron density of the first and
second simulation, respectively, and || f ||2 is the L2 norm. As
time advances εrel rapidly increases towards O(10−1).

0 4000 8000 12000
t

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

ε r
el

Figure 2: The relative error εrel as a function of time t is depicted. The relative
error εrel between the naïve runs increases towards O(10−1). Note, that the
relative error εrel is biased by the constant 10−10.

Although this result is very surprising at first, the possibil-
ity for two identical simulation setups to have non-identical re-
sults is readily explained. First, recall the finite nature (64-,
32-, or 16-bits) of floating-point computations that results in
the non-associativity of floating-point operations [19]. For in-
stance, let us denote ⊕ as the addition in binary64 floating-
point arithmetic, then (−1 ⊕ 1) ⊕ 2−53 , −1 ⊕ (1 ⊕ 2−53) since
(−1 ⊕ 1) ⊕ 2−53 = 2−53 and −1 ⊕ (1 ⊕ 2−53) = 0. Second, in a
parallel environment the order of execution between threads is
usually arbitrary and can vary between runs. Therefore, subse-
quent runs of a parallelized executable with identical input may
indeed produce various binary outputs. On the other side, if the
small round-off errors of machine precision lead to a large error
in subsequent simulation times as seen in Fig. 2, then we are
apparently faced with an ill-conditioned problem.

Both the fact that executables may produce non-deterministic
results and the fact that small derivations may grow exponen-
tially in ill-conditioned problems raise concerns about our abil-
ity to reproduce and verify our numerical simulations. In the
following we view these concerns from various angles. First,
we discuss reproducibility and accuracy from a purely compu-
tational and programmatic viewpoint. In Sections 3.1 and 3.2
we present how with the help of so-called long accumulators
together with floating-point expansions and error-free transfor-
mations we can achieve bitwise reproducibility in our simula-
tions. In the following Section 3.3, we then view the problem
from a larger perspective and take computational, numerical
and physical considerations into account. We debate the impli-
cations of finite machine precision and ill-conditioned problems
on the accuracy, convergence, reproducibility, and verification
of numerical simulations.

3.1. Accurate and bitwise reproducible linear algebra

In this paper, we consider the binary64 or double-precision
format of the IEEE-754-2008 standard. The standard has led
to the considerable improvement in the reliability of numer-
ical computations by rigorously specifying the properties of
floating-point arithmetic. Thanks to the adaptivity of this stan-
dard by most processors, the numerical portability of applica-
tions was eased. The standard requires the basic arithmetic op-
erations (+,−,×, /, √ ) to be correctly rounded (rounding-to-
nearest) [19, 29, 45]. This means that the basic operations re-
turn the closest floating-point number to the exact result, break-
ing ties by rounding to the floating-point number with the even
significant. In this study, we assume the rounding-to-nearest
rounding-mode.

Due to the finite nature of floating-point computations as well
as the non-determinism of parallel executions, we develop an
approach to ensure bit-wise reproducibility via ensuring cor-
rectly rounded results, whenever possible. The main idea is to
keep track of both the result and the errors during the course
of computations. To increase the accuracy of floating-point op-
erations, i.e. assure their correct rounding, we rely upon the
following two strategies: the first computes the result and re-
covers the rounding error using so-called error-free transforma-
tions (EFT) and stores both result and error in a floating-point
expansion (FPE). A FPE is an unevaluated sum of p floating-
point numbers whose components are ordered in magnitude
with minimal overlap to cover a wide range of exponents. Typ-
ically, a FPE relies upon the use of the TwoSum EFT [36] for
the addition and the use of the TwoProd EFT for the multipli-
cation [48]. The main advantage of FPEs is that they could be
fetched to the registers and reside there during the computation.
However, they may not be able to guard every bit of informa-
tion, which is necessary for correct rounding, for large sums or
for floating-point numbers with significantly variations in mag-
nitude.

The second strategy projects the finite range of exponents of
floating-point numbers into a long vector the so-called long
(fixed-point) accumulator. A fixed-point representation stores
numbers using an integral part and a fractional part of fixed
size, or equivalently a scaled integer. For instance, Kulisch [39]
proposed to use a 4288-bit long accumulator for the exact dot
product of two vectors composed of binary64 numbers; how-
ever, such a large long accumulator is designed to cover all the
severe cases without overflows in its highest digit. By preserv-
ing every bit of information, the long accumulator guarantees
to compute the exact result of a large amount of floating-point
numbers of arbitrary magnitude. However, when comparing to
FPE, the long accumulator has a large memory footprint and
requires roughly two times more operations to be performed.

With the aim to derive fast, accurate, and reproducible Basic
Linear Algebra Subprograms (BLAS), we construct a multi-
level approach for these operations that is tailored for vari-
ous modern architectures with their complex multi-level mem-
ory structures. On one side, we want this approach to be
fast to ensure compatible performance compared to the non-
deterministic parallel versions. On the other side, we want to
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preserve every bit of information before the final rounding to
the desired format to assure correct-rounding and, therefore, re-
producibility. To accomplish our goal, we merge together FPE
and long accumulators, tune them, and efficiently implement
them on various architectures, including conventional CPUS,
Nvidia and AMD GPUs, and Intel Xeon Phi co-processors (for
details we refer to Ref. [11]). We begin with the parallel reduc-
tion, which is in the core of many BLAS routines. We build its
scalable, accurate, and reproducible version using FPEs with
the TwoSum EFT and long accumulators. In practice, the lat-
ter is so rarely invoked that only little overhead (less than 8 %)
results on summing large vectors.

The dot product of two vectors is another crucial fundamental
BLAS operation. The exdot (exact stands for accurate and re-
producible) algorithm is based on the previous exsum algorithm
and the TwoProd EFT: we accumulate both the result and the
error to FPEs and reduce these FPEs and long accumulators on
various levels as in exsum. These and other routines – such as
matrix-vector product (exgemv), triangular solve (extrsv), and
matrix-matrix multiplication (exgemm) – are distributed as the
Exact BLAS (ExBLAS) library [30, 31]. Thanks to the modular
and hierarchical structure of linear algebra algorithms, higher
level operations – such as matrix factorizations – can be en-
tirely built on top of the fundamental kernels as those in the
BLAS library. In ExBLAS, we follow this principal to con-
struct reproducible LU factorizations with partial pivoting.

3.2. Reproducibility in Feltor
As outlined in Section 2 Feltor builds its algorithms on ba-

sic primitive functions, which partly overlap with the BLAS
library. Please find the exact list of functions in the documenta-
tion. Our basic assumption is that, if these elementary functions
are reproducible, then all algorithms and simulations imple-
mented with them are reproducible. This assumption follows
our theoretical and practical studies [32] of the unblocked LU
factorization with partial pivoting, which underneath is entirely
build upon the BLAS routines. The first step to realize this
goal incorporates the exactly rounded and reproducible parallel
reduction from the ExBLAS library into Feltor. In this way
we can provide the exact and reproducible dot product

∑
i xiyi.

Note that we also provide a function computing the weighted
sum

∑
i xiwiyi, where w represents for example the volume form

of our coordinate system. This is important in numerical com-
putations of the scalar product

∫
f1 f2
√

gdV with functions f1,
f2 and volume element

√
g.

In the second step we make the trivially parallel vector op-
erations like y ← αx + βy reproducible. Unfortunately, the
use of FPEs or long accumulators for these very small summa-
tions introduce too much overhead to be practical. On the other
hand we do not parallelize the summation itself. We therefore
use that if we can guarantee the type and order of execution
to be the same on all compilers and platforms that follow the
IEEE-754-2008 standard, the results are identical even though
they are not exactly rounded. For performance reasons, the
C++ language standard allows compilers to change the execution
order of a given line of code. It even allows merging multi-
plications and summations with fused multiply add (FMA) in-

structions. These compute a*x+b in a single instruction with
only a single rounding operation. Consider now the ’naive’
implementation y=a*x+b*y. A compiler might translate this
to two multiplications t1=a*x and t2=b*y and a subsequent
summation y=t1+t2, or it might generate a single multiplica-
tion t=b*y with a subsequent FMA1 y=fma(a,x,t), which
gives a slightly different result.

Our approach to solve this issue is to explicitly instruct the
compiler to use FMAs together with relevant compiler flags
to prevent the use of value changing optimization techniques
(e.g. -fp-model precise for the intel icc compiler). The
former is possible through the std::fma instruction added to
the C++ -11 language standard2. With this combination we avoid
non-determinism in the order of operations, reduce the number
of rounding errors from three to two, and, therefore, achieve
binary reproducibility for this operations and even for matrix-
vector multiplications y ← αMx + βy. There, we take special
care to secure parallel summation in our MPI implementation.
The computation of boundary points can begin only after all
values from other processes were communicated.

The third step towards reproducibility in Feltor is to make
the initialization of vectors reproducible. Here, the main prob-
lem lies in the use of transcendental functions like ex, sin(x) or
cos(x). Consider for example Eq. (7) in Section 4. The algo-
rithms for computing these functions differ by compiler and the
results subsequently differ if not correctly rounded3. A prac-
tical and portable solution to this problem is an open issue in
Feltor.

All in all, Feltor yields reproducible results up to the com-
piler and the CPUs capability to compute FMAs. This means
that we can reproduce simulation results bit for bit, indepen-
dently of parallelization, as long as we use the same compiler
and fma flag as the original.

3.3. Bitwise reproducibility, accuracy, convergence and verifi-
cation

We improved Feltor with the reproducible BLAS Level-1
subroutines and can now re-simulate Eqs. 1 and indeed obtain
bitwise identical results after each run. We show our solution
in Fig. 3 where we compare the radial zonal flow structure to
the previous implementation. Here, the radial zonal flow struc-
ture of the naïve implementation deviates while the zonal flow
structures are identical in the new implementation.

Let us now discuss the implications of what we have achieved
and know up to this point.

Bitwise reproducibility We have the possibility to reproduce
parallel simulation results bit-to-bit. This is particularly

1It may even compute a*x first and then use the FMA.
2Unfortunately, at the time of this writing the intel and microsoft compilers

do not properly vectorize code involving std::fma. For the time being our
implementation relies on icc and msvc to always translate a*x+b into an FMA
instruction.

3In fact, the difference comes from the transcendental functions implemen-
tations in libm. Note that GNU libm ensures correct-rounding of these func-
tions thanks to the GNU Multi Precision Arithmetic library. With icc we had
to use a special flag -fimf-arch-consistency=true to get reproducible re-
sults across platforms.

5



0 20 40 60 80 100 120
x

0.15

0.10

0.05

0.00

0.05

0.10

0.15

〈 u y〉

t= 12000 

naive #1
naive #2

repro #1
repro #2

Figure 3: The radial zonal flow signature is shown. The deviation of zonal flow
structure of two naïve runs with identical initial conditions is clearly visible.
As opposed to this the zonal flow structure of the bitwise reproducible runs are
identical.

advantageous from a programmatic point of view since al-
terations in the implementation or future adaptions to other
parallel hardware can be rigorously checked and tested.
Moreover, independent outside groups and ourselves gain
the possibility to re-simulate and confirm the results. This
is especially important since we usually refrain from pub-
lishing output files due to their impractically large size.
Now, we have the possibility to publish the code together
with input files and can expect to exactly reproduce pre-
sented results.

Accuracy It is important to mention that we not only achieved
bitwise reproducibility but also increased the accuracy of
our implementation, mainly in the scalar product. The
problem with the previous naïve summation was the un-
favourable cancellation of digits when adding small values
to a large sum. Even in a tree summation algorithm the er-
ror grows with the size of the array with

√
a with a being

the array size. This effectively reduces the machine pre-
cision, which is a particular concern for large scale single
precision computations. It is expected that the next gen-
eration of supercomputers, i.e. Exascale systems, will be
composed of heterogeneous resources like CPUs and ac-
celerators. Obtaining peak performance on these systems
will, in all likelihood, require the use of single or mixed-
precision simulations [5, 6, 9, 16].

Condition If we evolve the physical model Eqs. 1 over long
periods of time, even small (physical) perturbations in the
initial state can be amplified by many orders of magnitude.
This is a fundamental property of the physical system un-
der consideration. Consequently, this behaviour is also re-
flected in the numerically discretized system of equations.
Recall that (numerical) perturbations are always present
in this system. For example, even if the initial state is
given by an analytical function its numerical representa-

tion is already inexact due to either the discretization error
or the finite precision of floating point arithmetics. These
(numerical) perturbations then grow over time just as their
physical counterparts do.

In conclusion, we have to accept that even with the increased
accuracy and reproducibility of our implementation the error4

in our numerical solution is large after a sufficiently long simu-
lation time. This is because any error stemming either from the
numerical discretization or the finite machine precision will be
amplified by the system. In particular this means that we can-
not obtain convergence of our simulation. Even with infinite
machine precision we would need a prohibitively fine grid to
find the exact solution. On the other side the error in a single
time-step or small enough time span may still be acceptable and
converge with the expected order. In this context we can also
expect that as long as we can maintain the machine precision in
our implementation (especially for the dot product, as discussed
above) using single precision gives the same physical results as
does double precision. In memory bandwidth bound problems
this can potentially lead to a factor two gain in performance.

Furthermore, we have to reject the notion that our bitwise re-
producible solution is any more physically or numerically rea-
sonable than the previous solution, even if the accuracy of el-
emental operations was increased. We only select one specific
solution out of a larger class of solutions equivalent within the
limits of the accuracy of the numerical discretization and the
machine precision. In fact, we can also physically expect a
larger class of end states that are equivalent within small (ther-
mal) fluctuations that are present in the turbulent system de-
scribed by Eqs. 1.

We therefore conclude that we need alternative methods to
verify our numerical representation of Eqs. 1 than pointwise
convergence. One suggestion might be to study the conver-
gence of the actual physical quantities that we are interested
in. This can for example be the zonal flow structure in Fig. 3 or
turbulent spectra. Also, in the absence of convergence studies,
invariants of the physical model gain importance as a consis-
tency check of numerical methods and implementations. This
on the one hand means that we should favour physical models
that do provide invariants and numerical methods that conserve
these invariants. Conservative numerical methods can (often)
give us a good physical picture even though the L∞ error is
large. On the other hand, it is difficult to guarantee correct
(physical) behaviour from symmetries of a system alone. For
example energy conservation is in general not enough to guar-
antee physical solutions. As exemplified by the integration of
the solar system in [20, Chap. 1], a numerical integrator may
be locally converged and conserve energy and still produce a
strikingly wrong (both qualitative and quantitative) result after
a long time. Thus, we still have to conduct convergence studies
applied to the physical quantities of interest.

4 in the L∞ or any other suitable norm
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4. The Arakawa scheme

In the light of the findings in Section 3 we now discuss a nu-
merical scheme that was specifically designed to conserve the
invariants of the underlying model equations. In Section 4.1 we
introduce the method while in Section 4.2 we qualitatively com-
pare a finite difference and a discontinuous Galerkin version of
the method.

4.1. Numerical method

In 1966 Arakawa [3] introduced a finite difference approx-
imation for two-dimensional incompressible flow. That is, he
devised a numerical scheme for the two-dimensional Navier–
Stokes equation in vorticity formulation

∂tω + {φ, ω} = 0,
∆φ = ω,

(2)

where the Poisson bracket is given by {φ, ω} := ∂xφ∂yω −
∂yφ∂xω. The function φ is called the potential and is obtained
by solving a Poisson equation with ω as the source term. The
main motivation for Arakawa’s finite difference scheme is that it
enables long time integration without the rapid growth of the to-
tal kinetic energy of the system (which can be observed, for ex-
ample, for the standard centered difference discretization of the
Poisson bracket). In fact, Arakawa’s method, conserves mass
as well as the two quadratic invariants kinetic energy and en-
strophy up to machine precision.

The classic second order Arakawa method is constructed as
follows

{ f , g} ≈ J1 = 1
3 (J++ + J+x + Jx+) (3a)

J++ = Dx( f )Dy(g) − Dy( f )Dx(g) (3b)
J+x = Dx( f Dy(g)) − Dy( f Dx(g)) (3c)
Jx+ = Dy(Dx( f )g) − Dx(Dy( f )g), (3d)

where Dx and Dy denote the standard centered finite difference
operator in the x and y-directions, respectively. This numerical
scheme has been found originally by Taylor series expansion.
However, it can also be interpreted as an equal superposition of
discretizations obtained by different formulations of the Pois-
son bracket (which, in the continuous case, are identical under
the product rule; see [17]).

Despite the advantages of Arakawa’s method, it was not ap-
preciated in many physical applications because it is difficult
to generalize it to the three dimensional case (recently an ap-
proach [37, Chap. B.2] based on Nambu brackets [46] has been
put forward). However, in recent years it has received increas-
ing attention from the plasma physics community. This is due
to the fact that in magnetized plasmas the dynamics parallel
and perpendicular to the magnetic field can often be separated.
Thus, yielding an essentially two-dimensional problem perpen-
dicular to the magnetic field.

Recently, the interpretation of Arakawa’s method outlined
above has allowed its extension to a discontinuous Galerkin
space discretization [17]. This approach takes the same form

as (3), except that Dx and Dy are now computed by a discontin-
uous Galerkin approximation. For simplicity we will illustrate
this in a single dimension (the extension to two dimensions is
straightforward; for more details we refer the reader to [17]).
To start we divide our computational domain into a number of
cells, where the nth cell is defined as Cn = [xn−1/2, xn+1/2]. The
numerical approximation of a function f is then given by

f (x) ≈ fh(x) =
∑

ni

f ni pni(x),

where h is the grid spacing, f ni are the degrees of freedom that
need to be stored in the algorithm, and pni is the Legendre poly-
nomial of degree i scaled and translated to the nth cell. The
derivative is then given by

Dx( f ) =
∑

ni

f ni
h;x pni(x),

where
f ni
h;x = f̂ pni|

xn+1/2
xn−1/2 −

∫
Cn

fh(x)∂x pni dx.

The quantity f̂ is the numerical flux and needs to be specified.
It turns out that if we choose the centered flux, i.e. we set

f̂ (x) = 1
2 lim
ε→0,ε>0

fh(x + ε) + 1
2 lim
ε→0,ε>0

fh(x − ε)

the favorable properties of Arakawa’s method are preserved by
this discontinuous Galerkin scheme. In particular, mass, kinetic
energy, and enstrophy are conserved up to machine precision.
Moreover, this approach has the advantage that numerical meth-
ods of arbitrary order can be constructed easily. Also, discon-
tinuous Galerkin methods, in general, are advantageous for par-
allelization as the coupling between different cells is mediated
by a single value only (the numerical flux at the cell interface).
We will explore this feature in Section 5 of this paper.

Before proceeding, let us remark that even though the sec-
ond order Arakawa method has been widely used in the plasma
physics literature, the corresponding fourth order method is sig-
nificantly less well known. This numerical method will be part
of the comparison in the next section and is given by [3]

{ f , g} ≈ 2J1 − J2

with

J2 =
1
3

(Jxx
2 + J+x

2 + Jx+
2 ) (4a)

d(Jxx
2 )i j = ( fi+1, j+1 − fi−1, j−1)(gi−1, j+1 − gi+1, j−1) (4b)

− ( fi−1, j+1 − fi+1, j−1)(gi+1, j+1 − gi−1, j−1)
d(J+x

2 )i j = fi+2, j(gi+1, j+1 − gi+1; j−1) − fi−2, j(gi−1, j+1 − gi−1; j−1)
(4c)

− fi, j+2(gi+1, j+1 − gi−1, j+1) + fi, j−2(gi+1, j−1 − gi−1, j−1)
d(Jx+

2 )i j = fi+1, j+1(gi, j+2 − gi+2, j) + fi−1, j−1(gi−2, j − gi, j−2) (4d)
− fi−1, j+1(gi, j+2 − gi−2, j) + fi+1, j−1(gi+2, j − gi, j−2),

where d = 8hxhy. The grid spacing in the x-direction is denoted
by hx and the grid spacing in the y-direction is denoted by hy.
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Similar to the second order Arakawa scheme this method con-
serves mass, kinetic energy, and enstrophy and has been found
by Taylor series expansion.

Strictly speaking these invariants are conserved up to ma-
chine precision only for periodic boundary conditions. This
is equally true for both the second and fourth order Arakawa
methods and the discontinuous Galerkin schemes. For Dirich-
let and Neumann boundary conditions a (usually small) error
is incurred at the boundary. This is discussed in some detail in
[12].

4.2. Numerical comparison

The order of the discontinuous Galerkin scheme is deter-
mined by the polynomial degree used to approximate the so-
lution in each cell. Choosing a piecewise constant approximant
actually yields a second order method that, for discretizing the
Poisson bracket, is identical to the arakawa2 scheme. Choosing
a piecewise cubic approximant results in a fourth order discon-
tinuous Galerkin scheme (henceforth denoted by dG4) that has
been found to yield good results in plasma simulations ([60]).
The primary goal of this section is thus to compare the dG4
method to the arakawa2 and arakawa4 scheme.

For the former we use the Feltor code [56], while for the lat-
ter the implementation described in [12] is used. There are im-
portant differences of these two implementations, in addition to
the fact that different numerical methods are used to discretize
the Poisson bracket. Most notably that the Feltor code is more
general in that it can handle arbitrary structured grids (see, for
example, [57]). On the other hand, the code implementing the
Arakawa method is tailored to polar coordinates. In particu-
lar, the Poisson equation is solved using a spectral method. In
addition, a range of optimizations have been conducted to in-
crease the performance for that specific case. In this section,
we will use the implementation [12] as a reference to determine
the quality of the dG method. Since it uses a different numeri-
cal approach (for both the Poisson bracket as well as for solving
the Poisson equation), any bias introduced would be in favor of
the Arakawa scheme and thus would make the results obtained
in this section even more favorable towards the discontinuous
Galerkin approach.

Our goal in this section is to perform a comparison between
the discontinuous Galerkin approach, as described in the previ-
ous section, and the Arakawa finite difference approach. Since
the code implementing Arakawa’s method can only handle po-
lar coordinates (r, θ) we will restrict ourselves to this case. In
the following we will consider a simple yet interesting model
from plasma physics (see, for example, [40]). More specifi-
cally, the guiding center model in polar coordinates is given by

∂tρ −
1
r
{φ, ρ} = 0, (5)

where r is the volume element and the potential is determined
by the Poisson equation in polar coordinates

− ∂2
rφ −

1
r
∂rφ −

1
r2 ∂

2
θφ = ρ. (6)
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Figure 4: A numerical solution of the guiding center model at t = 0 (top) and
t = 30 (bottom) is shown. The fourth order Arakawa scheme, 1024 grid points
per direction, and a time step size of τ = 0.01 has been used.

As a side remark let us comment on the definition of the
Poisson bracket in an arbitrary coordinate system (ζ, η). The
interested reader will note that the volume form in two dimen-
sions can be interpreted as a symplectic two-form and thus is,
in fact, the defining factor for the Poisson bracket { f , g} :=
(∂ζ f∂ηg − fηgζ)/

√
g. For the purposes of this work the defi-

nition below Eq. 2 without volume element is sufficient.
The sought-after quantity is ρ(t, x, y) which is defined on the

domain Ω = [rmin, rmax] × [0, 2π]. We consider the initial value

ρ(0, x, y) = (1 + ε cos(`θ))e−2(r−rc)2
(7)

with ε = 0.1, ` = 7, rc = 6, rmin = 1, and rmax = 10. We fix Nr

and Nθ as the number of grid points in the r and θ direction for
the Arakawa scheme and the product of cell number and poly-
nomial coefficients in each cell for the dG scheme. Equation
(5) is then integrated in time. A plot of the numerical solution
at t = 30 is shown in Figure 4. We can clearly see the develop-
ment of small scale structures. Thus, we are mostly interested in
the qualitative properties of the solution; as opposed to say the
L∞ error in ρ. This is in fact the situation for which Arakawa’s
method has been originally designed and in which the improved
conservation properties of the method are most important.

To perform the comparison we show numerical results for
the dG4, arakawa2, and arakawa4 scheme in Figure 5 (where,
in order to facility a direct comparison, we have plotted only
a single vortex). Among these methods the arakawa2 scheme
clearly performs worst. For both the arakawa4 scheme and, in
particular, the dG4 scheme (that is implemented in FELTOR)
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we see significant improvements.

5. Performance and runtime prediction

In this Section we present a performance study of the Fel-
tor library. This study includes a second dataset [55] to this
article, which provides the complete raw data in csv format as
well as the ipython notebooks used for the data analysis and
plot generation. The interested reader is invited to inspect these
notebooks in parallel to reading this section for additional in-
formation and details.

We begin this section with a discussion of important perfor-
mance optimization techniques for memory bandwidth bound
algorithms 5.1. We then shortly describe the hardware, the con-
figuration and the program that we used to generate the per-
formance data 5.2. Having measured and discussed the perfor-
mance of Feltor’s building blocks in Section 5.3 we suggest a
performance model that predicts the runtime of any constructed
algorithm in Section 5.4. We discuss strong and weak scaling
in Section 5.5 and conclude with a critical discussion in Sec-
tion 5.6.

5.1. Optimization techniques for low-level Feltor routines
As mentioned in Section 2, the Level 1 algorithms imple-

mented in Feltor include basic algebra routines that build the
dg library code. Besides trivially parallel vector operations like
addition or pointwise multiplication, we implemented the scalar
product with long accumulators (Section 3) and a sparse matrix-
vector multiplication. Optimizing these operations is a key task
in order to increase the overall performance of any higher level
algorithm or application using Feltor.

Note, that we devised our own sparse block matrix format,
which specifically saves storage on redundant blocks and thus
potentially fits into small and fast memory caches of the tar-
get architecture. It is used for the computation of the simple
discontinuous Galerkin derivative in x and y on product spaces
(see Section 4 and Reference [17] for more details). Many algo-
rithms, including the Arakawa scheme, build on those deriva-
tives. An optimization of the corresponding matrix-vector prod-
uct will thus greatly contribute to reducing their execution
times.

In general, vector additions, sparse-matrix-vector multiplica-
tions and scalar products require a similar amount of memory
and arithmetic operations. This means that on all modern hard-
ware architectures these routines are memory bound. However,
this conclusion assumes an efficient implementation. In partic-
ular, it assumes that our code is able to exploit the parallelism
present on these architectures in order to saturate the available
bandwidth. In addition, to achieve optimal performance, mem-
ory has to be read in a sequential (coalesced) manner. This is
especially true for the Intel Xeon Phi "Knights Landing" accel-
erator card (KNL) and GPUs.

The easiest option to optimize a code in a new architecture
such as KNL is to recompile it with the proper flags (discussed
for KNL further below) and thus get an instantaneous benefit.
However, achieving a full and efficient use of a new architec-
ture requires an analysis using available profiling tools and an

optimization effort, which is reflected normally in code modifi-
cations.

The strategy to optimize a code for a given architecture in-
volves different levels, beginning from the core level to the
outer levels of the hardware, since all the optimizations intro-
duced in any level automatically benefits its upper levels.

Most modern processors have so-called vector units that al-
low it to execute a single instruction on multiple data (SIMD)
per cycle. For example, each KNL core has two 512-bit vector
units that enable it to compute 16 double precision operations
concurrently. The usage of these SIMD (or vector) instructions
in a loop is called vectorization.

Most compilers may vectorize loop structures automatically
to take advantage of vector units if they are called with the
proper options. For the KNL, the intel compiler provides
-xMIC-AVX512 to enable AVX-512 vector instruction set [33],
-fma to generate fused multiply-add (FMA) instructions and
-align to use aligned load or store vector instructions.

However, the vectorization report generated by the compiler
typically shows that not all loops can be vectorized. The com-
piler only vectorizes when it considers this process a) safe and
b) improves the performance. This means that in order to
achieve a good performance sometimes we have to help the
compiler to vectorize loops initially discarded by it. For ex-
ample, when the compiler believes that two pointers in a loop
may reference a common memory region implying likely data
dependencies among iterations the compiler refrains from vec-
torization. This situation can be solved using the keyword
restrict for a pointer argument in a C/ C++ function, which
indicates that the pointer argument provides exclusive access to
the memory referenced in the function and no other pointer can
access it.

Another example is when the compiler does not vectorize a
loop because an efficiency heuristics predicts that this vector-
ization will lead to a worsening of the performance, such as
the presence of many unaligned data accesses. This time it can
be solved introducing the OpenMP-4 extension #pragma omp

simd, which explicitly tells the compiler that it is safe to use
SIMD instructions in the following loop.

In general we observe that vectorization significantly im-
proves the performance of the scalar product with long accu-
mulators, our sparse matrix-vector multiplication and to a lesser
extent also the vector additions.

Continuing with the higher hardware level, a KNL node con-
tains 68 cores, so a good thread scalability is mandatory to take
advantage of them. In the case of the sparse-matrix vector
multiplication, the previous code contained three consecutive
OpenMP parallel regions that were merged into one to give all
threads more work reducing idle time and overhead costs, such
as thread management and synchronization. Besides, KNL of-
fers hyperthreading, which means that each core supports up to
4 threads, leading to the possibility of using up to 272 threads
per KNL node. As hyperthreading may improve performance
when memory access latency limits the execution, some per-
formed experiments suggested to run at least 2 threads in order
to increase the full core usage and so improve performance.

Finally, we observe that making the number of polynomial
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reference arakawa2 (Nr =Nθ = 256) arakawa4 (Nr =Nθ = 256) dG4 (Nr =Nθ = 255)

Figure 5: The numerical solution, restricted to [4.6, 7.5] × [0, 0.95] for the guiding center model at t = 30 is shown. The same colors as in Figure 4 are used. The
reference solution is computed using the fourth order Arakawa scheme and 1024 grid points per direction.

coefficients a compile time constant (a template parameter) re-
sulted in another significant improvement of runtime in the
matrix-vector multiplication. The coefficient fixes the size of
the blocks in the sparse matrix format and thus the size of the
tight inner loops of the routine.

Note that all the optimizations that have been performed for
the KNL have a positive effect on the regular CPU performance
as well. On GPUs we observe similar performance improve-
ments when we add the restrict keyword to pointer argu-
ments in the corresponding kernels and use template arguments
as well. We can avoid warp divergence since if-clauses are ab-
sent in our implementations.

5.2. Configuration

We use the program feltor/inc/dg/cluster_mpib.cu

that is contained in [56], together with suitable submit scripts
in [55], for generating the performance data. Essentially, we
gather the average run times of a variety of primitive functions,
the Arakawa algorithm and a conjugate gradient iteration. Let
us note here that the results from different architectures are bit-
wise identical as long as we only compare results from the same
compiler (see Section 3). We vary problem sizes and number of
compute nodes on a selection of representative hardware archi-
tectures, which includes a current consumer grade desktop CPU
and GPU, as well as dedicated high performance compute hard-
ware from Intel and Nvidia. Please find a short description of
the configuration in Table 1 and more details in the dataset [55].
We refer to the documentation of the dg::Timer class in [56]
for details of how we measure the time on the various architec-
tures involved.

5.3. Performance measurements
From the measured runtime t and the array size S we com-

pute the memory bandwidth b of an algorithm or function

b =
mS

t
(8)

where m is the number of memory loads and stores. We fol-
low the STREAM conventions in counting memory operations,
which means that we separately count each read and each write
of a memory location. For example the vector addition axpby,
which computes the operation y ← αx + βy, counts as m = 3
times the vector size since we have to read both x and y and
then write into y. The dot product x · y counts as m = 2 times
the vector size.

In Fig. 6 we plot the average bandwidth b for various hard-
ware architectures and problem sizes S . We normalize the plot
to the number of nodes n, b/n and S/n, such that each point
represents the performance of a single node.

First, we note that in both, Fig. 6a and Fig. 6b the lightly
colored points from multi-node runs lie almost exactly on top
of their single-node counterparts. This is especially true for the
P100 and V100 GPUs and the Skylake nodes but is not so well
fulfilled for the Xeon Phi. The feature indicates a high weak
scaling efficiency of both axpby and dot, which means that the
achievable bandwidth of a given node is given solely by the
problem size on the node itself.

Next, we note that in Fig. 6a the bandwidth for small to
medium sized problems (1MB < S/n < 10MB) is significantly
higher than for large problems (S/n > 100MB) for all archi-
tectures (note that the lowest sized point of the ’gtx1060’ is
hidden beneath a ’skl’ point). This is especially pronounced for
the Skylake architecture. We explain this by the cache level hi-
erarchy. The problem fits entirely into the cache such that its
higher speed becomes visible. In fact, the peaks roughly co-
incide with the relevant cache sizes (see [55] for exact cache
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device description single-node configuration

i5 Intel Core i5-6600 @ 3.30GHz (2x 8GB DDR4, 4 cores) 1 MPI task x 4 OpenMP threads (1 per core)
skl 2x Intel Xeon 8160 (Skylake) at 2.10 GHz (12x 16GB

DDR4, 2x 24 cores)
2 MPI tasks (1 per socket) x 24 OpenMP
threads (1 per core)

knl Intel Xeon Phi 7250 (Knights Landing) at 1.40 GHz
(16GB MCDRAM, 68 cores)

1 MPI task x 136 OpenMP hyperthreads (2
per core)

gtx1060 Nvidia GeForce GTX 1060 (6GB global memory) 1 MPI task per GPU
p100 Nvidia Tesla P100-PCIe (16GB global memory) 1 MPI task per GPU
v100 Nvidia Tesla V100-PCIe (16GB global memory) 1 MPI task per GPU

Table 1: Description of the tested compute nodes: device description and total RAM size as well as the corresponding distribution of MPI tasks and OpenMP
threads/GPU contexts. The configuration of multiple nodes scales the number of MPI tasks; for example 4 skl nodes involve 8 MPI tasks each spawning 24
OpenMP threads running on 192 physical cores.
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Figure 6: Single node memory bandwidth plot of the trivially parallel vector
addition (a) and the exact dot product (b) on various hardware architectures on
one node (full saturation color), on two nodes (medium saturation) and on four
nodes (low saturation). We normalize to the number of nodes, such that the
single node performance becomes visible.

sizes). This feature is absent in Fig. 6b, which is most likely
due to the high number of 64-bit operations per memory load
in the long accumulator scalar product.

For the multi-node architectures we identify a linear regime
for small array sizes (S/n < 2MB) in both Fig. 6a and 6b. Here,
the bandwidth increases linearly with the array size, which
indicates a size-independent runtime Tlat, called the latency.
Note that the multi-node results in Fig. 6b indicate an increas-
ing latency for multiple nodes. We explain this by the neces-
sary global communication between nodes due to the reduction,
which is absent in the axpby algorithm. On the other side, for
large array sizes (S/n > 100MB) we identify a regime with
constant bandwidth B in both Fig. 6a and 6b independent of
node number.

We determine B by taking the average bandwidth of the
largest array sizes and estimate an error with the standard devi-
ation. This is in general a very robust method and yields small
errors in our experience. The correct determination of the la-
tency Tlat is more involved with the available data. We differ-
entiate between single-node and multi-node latency. As a first
approximation we simply identify the minimum average run-
time with Tlat and again use the standard deviation as an error
estimate. If we now assume that the runtime is given by

t = Tlat(n) +
mS
nB

, (9)

then we can correct the minimum runtime tmin by −mS/B with
the previously measured B to obtain a better approximation to
Tlat. However, with the exception of the Knights landing archi-
tecture the single-node latencies for axpby are so small that the
values become negative. In this case we replace the value by 0.
In Table 2 we give numerical values of the bandwidths together
with the latencies as well as the peak bandwidth according to
to the vendors. Within the error the axpby latencies can be ne-
glected altogether except for the Knights Landing architecture.

We note that the GPUs and the Xeon Phi have the highest la-
tencies in the dot algorithm. The high GPU latency is the result
of the slow PCIe lanes since the result has to be sent back to the
host CPU, which entails communication. As already evident in
Figure 6b the latencies on multiple nodes significantly increase
for the Xeon Phi and the Skylake architectures. This indicates
a possible long latency of the internode connection. For the
P100 and V100 GPUs the latency seems to be dominated by
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peak axpby dot
bandwidth
[GB/s]

bandwidth
[GB/s]

Tlat(1)
[µs]

Tlat(4)
[µs]

bandwidth
[GB/s]

Tlat(1)
[µs]

Tlat(4) [µs]

i5 34 30 ± 01 00 ± 02 n/a 10 ± 01 05 ± 01 n/a
gtx1060 192 158 ± 01 00 ± 01 n/a 27 ± 01 93 ± 09 n/a
skl 256 207 ± 06 00 ± 01 00 ± 01 193 ± 19 18 ± 03 38 ± 05
knl >400 394 ± 23 06 ± 01 10 ± 01 142 ± 07 55 ± 02 120 ± 06
p100 732 554 ± 01 01 ± 01 03 ± 01 347 ± 02 49 ± 01 49 ± 01
v100 898 849 ± 01 02 ± 01 03 ± 01 594 ± 03 34 ± 02 35 ± 01

Table 2: Measured single node bandwidth and latency on a single node and four nodes of apxby and dot. The peak bandwidth is the theoretical RAM bandwidth
according to the vendors. The exact peak bandwidth of the MCDRAM on knl was not disclosed to us.

the communication between GPU and host CPU.
Finally, we note that all architectures reach only 75% (p100)

to 95% (v100) of their theoretical peak bandwidth in the axpby
function. This is in line with previous observations of the
STREAM benchmark [14]. We do not know of any practical
method to overcome this performance degradation program-
matically and consider the measured bandwidth Baxpby as the
maximum bandwidth any memory bound algorithm can achieve
on the given architecture. In this sense, the Skylake architecture
reaches almost 100% efficiency for the dot algorithm, followed
by the Tesla cards P100 and V100. The GTX 1060 has the low-
est efficiency, which is most likely due to the drastic reduction
of double precision performance on the gaming GPU (a factor
32 compared to single precision), which is absent in the Tesla
GPUs.

For the matrix-vector product we perform the same analysis
and show the results In Table 3. There, we present the average
bandwidth between a dG derivative in the x-direction and the y-
direction, which we call dxdy. Due to our efficient format the
matrix itself does not contribute to the memory loads and stores.
We count two loads and one store for the y ← αMx + βy op-
eration (m = 3). However, we do differentiate between various
polynomial orders, which determines the stencil of the opera-
tion. A higher polynomial order increases the registry pressure
and thus decrease the efficiency of the implementation. The la-
tency should not be influenced by the polynomial order and we
provide the latencies for the P = 2 case. We observe the highest
latencies for the multi-node configurations. Here, the algorithm
involves communication between neighboring processes. This
is particularly unfavourable for the GPUs since these have to
communicate via the host CPU across the PCIe lanes.

Concerning the single node bandwidths B we overall observe
the highest values for the Tesla GPUs. It is noteworthy that the
GTX 1060 has a very low latency and reaches almost 70% of
the bandwidth of the much more expensive Skylake and Xeon
Phi nodes.

5.4. Performance prediction model

Any one of the primitive subroutines in Level 1 in Fel-
tor falls into one of the categories ’trivially parallel’ (axpby),
’nearest neighbor communication’ (dxdy) and ’global commu-
nication’ (dot). We specifically measured the bandwidths and

latencies of the three operations axpby, dxdy and dot in Ta-
bles 2 and 3. For the following discussion we assume that these
values accurately represent the bandwidths and latencies of the
whole respective class of functions. In fact, we use these values
to predict the runtime of any algorithm that is implemented in
terms of Level 1 subroutines. For a given architecture and node
number n we predict a runtime t depending on the array size S
and the number of polynomial coefficients P

t(P, S , n) =
∑

q

Nq−1∑
i=0

tq
i (P, S , n) =

∑
q

[
NqT q

lat(n) +
MqS

nBq(P)

]
=: N

[
Tlat(n) +

M
N

S
nB(P)

]
(10)

Tlat(n) :=
1
N

∑
q

NqT q
lat(n) (11)

1
B(P)

:=
1
M

∑
q

Mq

Bq(P)
(12)

with the function type q ∈(axpby,dot,dxdy), i iterates over
all occurrences of function type q, Nq is the total number of
occurrences of all functions of type q, Mq is the total num-
ber of memory loads and stores among functions of type q,
Bq(P) is the single node memory bandwidth of function type
q and T q

lat(n) is the latency depending on the number of nodes
used. In Eqs. (11) and (12) we defined the average latency and
weighted average single node bandwidth, where N :=

∑
q Nq

and M :=
∑

q Mq. The values for Bq(P) and T q
lat(n) are in Ta-

ble 2 and 3. We present an average over a conjugate gradient
iteration and the Arakawa algorithm in Table 4. These two al-
gorithms represent a typical mixture of primitive functions used
in a Feltor simulation project. In fact, we get a first approxi-
mation of the runtime of any algorithm by counting the total
number of function calls N and using Eq. (10), Table 4 and
M/N ≈ 3.3.

In Fig. 7 we compare the result of the prediction in Eq. (10)
with the measured runtime for the arakawa algorithm and one
cg iteration. The plots depict the relative error of the prediction.
If a point lies below 1, the execution was faster than predicted.
Especially for large array sizes S/n > 30MB our prediction
is accurate for all architectures. We note in both Fig. 7a and
Fig. 7b that the measured runtime for the Xeon Phi card on
multiple nodes for sizes S/n < 20MB is systematically over-
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B(P=2)
[GB/s]

B(P=3)
[GB/s]

B(P=4)
[GB/s]

B(P=5)
[GB/s]

Tlat(1)
[µs]

Tlat(4)
[µs]

i5 28 ± 03 30 ± 03 26 ± 02 22 ± 02 00 ± 02 n/a
gtx1060 131 ± 01 112 ± 02 84 ± 14 70 ± 18 00 ± 01 n/a
skl 182 ± 36 162 ± 13 119 ± 19 111 ± 09 23 ± 03 29 ± 03
knl 240 ± 18 173 ± 27 127 ± 19 102 ± 15 10 ± 01 53 ± 04
p100 288 ± 03 238 ± 04 201 ± 02 166 ± 15 02 ± 01 64 ± 01
v100 802 ± 17 713 ± 20 650 ± 16 536 ± 49 04 ± 01 67 ± 02

Table 3: Single node bandwidth of a dG matrix-vector multiplication for various polynomial coefficients P. Latencies on a single node/card and four nodes/cards.

B(P=2)
[GB/s]

B(P=3)
[GB/s]

B(P=4)
[GB/s]

B(P=5)
[GB/s]

Tlat(1)
[µs]

Tlat(4)
[µs]

i5 26 ± 02 27 ± 02 26 ± 01 23 ± 02 01 ± 01 n/a
gtx1060 116 ± 01 108 ± 01 94 ± 09 85 ± 12 09 ± 01 n/a
skl 194 ± 20 183 ± 09 153 ± 15 147 ± 07 14 ± 02 19 ± 02
knl 281 ± 13 232 ± 24 188 ± 20 160 ± 18 13 ± 01 42 ± 02
p100 377 ± 02 333 ± 04 297 ± 02 259 ± 17 06 ± 01 39 ± 01
v100 808 ± 09 763 ± 11 727 ± 10 653 ± 35 06 ± 01 39 ± 01

Table 4: Average single node bandwidths B for various polynomial coefficients P as well as average single-node and multi-node latencies according to Eq. (10). We
use Table 2 and 3, (Naxpby,Ndot,Ndxdy) = (9, 2, 12) and (Maxpby,Mdot,Mdxdy) = (36, 4, 36), N = 23, M = 76 and a ratio of M/N = 3.30. This corresponds to the
average between a conjugate gradient iteration and the Arakawa algorithm.

estimated. On the other side the Skylake architecture and the
Intel i5 CPU for array sizes S/n < 30MB run up to a factor 2
faster than predicted. We explain this by the very fast execution
of the trivially parallel part of the algorithms in the fast cache
as is evident in Fig. 6a. This effect is not included in our par-
allel model. On the other hand, the measured run times T meas

for the Tesla GPUs and our desktop system are remarkably well
predicted by our model and with only few exceptions lie within
an interval (3/4)T pred < T meas < (4/3)T pred, with T pred given by
Eq. 10.

5.5. Strong and weak scaling
Equation (10) enables us to discuss the strong and weak scal-

ing of an arbitrary algorithm. The strong scaling of a problem
with total array size S , polynomial coefficients P and number
of nodes n is defined as

ε(P, S , n) :=
t(P, S , 1)

nt(P, S , n)
=

Tlat(1) + (M/N)(S/B(P))
nTlat(n) + (M/N)(S/B(P))

(13)

The weak scaling efficiency relates run times with equal array
size per node s = S/n as

γ(P, s, n) :=
t(P, s, 1)

t(P, ns, n)
=

Tlat(1) + (M/N)(s/B(P))
Tlat(n) + (M/N)(s/B(P))

(14)

We immediately see that the efficiency ε tends to 0 for large
number of nodes n, while the explicit n dependency in γ van-
ishes. The only remaining dependence on n is in the latency
Tlat(n). We argue that the dependence on n should vanish in
the latencies for axpby, since there is no communication at all.
For the dxdy algorithm the latencies should also become inde-
pendent of n for large n since communication happens only be-
tween nearest neighbors. Only for the dot product the latency
should increase with n due to the global communication.

Both the strong and the weak scaling tend to unity if s =

S/n � (N/M)Tlat(n)B(P). The value of the product

(S/n)min ≈ 0.3Tlat(n)B(P) (15)

can thus be taken as minimum size per node for an efficient
Feltor simulation. For the values presented in Table 4 the min-
imum array size per node typically lies between 1 and 10MB.

5.6. Discussion

From Eq. (10) it is clear that the runtime t is low if the aver-
age latency Tlat is low and the bandwidth B is high. On the
other side, performance can also be gained by reducing the
number of function calls N, or the number of memory opera-
tions M. Apparently, the fastest possible implementation is to
implement the whole algorithm in a single function, with N = 1
and a minimum number of memory operations Mmin. For ex-
ample, our current arakawa implementation has M = 34 and
N = 9, which compares unfavourably to a possible Nmin = 1
and Mmin = 4. The drawback of implementing and optimizing
every algorithm or equation separately is the increased main-
tenance and performance tuning cost. Furthermore, this ap-
proach would not be easily extensible or modifiable and vio-
lates our design goals presented in Section 2. Still, we estimate
the performance we loose due to the Feltor design between a
factor 2 and 5 depending on the algorithm at hand. In an ef-
fort to mitigate the problem we introduced new primitive func-
tions with increased workload, for example the vector operation
z ← αx1y1 + βx2y2 + γz, where x1y1 is a point-wise multipli-
cation. We currently also explore template parameter packs in
the C++ -11 standard as a promising candidate to increase the
workload of Level 1 functions in Feltor.
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Figure 7: Comparison of predicted runtime Eq. (10) to measured time for the
Arakawa algorithm (a) and a single conjugate gradient (cg) iteration (b). The
plot highlights the deviation from the predicted time. Points below 1 mean
faster execution than predicted.

6. Discussion and Conclusion

With Table 4 and Eq. 10 in Section 5 we have a powerful
tool to judge the performance of various hardware architectures
available to us. We are able to estimate the runtime of a Feltor
simulation for given problem size, hardware and node count.
From a user perspective the possibility to predict performance
is certainly a valuable feature since available resources can be
used more effectively and the performance of future hardware
can be estimated from its theoretical bandwidth.

Let us here discuss performance also in the light of the simu-
lations we eventually want to carry out. In fact, an increase/de-
crease in performance of the implementation may lead to an
only marginal improvement/deterioration of the numerical sim-
ulations itself. Consider for example a three dimensional prob-
lem and an available runtime T (set by cluster policies, allo-
cated resources or simply personal preferences). Accounting
for the reduced/increased time step due to the CFL condition a
factor 2 increase/decrease in performance leads to only a fac-
tor 21/4 ≈ 1.19 increase/decrease in the number of grid points
per dimension. This justifies our design goals laid out in Sec-
tion 2. We do strife for performance but when faced with pos-
sible trade-off scenarios we put equal value on other goals as
well.

Of course, the choice of the physical model and the numeri-
cal methods employed ultimately set the limit of what an imple-
mentation can achieve in terms of performance. As discussed
in Section 4 in discontinuous Galerkin methods the order of the
method is a free parameter. In Section 5 we argue that a higher
order method executes slower than a lower order method with
the same number of degrees of freedom due to the increased
stencil. At the same time, the high order method may also re-
quire less points overall to achieve the same resolution and ac-
curacy as the lower order method. The minimum requirements
of what a simulation has to resolve is eventually given by the
spatial and temporal scales in the physical dynamics.

Another consideration is the question of when a simulation is
“converged”. As we argue in Section 3 this question can be dif-
ficult to answer. In ill-conditioned problems only reduced phys-
ical quantities of interest or invariants may be valid indicators.
Pointwise convergence may be lost altogether and reproducibil-
ity has to be reconsidered. We show that we algorithmically
and programmatically achieve bitwise reproducibility of results
in Section 3 by ensuring deterministic execution of elementary
subroutines in parallel environments. Again, in Section 5 we
show that these changes, which may be viewed as restrictions,
still allow high performant simulations on various architectures.

This discussion hopefully provides the reader with the tools
necessary to justify an appropriate setup for a numerical simu-
lation and although this article was primarily written on Feltor
we think that our arguments holds for any similar simulation
framework as well.
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