
EUROFUSION WPISA-PR(16) 16561

M Owsiak et al.

Running simultaneous Kepler sessions
for the parallelization of parametric

scans and optimization studies applied
to complex workflows

Preprint of Paper to be submitted for publication in
Journal of Scientific Computing

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.

This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked

Running simultaneous Kepler sessions for the
parallelization of parametric scans and optimization

studies applied to complex workflows

Michal Owsiaka,∗, Marcin Plociennika, Bartek Palaka, Tomasz Zoka, Cedric
Reuxb, Luc Di Gallob, Denis Kalupinc, Thomas Johnsond, Mireille Schneidere

aPoznań Supercomputing and Networking Center IBCh PAS, Poznan, Poland
bCEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

cEUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany
dFusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden

eITER Organization, St. Paul Lez Durance Cedex, France

Abstract

In this paper we present an approach taken to run multiple Kepler sessions

at the same time. This kind of execution is one of the requirements for Inte-

grated Tokamak Modelling platform developed by the Nuclear Fusion commu-

nity within the context of EUROFusion project[1]. The platform is unique and

original: it entails the development of a comprehensive and completely generic

tokamak simulator including both the physics and the machine, which can be

applied for any fusion device. All components are linked inside workflows. This

approach allows complex coupling of various algorithms while at the same time

provides consistency. Workflows are composed of Kepler and Ptolemy II ele-

ments as well as set of the native libraries written in various languages (Fortran,

C, C++). In addition to that, there are Python based components that are used

for visualization of results as well as for pre/post processing. At the bottom

of all these components there is a database layer that may vary between soft-

ware releases, and require different version of access libraries. The community

∗Corresponding author
Email addresses: michalo@man.poznan.pl (Michal Owsiak), marcinp@man.poznan.pl

(Marcin Plociennik), bartek@man.poznan.pl (Bartek Palak), tzok@man.poznan.pl (Tomasz
Zok), cedric.reux@cea.fr (Cedric Reux), luc.digallo@cea.fr (Luc Di Gallo),
denis.kalupin@euro-fusion.org (Denis Kalupin), johnso@kth.se (Thomas Johnson),
mireille.mchneider@iter.org (Mireille Schneider)

Preprint submitted to Journal of COMPUTATIONLAN SCIENCE - ICCS 2016September 16, 2016

is using shared virtual research environment to prepare and execute workflows.

All these constraints make running multiple Kepler sessions really challenging.

However, ability to run numerous sessions in parallel is a must – to reduce com-

putation time and to make it possible to run released codes while working with

new software at the same time. In this paper we present our approach to solve

this issue and examples that show its correctness.

Keywords: Kepler Project, workflows, parallel execution, Docker

Acknowledgement

This work has been carried out within the framework of the EUROfusion Consortium and

has received funding from the Euratom research and training programme 2014-2018 under

grant agreement No 633053. The views and opinions expressed herein do not necessarily

reflect those of the European Commission.5

1. Introduction

Integrated modelling efforts for ITER[2] experiment focuse currently on the

assessment on the validation of comprehensive models against present facilities

results. In view of supporting ITER operation, modelling tools are necessary,

both for pulse validation and plasma control. The Nuclear Fusion community10

has developed for this purpose the software infrastructure framework for in-

tegrated modelling activities as well as a validated suite of simulation codes,

platform that is currently operated under EUROFusion1 project.

EUROfusion strategy includes the integration of the most advanced EU fu-

sion codes into a centrally maintained suite of Integrated Modelling tools. Ke-15

pler plays major role in this development as it serves as a basis for integration

of all the components and codes developed as part of the project.2 The work

1https://www.euro-fusion.org
2http://portal.efda-itm.eu/itm/portal/

2

https://www.euro-fusion.org
http://portal.efda-itm.eu/itm/portal/

follow up the Integrated Tokamak Modelling Task Force that operated under

EFDA from 2004 until 2013.

Within EUROFusion WPCD, Kepler is used as a basis for linking various20

components that are used in numerical computations. Each of these compo-

nents can be developed in programming language that is supported by ITM

(Integrated Tokamak Modelling) platform: C/C++, Fortran, Java, Matlab,

Python. All these components (developed separately) are linked together to

form workflows performing numerical computations. Different workflows focus25

on different aspects of plasma simulation. Thanks to using Kepler, each com-

ponent (numerical code) can be wrapped by Java code and exposed as Kepler

actor. This way, regardless of the workflow type, each actor (numerical code)

can be easily reused without too much effort.

After workflows are released, there are two main ways of using them. First30

one, is to use released workflow for actual simulations, second one is to opti-

mize it. These two actions require two, different, installations of Kepler. Both

should be able to run at the same time. Apart from that, there is another

requirement related to running multiple Kepler sessions at the same time, that

is batch execution[3]. In order to reduce computation time one typically runs35

numerous Kepler sessions running the same workflow with different parameters

(see Figure 1).

This way, it is possible to run multiple simulations at the same time. How-

ever, this is not an easy task to achieve when we talk about Kepler being run

at batch nodes in multi user environment.40

Current developments are influenced by numerous factors that affect execu-

tion of Kepler in parallel. These factors are either result of project’s specifics or

are based on internal Kepler’s limitations. We will discuss these factors in next

section.

We will also take a look at solution based on recent advances in virtual-45

ization, in particular Operating-system-level. Active development of such plat-

forms, e.g. like Docker[4] container, made them an interesting solution for en-

capsulating applications. We will show benefits comming from this approach

3

Figure 1: Running multiple Keplers in parallel

as well as some limitations. In our research we have focused on Docker based

solution.50

2. Limitations of Kepler’s mechanisms

Kepler itself provides solutions for running multiple Kepler instances at the

same time. However, these solutions are not fully applicable in case of EUROfu-

sion based developments. We are dealing with very specific architecture where

numerous components have their impact on workflow execution. In addition55

to that we work in multi-user and multi-configuration environment (different

Kepler versions and different set of components executed by workflows).

There are four, most important factors having influence on parallel execution

of Kepler:

• multi-user environment,60

• different Kepler installations,

• version of modules being used,

4

• size of the workflows.

These factors are mostly related to Kepler’s internal cache. Kepler’s cache

improves management of workflows and allows to reduce loading time of the65

workflow itself. Cached data are stored in the internal database that is stored

for each user as a separate database file located inside user’s home directory.

Running multiple Kepler sessions at the same time means that each Kepler

session should have its own means of accessing database file (cache). In case

of HSQLDB3 database (used by Kepler), it is not possible unless it is started70

in, so called, server mode4. This way, it is possible to run one database server

and allow different Kepler instances access the data. It is fairly simple to use

Kepler is this kind of execution mode, however, it is not suitable for multi user

environments.

We will discuss these limitations in four, different contextes.75

2.1. Multi user environment

In case of EUROfusion IM platform, all users work at the same front end

machines of, so called, Gateway. It means, physically, all applications are run

at the same machines. If we want to use HSQLDB in server mode5,6, it means,

each user has to have dedicated range of ports just for him.80

This approach can be treated as a solution, however it is hard to maintain. It

requires handling proper values of ports for all users (we want each user to have

his own cache). In addition to that, it might be impossible to use this approach

at some batch systems where security policy puts hard constraints on port

ranges available for users. Eventually, we cannot allow sharing cache database85

due to number of workflows and configurations available. Users may use actors

with different version numbers, they may use actors that use different database

3http://hsqldb.org
4http://hsqldb.org/doc/2.0/guide/running-chapt.html#rgc_server_modes
5https://kepler-project.org/developers/reference/what-happens-when-kepler-

starts-up
6https://kepler-project.org/developers/reference/accessing-hsql

5

http://hsqldb.org
http://hsqldb.org/doc/2.0/guide/running-chapt.html#rgc_server_modes
https://kepler-project.org/developers/reference/what-happens-when-kepler-starts-up
https://kepler-project.org/developers/reference/what-happens-when-kepler-starts-up
https://kepler-project.org/developers/reference/accessing-hsql

releases (with different structure) and, eventually, they may use completely

different set of actors (different workflows). There is yet another issue with

this approach. When started in server mode, it is not possible to run multiple90

instances of Kepler by single user. And that is exactly what we want to do.

2.2. Different Kepler installations

If we decide to use file based cache system, HSQLDB database is run in

standalone mode, we do not have to allocate TCP ports for users. However, this

approach triggers some issues as well. Development of workflows is a process.95

It means part of codes are ready for release (and can be used for simulations)

while at the same time new codes are developed and added to platform. Users

want to use Kepler in two flavours. Released version – for installations that

contain stable codes, development version – that is still unstable and has to be

tested. This leads to issues related to internal HSQLDB locking – see Figure 2.100

Figure 2: Different schemas for workflow execution

In this scenario, each Kepler instance tries to get exclusive access to cache.

Clearly, only one instance will be able to achieve that. All other Kepler sessions

will fail.

2.3. Different modules’ versions

Yet another approach is to use single Kepler installation and load multiple105

workflows. In this scenario, there is a single Kepler instance that loads multiple

6

workflows. This scenario is depicted on Figure 2. However, this solution is not

suitable for batch execution where Kepler is started in non-gui based mode.

Another issue here is that in case of ETS (European Transport Solver) work-

flows (described in Section 4.1) we may run this workflow with different set of110

components.

2.4. Size of the workflow

It is possible to disable internal Kepler’s cache at all (-runwf -nocache -

nogui). This way, user is not forced to mangle Kepler’s locations each time it is

required to run Kepler in batch mode. However, there is yet another problem115

– size of the workflow. Workflow developed within EUROfusion are quite huge

in size. They consist of thousands of components (actors, composite actors,

connections, etc.). Typical ETS workflow consists of 460 composite actors and

is nine levels deep. Parsing workflow file itself is quite time consuming task. In

case Kepler is started without cache, we face huge increase of loading time (see120

Table 1)

ETS workflow (simplified) cache no cache

execution time [s] 120 420

loading time [s] 50 320

Table 1: Difference in execution/loading time with/without Kepler’s cache

The reason for the difference here lays in parsing mechanism of workflow con-

tent. In case of executing Kepler without cache, it spends most of its time (while

loading workflow) inside ptolemy.moml.MoMLParser. loadFileInContext()

– calculations . In case of long lasting workflows this is not such an issue, in125

case of short computations, this time may heavily impact execution time.

3. Solution

To solve issues mentioned in section 2.1 we have decided to create artificial

$HOME structure for each Kepler being run in batch queue. This solution is

7

depicted on Figure 3. This way, all required directories are replicated for each130

and every Kepler instance. These directories are: .kepler, .ptolemyII, Kepler-

Data, redirect (used for redirecting non GUI based output). We also link kepler

to installed Kepler version of user and we provide additional system information

generated during job execution (environment – for all environment related in-

formation, kepler.log – logs generated by Kepler). For our specific case we also135

create directory public, it is used for data input/output. All workflow related

data are stored inside this directory and are shared over all Kepler instances.

Figure 3: Each Kepler is executed inside dedicated $HOME directory

After structures are ready, all Kepler processes are started as serial jobs via

mpirun command. This way, we get propper distribution of all processes over

requested resources (let it be 4, 16, 32, 64, 128 CPUs). We have successfully140

scaled to 128 CPUs while running production ready workflows (e.g. SYCO-

MORE).

In order to pass the location of new $HOME structure we use two solutions.

First one is based on system settings. We modify $HOME variable before

running code (Kepler). Another approach is to pass user.home property directly145

into JVM. This way, only JVM is altered by settings.

Process of submission is divided into two parts: generation of input script

(this script depends on the Resource Manager being used), execution of task at

8

batch nodes (submission of prepared script). At the time of writing, we have

been able to use this approach for two, different Resource Managers: Load Lev-150

eler and SUN Grid Engine. Both cases require adaptation to proper submission

format, however, thanks to modular architecture of the solution this is not a

drawback. All we have to do to adapt script for a given submission system is

to prepare templates that will be altered by user’s parameters (e.g. name of

the queue, system requirements, nodes reservation, etc.). Schema of the job155

submission is depicted on Figure 4.

3.1. Task submission

Figure 4: Steps taken to run Kepler inside batch queue

Whole process takes part in two, separate areas: user space and execution

environment. User space is the place where user can alter parameters of batch

job. It is possible to set predefined parameters, or even change submission160

script completely. It depends on specifics of the job. Most, typical, workflows

can be run using default, predefined set of scripts. However, in case of spe-

cific requirements, it is possible to alter each part of the execution chain. Jobs

can be submitted in two flavours: synchronous, asynchronous. In case of syn-

chronous jobs, submission scripts executed within user’s space wait until the job165

is done, in case of asynchronous jobs, submission scripts simply start job and

quit immediately.

9

3.2. Limitations

The solution we have described above has some limitations. It makes strong

assumption on what is available inside $HOME during Kepler execution. It170

means that before running workflow we have to make sure all locations required

during execution are provided. Providing new working space for $HOME direc-

tory has some advantages as well as disadvantages. An advantage is application

wide setting that is visible in each and every part of the code (let it be exe-

cutable called from JVM, code called via JNI or call to System.get(”HOME”)).175

Disadvantage of this solution is related to internals of legacy code. In case there

is a strong assumption in the code, in terms of location of files, we have to make

sure they are properly linked in the artificial $HOME structure. There is yet

another issue that can be solved using modified $HOME variable. In some

batch queues (with shared HOME volumes) it might be that there are dedi-180

cated environment variables that refer to $HOME in case we are at frontnodes

or batchnodes. In that case, if one wants to have universal binary that works

fine in both environments it is required to alter HOME variable.

As we already mentioned, another approach is to change HOME location

directly inside Java VM. This is possible thanks to user.home property that185

can be passed to JVM via -D argument.

java -Duser.home=$NEW_HOME_LOCATION JavaApplication

This approach is also suitable in many cases, however, it may fail in case

there are references to $HOME variable directly in the code. This might be

the case for legacy code. Of course, we cannot prevent any possible misusage190

of environment variables and we cannot assure that user’s code will not base its

execution on user.home or HOME variables.

3.3. mpirun based execution and its limitations

In solution provided we use mpirun in order to properly distribute serial

applications over reserved nodes. This approach, however, has some limitations.195

In case of workflows that run mpirun themselves, this solution will not work

10

correctly. This is related to doubled initialization of MPIWORLD . It is not

possible to run mpirun from within mpirun.

3.4. Working with various grid engines

Current solution is somehow bound to grid engine it operates on. This200

is dictated by a number of factors: command line applications used for job

management, submission script layout, environment variables being used by a

given grid engine. In general, we have to pay attention to its specifics. These

elements play a role in the solution and we cannot use current approach as a

general solution for all cases. Before porting it to new grid engine, we have to205

make sure what elements are available for us and how should we alter current

solution to get it fully functional in a new environment. Fortunately, thanks

to modular approach of the solution this is just a matter of replacing parts of

the scripts with proper code. We have been able to port this solution, initially

developed for SUN Grid Engine, to Load Leveler without much effort.210

4. Applications

This approach was successfully applied to various workflows within various

environments. We have been able to adapt this solution for EUROfusion7 de-

velopments (workflows): ETS, IMP5HCD (Heating, Current Drive and Fast

Particles), SYCOMORE. In addition to that we have been able to port the215

solution into JET infrastructure where we have been able to use this approach

to submit ETS workflow into queue system deployed at JET (Joint European

Torus).

4.1. ETS

Development of the operating scenario for fusion reactor requires integrated220

modelling addressing the critical reactor issues: plasma heating and fuelling,

7https://www.euro-fusion.org

11

https://www.euro-fusion.org

radiation from impurities, MHD stability, etc. Since all these issues are inter-

linked, to demonstrate a successful operational scenario, the relevant physics

need to be included in a single simulation. Thus, the environment used for sce-

nario modelling should allow for the integration of multiple codes and physics225

modules into a single scientific workflow. The European Transport Simulator

(ETS) [5] is an outstanding example of such an integrated workflow. The ETS

workflow couples individual physics modules e.g. calculating the plasma mag-

netic equilibrium, deposition (by auxiliary heating systems) transport of energy

and, impurity radiation and MHD. It also offers several options of different230

fidelity for each physics component. Previously, ETS was verified against state-

of-the-art transport codes and used to analyze data from existing tokamaks. In

this work, it has been applied to study the possibility to control the plasma den-

sity in a reactor size machine by means of multiple injections of frozen pellets

composed of 50/50 mix deuterium-tritium.235

Simulations were performed for five different poloidal angles of injection

position, each with several pellet sizes and velocities.[6] To obtain results for

various configurations and perform calculations in parallel, each workflow was

preset with given configuration and executed in parallel with other workflows.

4.2. Sycomore240

SYCOMORE is a modular system code for fusion reactor design. All the

physics and technology calculations are handled by a Kepler workflow[7]. Every

run of the workflow gives a reactor design point. The workflow is coupled to an

external optimisation framework called Uranie. This framework is used to sam-

ple a chosen set of input variables over a chosen range to assess the sensitivity245

of the designs to these particular variables. Uranie can also be used to find opti-

mum design points: in this case, optimal input variables are searched following

a figure of merit and constraints. A typical example of an optimisation problem

is the following: find the smallest possible reactor with a minimum of 500 MW

net electric power. A genetic algorithm is used to carry out such an optimisation250

process. In either case (sampling or optimisation), the SYCOMORE workflow

12

has to be iterated a large number of times: from a few dozens iterations for

simple sampling runs to several 105 or even 106 iterations for multi-criterion

optimisation runs. Since every iteration of the workflow takes between 2s and

10s, it is therefore mandatory to be able to run several of them in parallel to255

achieve reasonable run times.

SYCOMORE and Uranie use genetic algorithms to carry out optimisations.

Therefore, within a generation of the population generated by the algorithm,

every iteration of the workflow is independent. As a consequence, parallel scaling

is very efficient. More details on a scaling test can be found in the following260

paper: Coupling between a multi-physics workflow engine and an optimisation

framework [8].

No of CPUs Wall clock time Teval

256 4 min 56 8.4 s

128 7 min 53 s 6.0 s

96 11 min 09 s 5.3 s

64 13 min 26 s 5.1 s

48 17 min 30 s 4.9 s

32 23 min 27 s 4.4 s

28 53 min 20 s 4.3 s

24 1 h 02 min 37 s 4.2 s

20 1 h 15 min 47 s 4.2 s

16 48 min 36 s 4.4 s

12 2 h 10 min 55 s 4.0 s

8 1 h 38 min 32 s 4.1 s

4 3 h 58 min 52 s 4.1 s

Table 2: Computation time. Process with rank 0 handles only data transfer. Teval is an

averaged time spent for one SYCOMORE evaluation per session.

13

4.3. IMP5HCD

Applying parallel based solution into IMP5HCD workflow allows to reduce

computation time – several, different cases, are run together. This is partic-265

ularly useful in case one wants to verify various combinations of actors being

used in workflow. In case of IMP5HCD, parallel execution was used for test-

ing all the possible combinations between deposition codes and Fokker-Planck

codes. This calculations were done while benchmarking NBI within one of EU-

ROfusion’s activities. IMP5HCD workflow is partially based on Monte Carlo270

approach. This way, scalability is quite efficient – 128 CPUs provides 128 faster

computations [9, 10, 11].

4.4. Using Docker for Kepler encapsulation

With Docker containers, encapsulation of software became easier to achieve.

Treating Docker as universal solution for problems of all types is unwise, how-275

ever, it can help when all we want to achieve is to encapsulate a single application

or service. Docker containers wrap a piece of software in a complete filesystem

that contains everything needed to run: code, runtime, system tools, system

libraries - anything that can be installed on a server. Docker image created this

way will always contain a stable snapshot of the environment for the software280

to run [4]. This approach is very well suited for tasks we are focusing on while

developing solutions based on Kepler8.

Running Kepler in a multi-user environment, can be improved with Docker

based approach. In case users want to execute multiple workflows at the same

time, they can run multiple Docker images containing Kepler and workflow itself285

(Figure 5).

This way, application is fully separated from regular user’s environment.

Docker based image contains all the required components – Kepler, libraries

8Part of this work has been co-funded by the Horizon 2020 Framework Programme through

the INDIGO-DataCloud Project, RIA-653549.

14

Figure 5: Running multiple Kepler instances using Docker based approach

and actors that are not distributed with Kepler. Only varying element is work-

flow and its execution parameters. In fact, this approach provides numerous290

advantages comparing to originally presented solution.

If we discuss aprroach where Kepler is executed as an MPI proccess we have

to keep in mind that no actor executed inside workflow can be based on MPI.

It is impossible to run MPI process from another MPI process. This might be a

limitation in case someone wants to run workflow that spawns local, MPI based,295

computations. If we use Docker based approach, we do not face this issue. In

that case, Kepler is executed as serial process and there are no conflicts with

underlying processes.

In case of $HOME variable manipulation we have to juggle multiple loca-

tions of Kepler, depending on environment we want to provide (e.g. set of actors300

to be included inside Kepler). In addition to that, we interfere with user based

settings for the environment. If we encapsulate Kepler, actors, and workflow

inside Docker image all we have to do is to make sure each image contains set of

components required for execution. All the images can be started in parallel and

there will be no clash between them. This approach is even better if we want to305

share whole Kepler with other users. If we want to provide users with a whole

execution environment, we can simply share Docker image with everything that

is needed to run simulation.

Even though it seems like a perfect solution for everybody, we have to keep

in mind that Docker based solution may not be well suited for all scenarios.310

15

First of all, we have to remember that Docker images are required to contain

everything that is needed for execution. In case of complex workflow where

underlying layers require various external libraries it might be a challenge. For

systems such as the ITM Gateway, i.e. a dedicated host to develop both codes

and their Java wrappers in form of Kepler actors, a working Docker image may315

as well duplicate almost the whole system itself just to run a simple workflow.

Additionally, Docker based solution has one more issue that is related to

security policy. Currently, Docker daemon is required to be run as the root

user and it is strongly emphasised to give access to Docker management only

to a limited set of trusted users. In some cases of highly restricted environent,320

this distinguished group may contain only administrators and not regular users

of Kepler workflows.

4.5. Executing Kepler inside Docker

Docker allows to manipulate existing images (e.g. upload files into image), it

allows to mount external file system locations (e.g. it is possible to mount local325

file system inside running Docker image) and it provides ways to run applications

as soon as Docker image is up and running. This way, it is possible to build very

efficient execution schema where each and every Docker instance with Kepler

can perform different calculations.

One can run very simple use case with Docker executing external calculation330

by running ”Hello world” sample9.

docker run ubuntu /bin/echo ’Hello world’

With this template it is possible to build more complex use-case where

Docker image is executed together with workflow

In presented approach, user prepares one, common image. Image itself con-335

tains Kepler with all the required libraries, actors, etc. Whenever user wants

9https://docs.docker.com/engine/tutorials/dockerizing/#hello-world-in-a-

container

16

https://docs.docker.com/engine/tutorials/dockerizing/#hello-world-in-a-container
https://docs.docker.com/engine/tutorials/dockerizing/#hello-world-in-a-container

Figure 6: Execution schema with Docker based approach

to run different workflow he just specifies what workflow will be used during

execution. It is possible to make the solution even better. By encapsulating

VNC server inside Docker image one can start Docker image and run Kepler in

both GUI/non GUI modes without problems. In fact, this kind of Docker based340

container is already implemented, as part of INDIGO-DataCloud project10. We

have succesfully executed multiple instances of this image both using OS X and

Linux based host operating systems. In addition to that we could run workflows

inside the container without any issues.

4.6. Running Kepler in cloud infrastructure345

Running multiple Kepler instances locally might be interesting task in case

user wants to perform some basic tests. There is one issue here. In case of typical

hardware, users will reach limits of available resources (memory/CPUs) quite

quickly. Running multiple Kepler instances locally, for large scale computations

makes not much sense. In case of using Kepler inside Docker users gain another350

way of running Kepler with ease – cloud computing. As we can encapsulate

everything that is needed for computations in single package, users can easily run

Kepler in cloud based environment. This way they are not bound to HPC/GRID

policy. In fact, users are free to choose best computation plans by using Amazon

EC2, Docker based solutions for cloud computing, IBM Bluemix or previously355

mentioned INDIGO-DataCloud based infrastructure (INDIGO-DataCloud relies

on Apache Mesos[12] and Kubernetes[13] solutions) – just to name few that

support Docker based containers.

10https://github.com/indigo-dc/ansible-role-kepler/tree/master/docker-kepler

17

https://github.com/indigo-dc/ansible-role-kepler/tree/master/docker-kepler

5. Conclusions

Running applications in parallel can save reasonable amount of time. In360

our opinion, presented solution elevates Kepler usage to the next level. We

no longer use it as a workflow design and serial execution tool, but rather, as

a platform for execution of numerous simulations at the same time. We are

sure that suggested solution provides users with new abilities when it comes to

Kepler’s utilisation. There are two, main areas where we find proposed solution365

to be very efficient:

• parametric scan,

• task decomposition.

In case of parametric scan, workflows executed in Kepler perform computa-

tions using the same input data set, but they use different parameters set. In370

here, we have multiple Keplers running multiple workflows over the same data.

This scenario is useful for all simulations where we do some parameters based

optimization (Figure 7). Second approach is useful in case we are dealing with

large input data set and we want to reduce computation time for this given

input. In this case, initial problem is sliced and each Kepler runs exactly the375

same workflow but we provide different input data. Each workflow performs

computations for a single slice (Figure 7).

Parametric scans are based on running exactly the same workflow (in terms

of its architecture) but we change values of parameters. At the moment, we

use two approaches here: altering XML file, passing parameters via command380

line. Both solutions have their limitations (e.g. potential risk of breaking XML

structure). In future we want to focus on Workflow Manager module. This way,

we hope to provide better support in terms of maintaining workflows as well as

allowing users to alter workflows with ease.

When it comes to running the same workflow over different data, situation385

is very similar to parametric scan based approach. In this case we still have to

alter workflow a little bit. We have to (at least) point to input and output that

18

Figure 7: Parametric scan and data decomposition based scenarios

will be processed by each and every workflow. In this case we also look forward

for new releases of Workflow Manager.

Docker based execution of Kepler is another place for conducting further390

research. There are still areas of interest that have not been fully covered by

our research but seems to be very interesting. We are willing to take a closer

look at the MPI based computations triggered by Docker based installations of

Kepler. We are also looking for more user friendly way of supplying running

Docker images with different workflows to reduce startup overhead.395

References

[1] EUROfusion, 2016, https://www.euro-fusion.org.

[2] iter, 2016, https://www.iter.org.

[3] M. P. et al, Approaches to distributed execution of scientific workflows in

kepler, in: Fundamenta Informaticae 128, 2013, pp. 1–22.400

[4] Docker, 2016, https://www.docker.com.

[5] D. K. et al., Numerical analysis of jet discharges with the european trans-

port simulator, in: Nucl. Fusion 53, 2013.

19

https://www.euro-fusion.org
https://www.iter.org
https://www.docker.com

[6] D. K. et al, Predictive simulations of reactor-scale plasmas fuelled with mul-

tiple pellets with the european transport simulator, in: Proc. EPS Lisbon,405

2015.

[7] C. R. et al, Demo reactor design using the new modular system code syco-

more, in: Nuclear Fusion 55 vol 7, 2015.

[8] L. D. Gallo, C. R. et al, Coupling between a multiphysics workflow engine

and an optimization framework, in: Computer Physics Communications410

00, 2015, pp. 1–19.

[9] O. A. et al, Nbi benchmark on the european integrated modelling (eu-im)

framework, in: 14th ITPA on Energetic Particle Physics, 2015.

[10] M. S. et al, Benchmarking neutral beam injection codes within the european

integrated modelling framework, 2015.415

[11] M. S. et al, Nbi benchmarks in integrated modelling frameworks, in: 15th

ITPA on Energetic Particle Physics, 2015.

[12] Apache mesos, 2016, http://mesos.apache.org.

[13] Kubernetes, 2016, http://kubernetes.io.

20

http://mesos.apache.org
http://kubernetes.io

