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Breaking the poloidal symmetry of the magnetic shear induced tilt of turbulent structures, by
either divertor X-point resistivity or limiter positions, can lead to a finite (residual) contribution to
the flux-surface averaged radial-binormal Reynolds stress. This residual stress supports or works
against the radial electric field at the plasma edge of a tokamak. The impact of divertor geome-
try on the poloidal pattern of the Reynolds stress is studied by flux-coordinate-independent fluid
simulations. Clear modifications of the Reynolds stress are found due to the magnetic shear in the
confined region. The impact of different poloidal limiter positions on the radial electric field and
the Reynolds stress is studied by means of magnetic field aligned gyrofluid simulations. Only if the
limiter is close to the outer midplane can its position have a substantial effect on the radial electric
field.

PACS numbers:

I. INTRODUCTION

Understanding the influence of a complex magnetic
field structure on plasma turbulence opens up new per-
spectives for the optimization of transport and signifi-
cant improvements of confinement in magnetically con-
fined fusion plasmas. One important example where the
magnetic configuration influences the confinement is the
position of the X-point. In the unfavorable configura-
tion, where the ion ∇B drift is directed away from the
X-point, the power threshold of the L-H transition is
higher than in the favorable configuration, where the ion
∇B drift is directed towards the X-point [1–3]. The un-
derlying mechanism so far is still unknown. Rotation in
general is considered to be beneficial for magnetic con-
finement. Rotation can mitigate magnetohydrodynami-
cal (MHD) macro-instabilities like the resistive wall mode
[4]. Differential rotation is thought also to suppress MHD
macro-instabilities like ballooning modes [5] in addition
to the turbulence at micro-scales [6, 7]. In contempo-
rary experiments rotation is, to a large degree, externally
provided by the external momentum input from neutral
beam injection. Due to the large machine sizes of fu-
ture reactor-grade devices like ITER or DEMO this may
not be available. For this reason, rotation in the absence
of externally applied torque, so-called intrinsic rotation,
has recently been intensively studied [8, 9]. Intrinsic ro-
tation in the sense of Refs. [8, 9] refers to toroidal rota-
tion mainly in the core region of the tokamak plasma. In
the present study, self-generated (intrinsic) flows in the
direction binormal to the magnetic field line and to the
radial direction as well as flows in the poloidal direction
are studied in the very edge of tokamak plasmas. Note
that in a tokamak toroidal is not parallel and binormal is
not poloidal. Toroidal and poloidal flows both have com-
ponents in the parallel and binormal directions. Flows

in the parallel and binormal directions both have compo-
nents in the poloidal and toroidal directions. Therefore,
with respect to broader research goals, the present study
can be assigned to the topic of intrinsic rotation.
As mentioned above two of the main parameters deter-

mining confinement of magnetic fusion plasmas are mag-
netic and flow shear [7]. Flow shear, as well as magnetic
shear, leads to a tilt of turbulent structures in the plane
perpendicular to the magnetic field. The tilt of turbulent
structures corresponds to a finite Reynolds stress 〈ũxũy〉,
where ũx,y are the radial and binormal E × B velocity
fluctuations and 〈·〉 is an average specified in detail below.
There are possible synergistic effects of magnetic and flow
shear. Stronger magnetic shear leads to narrower layers
of the zonal vorticity which is beneficial for confinement
[10]. It is known that magnetic shear contributes to the
E×B flow shearing rate [11, 12] and exhibits a contribu-
tion to the Reynolds stress [13]. This contribution can be
due to a coupling to the radial-parallel Reynolds stress
〈ũxũ‖〉 by the sheared slab approximation as in Ref. [13],
however the tilt due to the magnetic shear can also di-
rectly influence the Reynolds stress as explained in the
following.
Geometric modifications of the boundary conditions

can influence the Reynolds stress [14]. In a single null
configuration the X-point breaks the poloidal symmetry
of the magnetic shear induced tilt of turbulent structures,
transmitting a finite contribution of the Reynolds stress
to the flux-surface average. This residual Reynolds stress
works either to reinforce or weaken the background flow
shear. The sign of the residual stress depends on the
magnetic configuration. In one configuration the flow
shear is stronger and favorable and in the other the flow
shear is weaker, which is unfavorable. Indeed changes
of the energy transfer rate from the turbulence into the
low frequency zonal flow (proportional to the Reynolds
stress) are observed with changing poloidal position of
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the X-point [15]. The poloidal position of the limiter
could have similar effects in principle.
For comparison with the dynamics in physical space,

zonal flow modeling intrinsically requires flux surface av-
eraged values of the Reynolds stress. However, not much
is known about the spatial distribution of the Reynolds
stress. In recent studies at the stellarator TJ-K [16],
the Reynolds stress turned out to be strongly inhomoge-
neous on a flux surface. Thus, local measurements have
to be interpreted with caution when comparing with the-
oretical predictions. This paper reports on the natural
poloidal structure of the Reynolds stress as a result of
purely magnetic shear in tokamak experiments. In ad-
dition, the impact of the poloidal limiter position and
the presence of an X-point on the flux-surface averaged
Reynolds stress is investigated by means of turbulence
simulations.
This manuscript is organized as follows: The effect of

magnetic shear on turbulent structures is compared to
the effect of flow shear in the next (Sec. II). The de-
velopment of residual Reynolds stress due to magnetic
shear is also described in this section. The impact of di-
vertor geometry on the poloidal pattern of the Reynolds
stress is discussed and subsequently studied by means of
flux-coordinate independent fluid simulations done with
GRILLIX [17] in Sec. III. At present, GRILLIX does
not feature finite ion temperatures. Therefore, a self-
consistent radial electric field is not present and the im-
pact of the magnetic shear induced Reynolds stress on the
radial electric cannot be studied with GRILLIX for the
time being. Instead, we use the gyrofluid code GEMR
[18, 19] to study this effect. GEMR includes a self-
consistent equilibrium, but does not include X-point ge-
ometry. The impact of different limiter positions on the
radial electric field and the Reynolds stress will be dis-
cussed and subsequently studied in the circular-limited
configuration using Tore Supra parameters, by means of
field-aligned gyrofluid simulations in Sec. IV.

II. MAGNETIC SHEAR INDUCED TILT OF

TURBULENT STRUCTURES

In the presence of magnetic shear ŝ = ρ
qs

dqs
dρ

(with

radial coordinate ρ and safety factor qs) turbulent struc-
tures are progressively tilted as illustrated in Fig. 1. For
positive magnetic shear ŝ > 0 the safety factor qs is in-
creasing with the radius. The field lines further outwards
are less strongly twisted than further inwards. One can
also understand this from the definition of the safety fac-
tor qs = N/M , the ratio of toroidal N to poloidal rev-
olutions M , corresponding to the ratio of the toroidal n
to the poloidal mode number m. For qs = m/n increas-
ing with radius (ŝ > 0), the poloidal mode number for
a given toroidal mode number is increasing, hence the
distance between the structures reduces with increasing
radius. Whereas for the flux surfaces further inwards the
poloidal mode is decreasing, hence the distance between

FIG. 1: Illustration of the tilt of turbulent structures by
magnetic shear. It is shown how turbulent structures
are tilted by the magnetic shear. The tilt induced by

magnetic shear is up-down asymmetric.

the structures increases. In any case, magnetic shear
leads to a poloidal tilt of magnetic flux tubes and asso-
ciated turbulent structures. The tilt of the structures is
equivalent to a finite Reynolds stress [20] which is given
by 〈ũxũy〉. In a plasma with circular cross-section the
structures above and below the midplane are tilted in op-
posite directions (Fig. 1). Thus, the tilt induced by mag-
netic shear is up-down asymmetric. The geodesic curva-
ture κg in a tokamak with circular cross-section changes
sign at the midplane and has a sinusoidal form with min-
imum and maximum at bottom and top. In Ref. [16]
it has been found that the poloidal distribution of the
Reynolds stress roughly follows the geodesic curvature.
At smaller radii the flow is low and above the midplane
the outer flow would point downwards (negative shear)
whereas below the midplane the outer flow would point
upwards (positive shear). In a limited plasma with circu-
lar cross section the confined region is poloidally symmet-
ric, and therefore the magnetic shear should not affect the
zonally averaged Reynolds stress. Therefore, only if the
poloidal symmetry is broken, can magnetic shear lead to
a residual contribution to the zonal flow drive.

Once a residual Reynolds stress is induced by the mag-
netic shear, it may act as a seed tilt, which can be self-
amplified by the interaction of zonal flows and turbulence
[14]. The Reynolds stress as the correlation between ra-

dial and perpendicular velocities 〈ũxũy〉 ∼ −kxky|φ̃2| is
proportional to the tilt which can be written in wavenum-
ber space as kxky. In an eikonal representation the radial

wavenumber is subject to a change kx = −ky
∂uy

∂x
τc if ex-

posed to a sheared flow uy over the correlation time τc.
The magnetic shear ŝ can lead to a tilt similar to the flow
shear. Structures born at a particular position θ0 (for
example the outboard midplane θ0 = 0 for curvature-
induced instabilities), which follow magnetic field lines
are progressively tilted by the magnetic shear kx = kyθŝ
[14, 21], where θ is the poloidal ballooning angle. The
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ŝ-induced Reynolds stress is given by [14, 21]

Πŝ(θ) = −ŝθ〈ũ2
x(θ)〉t, (1)

where 〈·〉t denotes time average. The ŝ-residual Reynolds
stress is given by the flux surface average 〈Πŝ(θ)〉θ. In
the case of a poloidally symmetric plasma, 〈Πŝ〉θ van-
ishes. An imbalance between positive tilt and negative
tilt can be provided by a poloidal truncation of the bal-
looning envelope, which can be provided by X-point re-
sistivity [22] for diverted plasmas or the limiter position
for limited plasmas [14, 21].
The derivation of Eq. (1) has been based on infinites-

imal changes of the radial wavenumber by infinitesimal
changes of the phase due to the effect of magnetic shear.
For this reason Eq. (1) is valid only for an infinitesimal
distance ∆θ = θ − θ0 from the original poloidal angle
θ0, where the structure originates. This forces a linear
dependence of Eq. (1) on the poloidal angle θ. How-
ever, the entire behavior of the tilt is important, because
what matters in the end is the flux-surface average of
this quantity and only taking into account a narrow or
even infinitesimal region around the low-field side mid-
plane might not be a good approximation. Since the
turbulence level is high at the midplane on the low-field
side, one might be tempted to argue that only this region
matters, however, one must not forget that the ŝ-induced
Reynolds stress is small due to the linear θ dependence.
Also Eq. (1) allows only for a periodic solution, important
for the confined region, if ũ2

x(θ) vanishes at the opposite
ballooning angle to the angle where the structures are
generated ũ2

x(θ0 + π) = 0. On the high-field side differ-
ently sheared structures coalesce coming from above and
below the midplane. This leads to a cancellation of the
ŝ-induced Reynolds stress. To take the coalescence into
account, Eq. (1) can be modified according to

Πŝ = u2
x(θ0)

(

e−
(θ−θ0)2

∆θ2 ŝ(θ − θ0)− e−
(2π−θ+θ0)2

∆θ2 ŝ(2π − θ + θ0)

)

(2)

using ũ2
x(θ) = ũ2

x(θ0)e
−

(θ−θ0)2

∆θ2 as in Ref. [14]. This would
provide a sinusoidal pattern of the Reynolds stress in-
duced by tilt due to the magnetic shear as expected from
basic considerations shown in Fig. 1.
It should be noted that a sinusoidal pattern of the

Reynolds stress is part of the Pfirsch-Schlüter sideband
balance [23]. A finite contribution of 〈ũxũy sin θ〉 drives
the flow sideband 〈ũy sin θ〉. This is in balance with the
pressure sideband 〈(p−W ) sin θ〉 (with p the total pres-
sure p = pi + pe and the generalized potential built from
electrostatic potential and ion pressure perturbations
W = φ̃ + p̃i, see Ref. [23] for more details) determines

the Pfirsch-Schlüter balance 〈(p−W ) sin θ〉 ∼ 〈J̃‖ cos θ〉.
Therefore, the sinusoidal pattern of the Reynolds stress
is coupled to the sinusoidal pattern in the pressure, which
is part of the geodesic acoustic mode (GAM) oscillation.
A stronger magnetic shear leads to stronger sidebands in
〈ũxũy sin θ〉 and 〈W sin θ〉 which affects the overall side-
band dynamics. A detailed investigation would require

FIG. 2: Impact of an X-point on the tilt of turbulent
structures. Similar figures can be found in Refs. [14, 21].

scans of the magnetic shear strength which are left for
future studies. However, the sinusoidal pattern of the
Reynolds stress is well imbedded in the dynamics of the
plasma edge turbulence and is not isolated.
It should also be noted that the flow shear V ′ used

in Refs. [14, 21] is subject to variation along the poloidal
angle. As the potential is a flux-function it should be con-
stant on a flux-surface, but the E×B flow and therefore
also the shear depends on the magnetic field strength.
Additionally flux expansion effects have to be taken into
account.

III. IMPACT OF THE X-POINT

In the presence of an X-point the X-point resistivity
can act directly inside the confined region and therefore
it can be expected that it has a much stronger effect
on the Reynolds stress. The influence of the X-point on
the tilt of turbulent structures by magnetic shear is il-
lustrated in Fig. 2. Close to the outboard midplane the
structures are expected to be tilted similarly to the case
without X-point (Fig. 1). Approaching the X-point the
structures become strongly elongated and thinned due to
the strong magnetic shear close to the X-point. As very
thin structures exhibit a high wavenumber these struc-
tures are strongly dissipated [22]. Therefore, the X-point
directly truncates the ballooning envelope. This effect
is not restricted to the scrape-off layer as in the lim-
iter case described below. If the magnetic shear strongly
varies with the ballooning angle, the magnetic shear ŝ in

Eq. (2) should be replaced by its local value ρ
q
∂
∂ρ

Bϕ(θ)
Bθ(θ)

.

Approaches based on field-aligned coordinates suffer
from coordinate singularities due to the X-points. Flux-
coordinate independent approaches offer the possibility
to study these configurations. Such a flux-coordinate
independent approach is done in the code GRILLIX
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[17]. An isothermal electrostatic drift-reduced Braginskii
model [24] is simulated with different geometries. On
the one hand GRILLIX takes into account a more real-
istic geometry. The effect of the X-point resistivity has
already been demonstrated with GRILLIX as shown in
Ref. [25]. On the other hand the simulations with GRIL-
LIX do not take into account important physics necessary
for the L-H transtion. One important part missing is the
finite ion temperature, which is important for the radial
electric field evolution (Er ∼ (∇pi)ene) [26], or electro-
magnetic effects. These effects are implemented in the
code GEMR, which is used in the section IV, with the
big disadvantage that GEMR does not allow study of an
X-point geometry.

As a first verification of our considerations we nu-
merically investigate the effect of magnetic shear on in-
dividual structures. A typical field-aligned ballooning-
like structure is considered in circular geometry without
shear in Fig. 3a (q0 = 3, ŝ = 0), with shear in Fig. 3c
(q0 = 3, ŝ = 0.75) and in diverted geometry in Fig. 3e.
The structures are all poloidally symmetric Gaussians
at the outboard midplane (w⊥/R0 = 0.035 in the cir-
cular cases and w⊥/R0 = 0.015 in the diverted case)
and field aligned with a Gaussian ballooning envelope
along the parallel direction (w‖/R0 ≈ 11 ≈ πq0R0). The
structures are tilted and distorted according to the re-
spective magnetic geometry. Several toroidal positions
are shown overlaid in the left column of Fig. 3. As-
suming plasma parameters of the turbulence simulations
presented later on (ρs/R0 = 1 · 10−3) the correspond-
ing Reynolds stresses Π = 〈eψ · ∇u (eψ × eϕ) · ∇u〉

ϕ
of

the individual structure u are shown in the right col-
umn respectively (Figs. 3b,d,f). In the absence of mag-
netic shear the structure is not tilted (Fig. 3a) and is
not associated with any Reynolds stress (Fig. 3b). In-
cluding magnetic shear, the structure is tilted (Fig. 3c)
and the corresponding Reynolds stress shows the char-
acteristic updown asymmetry (Fig. 3d), which confirms
the picture in Fig. 1. In divertor geometry, including
X-points, the structure becomes strongly tilted and elon-
gated at the upper high-field side and as well close to
the lower X-point (Fig. 3e). Here we find the strongest
contributions to the Reynolds stress from the individual
structures (Fig. 3f). Keeping the structure and geome-
try fixed the Reynold stress scales like Π ∝ ρ−2

s , i.e. for
the same structures the absolute values of the Reynolds
stress at half ρs would be four times larger. However, we
want to note that instabilities and turbulence itself are
also sensitive to ρs.

For comparison with our basic considerations (Fig. 1)
and for comparisions with the GEMR simulations shown
later, simulations in a circular cross-section are per-
formed with GRILLIX. Since our aim is a qualitative
comparison, no detailed matching of the exact parame-
ters is needed and we used previously performed simula-
tions. Simulations were done in a deuterium plasma with
R0 = 1 m, B = 0.5 T, ne = 2 · 1018 m−3, Te = 10 eV,
τei = 4.4 · 10−7 s. More details can be found in chapters

5.1 and 5.3 of Ref. [17]. The radial-poloidal Reynolds
stress 〈ũrũθ〉ϕ,t has been computed and is shown in
Fig. 4. Here 〈·〉ϕ,t denotes an average over the toroidal
(axissymmetric) angle and time. As observed before in
the GEMR simulations (Fig. 8), which were qualitatively
consistent with our preliminary considerations (Fig. 1),
an up-down asymmetry in the Reynolds stress is also ob-
served here.
Figure 5 shows the radial-poloidal Reynolds stress

〈ũrũθ〉ϕ,t in divertor geometry. The up-down asymmetry
is not as clear as in the circular cross-section. But on the
high-field side some of this asymmetry appears to remain.
Major contributions to the Reynolds stress can be found
above the lower X-point and below the upper X-point.
The enhanced magnetic shear in these regions impacts
the tilt of the structures and thus the Reynolds stress.
Very close to the lower X-point the Reynolds stress van-
ishes as the magnetic shear is too strong, and due to
the strong thinning of the structures they are dissipated.
This is what is meant by the X-point resistivity. Close
to the X-point this X-point resistivity acts to truncate
the ballooning envelope. A bit further away the mag-
netic shear is not strong enough to dissipate the turbulent
structures, but because the magnetic shear is very large
the structures are very highly tilted leading to very strong
contributions to the Reynolds stress. The basic structure
of turbulence can in fact be traced back to the magnetic
shear. The strongest contributions to the Reynolds stress
in the case of turbulence (Fig. 5) can be found at the up-
per high-field side (positive Reynolds stress) and close to
the lower X-point (negative Reynolds stress), which also
show up for individual structures (Fig. 3f). Thus, to first
order the poloidal variation of the Reynolds stress can be
understood as the effect of magnetic shear on individual
structures.
On the low-field side the Reynolds stress does not show

a strong up-down asymmetry but instead is organized in
bands with radially alternating signs. This is expected
from a zonal flow staircase-like structure. In the case
of the GEMR simulations the background shear (Er ∼
∇pi/(en)) may lock the zonal flow pattern, whereas in
the present GRILLIX simulations the zonal flow is more
free.

IV. IMPACT OF THE LIMITER POSITION

In the scrape-off layer (SOL) region the position of the
limiter may induce a truncation of the ballooning enve-
lope and can lead to a finite contribution to the zonally
averaged Reynolds stress. Three examples are shown in
Fig. 6. If the limiter is placed at the bottom (Fig. 6a) or
the top (Fig. 6b) the fluctuation level directly behind the
limiter is reduced, which leads to an up-down asymme-
try. Besides the point directly at the low-field side (LFS)
midplane where the asymmetry vanishes by definition,
the asymmetry increases the closer the limiter is located
to the LFS midplane (Fig. 6c). Direct impact of the lim-
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FIG. 3: GRILLIX simulations: The left hand side shows poloidal cross-sections of an individual structure starting at
the outboard midplane and summed over several toroidal positions (a,c,e). Assuming the same plasma parameters
as in the turbulence simulations presented later on (ρs/R0 = 1 · 10−3), and identifying the structure with normalized
potential eφ/Te, the corresponding Reynolds stress is shown on the right hand side (b,d,f) in units of [m2/s2]. Both
are shown in the case of a circular cross-section without magnetic shear (a,b), with magnetic shear (c,d) and in the

case of a diverted plasma (e,f).

iter is restricted to the SOL region. However, a finite
contribution to the zonally averaged Reynolds stress at
the LCFS, at the boundary of the confined region, can
impact the edge region, which may be nonlinearly self-
amplified. This can only be found out via simulations.

The influence of the limiter position has been inves-
tigated with the help of simulations carried out with

the three-dimensional gyrofluid electromagnetic turbu-
lence model GEMR [18, 19]. GEMR is a six-field model
and simulates the densities, parallel velocities, parallel
and perpendicular temperatures and parallel and per-
pendicular parallel heat fluxes for ions and electrons re-
spectively. These are the dependent variables. Potential
perturbations with finite Larmor radius corrections are
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FIG. 4: Reynolds stress 〈ũrũθ〉ϕ,t in m2/s2 in the
poloidal plane in a circular cross-section simulated with

GRILLIX including finite magnetic shear.
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FIG. 5: Reynolds stress 〈ũrũθ〉ϕ,t in m2/s2 in the
poloidal plane in a diverted configuration with X-point

simulated with GRILLIX.

FIG. 6: Impact of the limiter position on the tilt of
turbulent structures.

deduced from quasineutrality. A circular plasma cross-
section with toroidal axisymmetry is implemented. The
coordinate system is aligned with a self consistent time
varying equilibrium magnetic field. The gradients evolve
freely, as required by the strength of fluctuating dynamics
in the plasma edge region. The profiles are also included
in the dependent variables in the polarization equation,
and so GEMR is a global model. The background ra-
dial electric field evolves self-consistently. Details on the
self-consistent treatment of the profiles and MHD equi-
librium can be found in Ref. [18]. In summary, GEMR
enables self-consistent simulation of an equilibrium (pro-
viding the radial electric field Er) together with the tur-
bulence (providing the Reynolds stress).

The coordinate system (x, y, s) is magnetic field
aligned, with x in the radial, y in the binormal and s in
the parallel direction relative to the magnetic field vector.
The set of grid points with constant parallel coordinate
represents the drift plane, which is perpendicular to the
magnetic field. The open field lines corresponding to the
SOL are implemented by the boundary conditions via a
perturbed Debye sheath current [27]. The actual bound-
ary conditions used in the simulation, which include the
temperature dynamics, can be found in Ref. [28]. The
deviation from the preset background values has to be
small as required by consistency. The input parameters
are ρ∗ = δ = ρs/a, plasma beta β, and normalized colli-
sionality ν = aνe/cs. Here ρs =

√
Temi/eB is the hybrid

Larmor radius, cs =
√

Te/mi is the ion sound speed, a is
the minor radius, Te is a reference electron temperature,
B is the magnetic field strength and νe is the inverse
Braginskii collision time.

As GEMR is limited to circular plasma poloidal cross
sections a comparison with experiments in such a geom-
etry is desirable. In Ref. [21] the model of the ŝ-induced
residual stress [14] has been compared to experiments
in Tore Supra. Tore Supra (R = 2.4 m, a = 0.70 m)
is usually operated at high magnetic fields (B = 3.5
T) with roughly circular plasma poloidal cross section.
Fortunately, the geometry of GEMR is suitable for Tore
Supra modeling. The experimental parameters at the
LCFS (the reference flux surface) are taken from Ref.
[14, 21] to be ne = 4 · 1018 m−3, Te = Ti = 40 eV
and Ln = LTe = LTi = 3.5 cm. These translate to
the following GEMR input parameters: δ = 4.27 · 10−4,
β = 2.79·10−6, ν = 9.26. The simulations have been done
on a 256× 512× 16 grid. The radial resolution is ρs, the
binormal resolution is about 2ρs which is marginal but at
least kyρs = 1 where the strongest interaction between
shear flows and turbulence takes place [29] is resolved.
At the LCFS the safety factor is qs = 3.5 with a mag-
netic shear of ŝ = 1.4. In the experiments described in
Ref. [21] the limiter positions were θX = ±35◦, whereas
θX = ±33.75◦ have been simulated.

In the lower limiter case, θX = −33.75◦, (Fig. 7a) the
radial electric field is deeper at the seperatrix than in the
upper limiter case, θX = +33.75◦ (Fig. 7b). Therefore,
in the GEMR simulations the lower limiter case shows
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FIG. 7: GEMR simulations of Tore Supra discharges. Radial electric field (a,b), radial profile of the zonally
averaged Reynolds stress (solid line) (c,d), poloidally resolved contribution to the Reynolds stress (solid black line)

and the ŝ-residual Reynolds stress contribution (red dashed line) at the separatrix ρ = 1.00 (e,f) for the lower
θX = −33.75◦ (a,c,e) and upper limiter case θX = +33.75◦ (b,d,f).

better confinement properties for the favorable configu-
ration. The radial electric fields are similar to the experi-
mental values in Tore Supra [21]. The GEMR simulations
found minima in the radial electric field at around 6 and
3 kV/m in the lower and upper limiter case, respectively.
In the Tore Supra experiment the minima in the radial
electric field for the lower and upper limiter case are at
7 and 4 kV/m [21]. Here, the ion diamagnetic velocity is
defined negative for easier comparison with Refs. [14, 21].
Therefore, the shear across the LCFS is negative. Tur-
bulence structures tilted in the direction of this shear
exhibit a negative zonally averaged Reynolds stress as
observed in Figs. 7c and d. When the zonally averaged
Reynolds stress drive −∂x〈ũxũy〉y,s,t is positive (Figs. 7c
and d) this leads to an acceleration in electron diamag-
netic direction (Figs. 7a and b). The zonally averaged
Reynolds stress in the lower limiter case (Fig. 7c) is of
similar order of magnitude to, but steeper than, than the
upper limiter case (Fig. 7d). Therefore both the Reynolds
stress drive −∂x〈ũxũy〉y,s,t as well as the turbulence sup-
pression 〈ũxũy〉y,s,t∂x〈uy〉y,s,t are stronger in the former
case. Here 〈·〉a are the corresponding zonal (binormal and
parallel) and time averages, with a ∈ {y, s, t}. Deeper
into the confined region (ρ < 0.99) the Reynolds stress

shows marginal impact on the limiter position (Figs. 7c
and d and 8). The Reynolds stress is small at the outer
midplane (θ = 0), increases towards negative θ and de-
creases towards positive θ. Both contributions largely
cancel out in the zonally averaged value (Fig. 7c and
d). As expected by our preliminary consideration in the
case of dominant impact of the magnetic shear (Fig. 1),
the Reynolds stress mainly shows an up-down asymmet-
ric m = 1 structure in the confined region, as shown in
Fig. 8. This is not affected by the limiter position. There-
fore, the impact of the magnetic shear on the structure
tilt is stronger than the impact of the flow shear, and the
limiters cannot influence the plasma far into the confined
region.
Next, the SOL dynamics are investigated which is

somewhat more complicated. Structures are born around
the outboard midplane θ0 = 0, where the tilt and the
Reynolds stress is low. As structures follow the mag-
netic field lines they get progressively tilted by the mag-
netic shear kx = kyθŝ. Structures following the neg-
ative θ direction become tilted in agreement with the
magnetic shear leading to a positive Reynolds stress
(Fig. 8). Structures following positive θ exhibit a neg-
ative Reynolds stress (Fig. 8). In the limiter shadow
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FIG. 8: GEMR simulations of Tore Supra discharges.
Poloidally and radially resolved Reynolds stress
contribution 〈ũxũy〉y,t for the upper limiter case
θX = +33.75◦ (a) and the lower limiter case

θX = −33.75◦ (b).

the Reynolds stress distribution can be understood in a
similar way. Below the limiter in Fig. 8a and above the
limiter in Fig. 8b plasma comes not directly from the out-
board midplane, but radially penetrates into this region.
Structures very close to the limiter do not propagate a
large distance along the field lines and do not get tilted
much, therefore they do not produce significant Reynolds
stress. The structures penetrating the limiter shadow re-
gion with some distance to the limiter are again tilted by
magnetic shear leading to a positive (negative) Reynolds
stress for lower (higher) θ values. At some θ structures
originating at the outboard midplane region coalesce with
structures penetrating the limiter shadow region. This is
the reason for the second point of vanishing Reynolds
stress at around −θ = 0.75π and θ = 0.75π in Fig. 8a
and b, respectively. Directly at the separatrix the situ-
ation is similar but due to the strong negative shear the
Reynolds stress exhibits a strong negative baseline value,
in particular in the region [−π, 0] from the outboard mid-
plane towards the bottom of the inboard midplane.

Figure 9a shows the impact of the poloidal limiter po-
sition on the minimum of the radial electric field. The
minimum of the radial electric field changes by a factor of
two from about 6 kV/m for the limiter at the midplanes
to 3 kV/m for limiters at the bottom or top. The impact
of the limiter position is stronger if the limiter is closer
to the midplane. A similar variation is observed for the
minimum of the Reynolds stress (Fig. 9b), which changes
barely by a factor of two, with the strongest Reynolds
stress obtained with the limiters at the midplanes. To
estimate the ŝ induced residual Reynolds stress an initial

FIG. 9: GEMR simulations of Tore Supra discharges.
Minimum of the zonally averaged radial electric field (a)
and zonal averaged Reynolds stress (b) and ŝ-residual

Reynolds stress (c).

position θ0 has to be set. This has been chosen to be the
poloidal position of maximum amplitude in the poten-
tial fluctuations. According to this calculated ŝ-induced
residual Reynolds stress is shown in Fig. 9c. Qualita-
tively it shows a modulation with respect to the limiter
position as predicted (Fig.4a of Ref. [21]). As the tur-
bulence exhibits its maximum in amplitude around the
outboard midplane the variation of the limiter position
has the highest impact if the limiter is placed in this re-
gion (Fig. 6). If the limiter is far away from the outboard
midplane the main part of the turbulence will be sym-
metrically tilted and no effect of the ŝ-residual stress can
be expected.

V. SUMMARY

The poloidal distribution of the Reynolds stress has
been investigated by means of field-aligned gyrofluid sim-
ulations carried out with the GEMR code and with flux-
coordinate independent fluid simulations carried out with
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the GRILLIX code. In the confined region of a plasma
with circular plasma cross section the poloidally resolved
Reynolds stress 〈ũxũy〉y,t(θ) is mainly up-down asym-
metric (Figs. 8 and 4), which is in agreement with the
structures being tilted by magnetic shear (Fig. 1). In the
zonally average the up-down asymmetric contributions
to the Reynolds stress cancel and the remaining zonal
averaged Reynolds stress is rather small.
The impact of X-point resistivity [14] (Fig. 2) on the

poloidal distribution of the Reynolds stress has been
studied by means of flux-coordinate-independent fluid
simulations carried out with GRILLIX. Indeed, some
tokamaks without divertors have never achieved H-mode
plasmas and the power threshold for limited plasmas is
higher than that for diverted plasmas. Diverted plas-
mas have also been studied by means of flux-coordinate-
independent fluid simulations carried out with GRILLIX.
In the case of a circular cross-section an up-down asym-
metric Reynolds stress is also observed (Fig. 4). For di-
verted geometry, the Reynolds stress shows a complicated
poloidal pattern (Fig. 5), which can be traced back to the
effects of magnetic shear on individual structures starting
at the outboard midplane (Fig. 3e and f).
The impact of the poloidal limiter position on the

Reynolds stress has been studied with gyrofluid simu-
lations carried out using the GEMR code. The GEMR
simulations reproduce the experimental situation in Tore
Supra quite well [21]. By changing the poloidal limiters
by θX = ±33.75◦ with respect to the outer midplane an-
gle the minimum of the radial electric field changes by a
factor of two (Fig. 7a and b). There is no strong impact
on the zonally averaged Reynolds stress and radial elec-
tric field unless the limiters are very close to the outer
midplane (Figs. 6 and 9). For the case of limiters at the
top or bottom, which would correspond to lower or upper
single null configuration, the impact of the limiter posi-
tion does not show a significant difference. In general,
the impact of the limiters on the confined region is lim-
ited to the very edge (up to ρ = 0.99 at most). A strong
nonlinear feedback of the modifications at the boundary

was absent in the present simulations although the sim-
ulation could provide this possibility in principle. This
shows the impact of the poloidal position of the limiter
on the confinement cannot be very strong.

The simulations carried out here reveal the strong
poloidal asymmetry of the Reynolds stress. Hence, mea-
surements at one poloidal positions should not be taken
as representative of the zonal average. For this reason,
it is not surprising that experiments on different devices,
with diagnostics at different positions, find differences in
sign and strength of the Reynolds stress. In some investi-
gations of the impact of the Reynolds stress with respect
to the L-H transition it was found that the Reynolds
stress is strong enough [30–35] to trigger the L-H tran-
sition, but in others it was not strong enough [36, 37]
(even with a different sign in Ref. [37]). To point this
out explicitly, it is possible to both over and underesti-
mate the flux-surface average Reynolds stress by taking a
local measurement only. The Reynolds stress have been
experimentally found to have the opposite sign at two
different poloidal locations [38]. From the present study
it can be concluded that a better understanding of the
spatial distribution of the Reynolds stress is necessary for
a proper interpretation of local measurements involving
simulations with realistic field geometry.
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