
WPISA-CPR(18) 19527

G Latu et al.

Scaling and optimizing the Gysela code
on a cluster of many-core processors

Preprint of Paper to be submitted for publication in Proceeding of
Euro-Par 2018, 24th International European Conference on

Parallel and Distributed Computing

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.

This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked

Scaling and optimizing the Gysela code
on a cluster of many-core processors

Guillaume Latu1, Yuuichi Asahi1,Julien Bigot2

Tamas Feher3, andVirginie Grandgirard1

1 CEA, IRFM, 13108, Saint-Paul-lez-Durance, France
2 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ,

Université Paris-Saclay, 91191 Gif-sur-Yvette, France
3 Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

Abstract. The current generation of the Xeon Phi Knights Landing (KNL) processor pro-
vides a highly multi-threaded environment on which regular programming models such as
MPI/OpenMP can be used. This specific hardware offers both large memory bandwidth and
large computing resources and is currently available on computing facilities. Many factors im-
pact the performance achieved by applications, one of the key points is to efficiently exploiting
SIMD vector units, another one is the memory access pattern. Thus, vectorization and opti-
mization works have been conducted on a plasma turbulence application, namely Gysela. A
set of different techniques have been used: loop splitting, inlining, grouping a set of LU solve
operations, removing conditionals and some loop nests, auto-tuning of one computation ker-
nel, changing a key numerical scheme – Lagrange interpolation instead of cubic splines. As a
result, KNL execution times have been reduced by up to a factor 3 in some configurations. This
effort has also permitted to gain a speedup of 2x on Broadwell architecture and 3x on Skylake.
Nice scalability curves up to a few thousands cores have been obtained on a strong scaling
experiment. Incremental work for vectorizing the Gysela code meant a large payoff without
resorting to writing assembly code or using low-level intrinsics.

Keywords: Many-core, SIMD, KNL, vectorization, plasma physics

1 Introduction

The shrinking of computer components is still an ongoing trend and it is not yet limited by the
laws of physics. Transistor size could be as low as 1 nm in 2033, as compared to 14 nm today4.
Since 2004, another trend is a continuous increase of the amount of cores integrated on one chip.
In the absence of a technological breakthrough, there are very few options available that can
increase the performance of individual cores. One of these options turn out to be direct support
for vector operations where a single instruction is applied to multiple data (SIMD). There are a
range of alternatives for implementing vectorization, they vary in terms of complexity, flexibility,
maintainability. In this paper, we will go through a set of techniques to automatically vectorize a
large legacy code named Gysela. Shrinking trend is expected to continue with future many-core
chips hosting larger core counts. Some problems are expected for the hardware: dealing with cache
coherency at low cost, managing the contention on shared memory and network. We will not tackle
these latter aspects here.

4 Processors employing a 14 nm lithography process: Intel Skylake & Broadwell & KNL, AMD Ryzen.

The rest of this paper is organized as follows: reminder of Section 1 provides a description
of some of the challenges offered by KNL hardware, our testbed, and the gysela application
framework. Section 2 describes the initial status in terms of performance on one single node and
three sets of improvements: some code transformations, algorithmic modifications and alternative
numerical schemes are shown together with the impact on execution time. We show some strong
scalings on multiple nodes in Section 3 on three clusters hosting different processors. Finally, we
conclude in Section 4.

1.1 Many-core and KNL context

One option to improve single core performance is based on vector registers and SIMD instructions.
SIMD operations exhibit parallelism proportional to the length of vector registers. Increasing vector
length thus offers the opportunity to achieve speedups in codes through more SIMD parallelism.
Some problems do however arise as the vector size increases. Branch mispredictions become
very expensive and should be avoided. It becomes more difficult to regroup data between vector
registers, to achieve efficient scatter/gather and masking operations, to deal with complex and/or
irregular memory access patterns. This puts more pressure on compiler to select good optimization
strategies. The observation of some rules of thumb in the code can however ease the compiler job.
For example, in the innermost loops, one should ensure the number of iterations is larger than
the vector length, restrict oneself to the set of available vector operations and rely on contiguous
memory accesses. Given the current omnipresence of SIMD instructions, HPC codes must be
optimized to exploit them. Current vector size in Intel KNL and Skylake is 512-bit, such kind
of length is also expected soon in ARM processors (c.f. post-K computer, Japan). Larger register
widths might be implemented, but one may wonder if this will really be profitable, except for very
specific applications. Amdhal’s law limits the benefit of SIMD as there always remains a fraction
of the code that can not be vectorized. While longer vectors can improve performance they also
have a cost. They complexify hardware design, require improvements in the compilers and lead to
dependencies on the register width for the optimization process. In addition, many processors can
not execute some SIMD instructions at their nominal frequency but a lower one, and a compromise
has to be determined.

Actions have to be taken for the compiler to generate a proper executable with respect to
vectorization. One can recall some of the classical techniques: loop fission, removal of conditionals
and function calls from inner loops, algorithms transformation to signal the compiler the loops to
vectorize, use of specific SIMD directives, introduction of new numerical schemes more suitable for
vectorization, data alignment, removal of indirect memory accesses and promotion of unit-stride
accesses, removal of loop-carried dependencies, strip mining using the vector width as blocking
factor. Furthermore, using advanced profiling and performance analysis tools is helpful to get
confidence in the quality of the vectorization. Large part of the optimizations targeting vectorization
improve performance both on Intel KNL and on general-purpose multi-core architectures (as
Haswell, Broadwell, Skylake).

Intel Knights Landing (KNL) is a standalone many-core processor. It has many features that
one can exploit: a large number of threads, large vector units, multiple memory tiers, quite large
memory bandwidth (MCDRAM). The chip provides up to 72 cores grouped in tiles, four threads
per core, two levels of cache. MCDRAM is integrated on-package while DRAM is off-package and
connected by six DDR4 channels. An on-die mesh interconnect keeps the full system coherent.
Peak theoretical performance is announced at 6 Tflops of single precision and 3 Tflops of double

precision per KNL. It proposes several levels of NUMA exposure and variants for the cache
coherence protocol that can be selected at boot time.

1.2 Testbed

During several months of 2017 we have had access to three partitions of the Marconi machine
(Cineca’s Tier-0 system in Bologna, Italy). These partitions hosted different processor architectures:
Intel Broadwell, KNL and Skylake. We have been able to measure and compare performance there.
The network Fabric is the same: Omnipath. Table 1 gives a brief summary of the hardware used.

Architecture (node) Broadwell KNL Skylake

Nb cores 36=2x18 68 48=2x24
Vector register width 256-bits 512-bits 512-bits

Memory 128 GB 96 GB (DDR4)
16 GB (MCDRAM)

192 GB

Frequency 2.3Ghz 1.4Ghz 2.1Ghz

AVX Frequency 2.0Ghz 1.2Ghz 1.8Ghz
(AVX2)
1.4Ghz

(AVX512)
FMA units 2 2 2
Peak TFlops/s (theory AVX freq.) 1.2 2.6 2.2

Memory Bandwidth GB/s 119 90 (DDR4)
490 (MCDRAM) 195

Power 2x145 W 230 W 2x150 W

Table 1: Characteristics of the nodes used for the benchmarks

1.3 Gysela setting

A key factor that determines the performance of magnetic plasma containment devices as potential
fusion reactors is the transport of heat, particles, and momentum. To study turbulent transport
and to model tokamak fusion plasmas, parallel codes have been designed over the years. Compu-
tational resources available nowadays have allowed the development of several petascale codes
based on the well-established gyrokinetic framework. In this article, we focus on the gysela gy-
rokinetic code parallelized using a hybrid MPI/OpenMP paradigm[1,6,7,8]. The gysela code is a
non-linear 5D global gyrokinetic full-f code which performs mainly flux-driven simulations of ion
temperature gradient (ITG) driven turbulence. It solves the standard gyrokinetic equation for the
full-f distribution function, i.e. no assumption on scale separation between equilibrium and pertur-
bations is done. This 5D equation is self-consistently coupled to a 3D quasineutrality equation. The
code also includes other features: ion-ion collisions, several kind of heat sources, kinetic electrons,
multispecies capability.

Concerning the coordinate system, the three spatial dimensions are xG = (r, θ, ϕ) where r
and θ are the polar coordinates in the poloidal cross-section of the torus, while ϕ refers to the
toroidal angle. The velocity space has two dimensions: v‖ being the velocity along the magnetic
field lines and µ the magnetic moment corresponding to the action variable associated with the
gyrophase. Let z = (r, θ, ϕ, v‖, µ) be a variable describing the 5D phase space. The time evolution of
the ion guiding-center distribution function f̄ (z) (main unknown) is governed by the gyrokinetic
Boltzmann equation:

∂t f̄ +
1

B∗
‖s
∇z ·

(dz
dt

B∗
‖s f̄

)
= Dr(f̄) +Kr(f̄) + C(f̄) + S(f̄) (1)

whereDr andKr are respectively a diffusion term and a Krook operator applied on a radial buffer
region, C corresponds to a collision operator and S refers to source terms (see[6]). We solve this
equation with a Strang splitting consisting in four 1D advections (along ϕ and v‖ directions) and
one 2D advection (r and θ directions are treated simultaneously), that are applied at each time step
(see Algorithm 1).

The guiding-center motion described by the previous transport equation is coupled to a field
solver (3D quasi neutral solver which is a Poisson-like solver, considering adiabatic response of
electrons) that computes the electric potential φ(r, θ, ϕ):

e
Te

(φ − 〈φ〉) =
1
n0

∫
J0(f̄ − f̄init) dv + ρ2

i∇
2
⊥

eφ
Ti

(2)

Details about this last equation can be found in[5,6,8]. This Poisson-like equation gives the
electric potential φ at each time step t depending on the main distribution function f̄ . One of
the difficulties in the gyrokinetic approach is that the Boltzmann equation (1) deals with guiding-
centers while the quasi-neutrality equation (2) acts on particles. The link between particles and
guiding-centers is ensured via a gyroaverage operator. This gyroaverage operator will not be ad-
dressed in this paper but numerical details can be found in[3] and references herein. The derivatives
of J0 φ along the toroidal direction are computed. Then, these quantities act as a feedback in the
Boltzmann equation (1), they appear into the term dz

dt B∗
‖s f̄ (see[6]). The Boltzmann solver represents

the CPU critical part, i.e. usually more than 90% of computation time.

for time step n ≥ 0 do
Field solver, Derivative computation, Diagnostics

1D Advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
Transpose of f̄
2D Advection in (r, θ) (∀(µ, ϕ, v‖) = [local],∀(r, θ) = [∗])
Transpose of f̄
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
1D Advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])

Bo
lt

zm
an

n
so

lv
er

 Sources, Krook, Diffusion operators

Algorithm 1: Sketch of the global gysela algorithm

The MPI domain decomposition is switched between advections as shown in Algorithm 1. The
4D distribution function (for a given µ value) is transposed just before and after the 2D advection
along (r, θ). We use the following notation throughout the Algorithms of this paper: local indicates
that in a given dimension each MPI process owns a parallel sub-domain, conversely * states that
each MPI process possesses all points along a specified direction. Each processor exchange data
to change its sub-domain from (r = local, θ= local, ϕ= ∗, v‖ = ∗, µ= local) to a new sub-domain (r = ∗, θ=

∗, ϕ= local, v‖ = local, µ= local). Even if it implies large communication volumes, this solution enables
one to make use of standard 2D cubic spline over the whole domain (r = ∗, θ = ∗) and to remove
a CFL-like condition[9]. Communications of the transpose step have good locality properties, the
message exchanges are done inside a µ-communicator that groups together adjacent processes.
During the 2013-2016 period, we obtained good strong scalings on different supercomputers with
gysela, for example 60% efficiency at 65k cores on the curie machine[9] (Sandy-Bridge based),
87% on a BlueGene/Q machine at 32k cores[1]. However, vectorization and many-core issues have
arisen since then, the following sections will present the adaptations required to accommodate the
recent architectural changes.

2 Improving performance on a single node

2.1 Algorithms and performance status

The starting point of this paper is the state of the code before its optimization[9] for SMT (specifi-
cally Intel hyper-threading). These optimizations included enhancing the load balance of threads,
removing some OpenMP and MPI synchronizations and increasing iteration loop count in many
places to make the use of a large pool of threads efficient. We notably merged many adjacent
OpenMP parallel regions into larger contiguous ones. Much idle time was removed this way. In
addition, we were able to remove the assumption that the number of threads within one MPI
process of gysela had to be a power of two. This was quite crucial to address a wide range of
many-core systems.

2.2 Inlining, conditionals and loops

The first steps in adapting our code to KNL were to minimize the cost of function calls using
inlining, to avoid or move away conditionals from the innermost loops and to reformulate some
mathematical operations to ease the compiler work. Indeed some algorithms and/or programming
styles can inhibit vectorization. Some of the requirements to help the vectorization process are:
(i) the vectorized loop should be the innermost loop of a nest, (i) there should be no I/O nor
function calls (apart from math functions) inside those loops, (iii) loop-carried and complex data
dependencies should be avoided, (iv) the control flow should be uniform (exceptions exist but one
should consider removing branches at first) and array notations should be promoted instead of
pointers. A conditional branch is a control hazard, it introduces additional instructions, it can lead
to pipeline stalls that can severely compromise the efficiency of the Vector Processing Unit (VPU).

Inlining Vectorization happens on the innermost loops that consist in simple enough code (typi-
cally a single block). It is therefore of the utmost importance to inline function calls in these loops
and/or use specific pragmas to help the compiler auto-vectorization analysis (e.g. !$omp declare
simd creates vectorized versions of a function that process vector arguments using SIMD). Prac-
tically, in gysela, we added inline functions (through the !$dir force inline directive and by
moving the function declarations in header files) to help the auto-vectorization process.

Conditionals, loops We moved some conditionals lower in the call stack. Instead of having branch
switches within the loops to be vectorized, we transformed the code in order to have them outside
each innermost loop. In some routines of the code, there were several nested loops to provide
a simple way to express a switch (see Fig. 1 lines 2-5). A set of more specialized routines have
been introduced that avoids these nested loops while providing the same functionality. The switch
between these specialized routines has been devolved to the caller.

Mathematical expressions and directives The SIMD instruction sets of processors tends to be less
general than the scalar one. Specialized domain-specific operations are included, many operations
are available only for some data types but not for others, and a high-level understanding of the
computation is often required in order to take advantage of some of the features. In order to avoid
going to assembly, the developer has to transform the code so that the auto-vectorization of the
compiler achieve good optimizations. Some standard techniques we have used to transform our
code include: 1) precompute and store some reciprocals (due to the large cost of divide on KNL this

is beneficial), 2) reformulate some mathematical expression and remove temporary scalar variables
for simpler data dependencies analysis by the compiler 3) introduce small vectors as local variables
(typically of the size of register width or a bit larger) together with strip-mining 4) add some explicit
vectorization directives as !$dir simd or !$dir ivdep.

Sample code Fig. 1 exemplifies how the modifications described in this subsection have been
applied. A conditional has been moved outside innermost loop and three loops were avoided
thanks to the specialization of this code part (at many places, this code block is called enforcing a
single iteration count for the ir, itheta, ivpar variables). A precomputation of one reciprocal is
done and stored into the product variable. The main loop does not embed any temporary variables
and the directive !$dir ivdepwas added. These two facts help the auto-vectorization.

� �
1 icount = 0

2 do ivpar = begin_dim4 ,end_dim4
3 do iphi = begin_dim3 ,end_dim3

4 do itheta = begin_dim2 ,end_dim2

5 do ir = begin_dim1 ,end_dim1

6 Bij = init_magnet%B_norm(ir,itheta)

7 if (asktransp .and. transp_Bstar) then

8 call precomp_transp_Bstar(ir,itheta,ivpar,Bs)

9 else

10 call precomp_Bstar(ir,itheta,ivpar,Bs)

11 end if

12 dPhidr_tmp = dPhidr_3D(ir,itheta,iphi)

13 dPhidtheta_tmp = dPhidtheta_3D(ir,itheta,iphi)

14 Br_tmp = init_magnet%Br(ir,itheta)

15 Btheta_tmp = init_magnet%Btheta(ir,itheta)

16 J_tmp = coord_sys%jacobian_space(ir,itheta)

17 PoissBrack_Phi_phi = 1._F64/(J_tmp*Bij) * &

18 (Br_tmp*dPhidtheta_tmp -Btheta_tmp*dPhidr_tmp)

19 SvExB_gradphi(icount) = PoissBrack_Phi_phi/Bs

20 icount = icount+1

21 end do

22 enddo

23 end do

24 end do� �

� �
1 ! Specialized version of the code given that ofen

2 ! there is a single iteration in dimensions: 1,2,4

3 ir = begin_dim1

4 itheta = begin_dim2

5 ivpar = begin_dim4

6
7 ! conditional branch moved outside the main loop

8 if (asktransp .and. transp_Bstar) then

9 Bs = Bstar_PNrPNthNvpar(ir,itheta,ivpar)

10 else

11 Bs = Bstar_NrNthPNvpar(ir,itheta,ivpar)

12 end if

13 ! precomputation of a reciprocal to save compute time

14 product = 1._F64/&

15 (coord_sys%jacobian_space(ir,itheta)*&

16 init_magnet%B_norm(ir,itheta)*Bs)

17 !DIR$ ivdep
18 do iphi = begin_dim3 , end_dim3

19 SvExB_gradphi(iphi-begin_dim3) = &

20 product * (init_magnet%Br(ir,itheta)*&

21 dPhidtheta_3D(ir,itheta,iphi) - &

22 init_magnet%Btheta(ir,itheta)*&

23 dPhidr_3D(ir,itheta,iphi))

24 end do� �
Fig. 1: Sketch of a code part of E × B compute (left-hand position), versus the new version of the same
computations with inlining and branch removal (right-hand position)

Benchmark The best deployment that we have identified on KNL node is 4 MPI processes of
32 threads within a node of 68 cores (roughly two threads per core). The memory mode on
KNL was set to cache and cluster mode to quadrant. On Marconi Broadwell and Skylake nodes,
the hyper-threading support was unavailable, thus we imposed one thread per core and one
process per processor (i.e. two processes per node). Table 2 summarizes the gains provided by
techniques described in Sections 2.1 (load-balance enhancement) and 2.2 (improving vectorization
and reducing low level overheads). The lines of the table focus on different operators of the
application. Execution times are shown in seconds for a small test case. In percentage, the gain
over the original version (prior to Section 2.1 modifications) is displayed. The improvements permit
to decrease effectively execution times. The global execution times is reduced by -18% up to -41%
depending on the machine. Even though we focused on improving the KNL performance, it turned
out that all architectures took advantages of the changes.

2.3 Alternative interpolant and cache-friendly algorithm

Alternative interpolant High order methods require more floating point operations per degree
of freedom than low order methods. One could expect high-order to slow down applications, but
execution time is not directly proportional to computational cost. Increased operation efficiency

Architecture
Step Broadwell KNL Skylake

advec1D in v‖ 32.6 (-44%) 46.6 (-42%) 17.9 (-61%)
advec2D (r, θ) 28.3 (-31%) 34.7 (-18%) 16.0 (-46%)

transpose 31.2 (-25%) 13.0 (-51%) 15.6 (-53%)
heat source 9.7 (-13%) 17.3 (-23%) 6.1 (-25%)

diffusion in θ 10.4 (-13%) 10.7 (0%) 5.4 (-33%)
. . .

Total 196 (-22%) 227 (-18%) 120 (-41%)

Table 2: Breakdown of timing (in s) for a small gy-
sela run. In parentheses, improvement brought by Sec-
tions 2.1 and 2.2 compared to the original version. Do-
main size is 256 × 128 × 64 × 64 × 1.

Mem.
Interpolant load store Multiply Add Divide

1D spline 1 1 26 16 1
1D Lagrange 5th 1 1 30 25 0
1D Lagrange 7th 1 1 48 37 0

2D spline 1 1 60 40 2
2D Lagrange 5th 1 1 90 74 0
2D Lagrange 7th 1 1 144 122 0

Table 3: Estimates of the average costs associated to
cubic spline versus Lagrange interpolants of degree
5th and 7th for a single interpolation. The context
is a series of interpolations with good spatial and
temporal localities in cache.

(e.g through good vectorization) can compensate the increase of computational cost. In addition,
high-order schemes usually increase the achievable accuracy. Furthermore, the computation inten-
sity for data in cache is large for high-order methods and this fits well with the idea that “FLOPS
are almost free” in the Exascale landscape while costs associated to data accesses should increase.
Finally, fewer degrees of freedom are required for a given accuracy level, which yields smaller
stencil sizes and potentially less data movement (best suited for constraints foreseen for exascale).

In this context, we evaluated the benefits of 1D high-order Lagrange[2] interpolants instead of
cubic splines[4,5]. Lagrange polynomials of degree 5 and 7 were selected. The degree 5 polyno-
mials provide slightly lower accuracy than cubic splines within gysela runs, while the degree 7
polynomials are slightly more accurate than cubic splines. Tensor product was used in order to
access 2D interpolations that are needed for 2D (r, θ) advections. Practically, splines require a set
of coefficients that are computed prior to the interpolations. This step involves additional data
moves and storage for the coefficients, but also extra operations (i.e. small LU systems to be solved)
that the compiler have difficulties to vectorize. The Lagrange approach avoids these issues and
the compiler is able to well vectorize the mathematical formulas. One remaining problem is the
computational costs. They are given in Table 3 considering that one have a series of interpolations
to perform (as in gysela context) and the cache is able (in average) to amortize the loads and
stores down to one write, one read per interpolation. One has to mention, divide operation, which
is located in the spline interpolation, behaves slowly compared to other basic math operations,
especially on KNL. The number of multiplications and additions is larger for Lagrange than for
splines, but as the vectorization is effective with Lagrange, the computational overhead is cleared
as the performance results of Table 4 establish.

Cache-friendly one-strided advections Contiguous memory access patterns fit well with the SIMD
approach. Many SIMD operations can reference aligned unit-stride vectors in-memory as part of
the instruction, thus avoiding separate load/stores. In other words, contiguous accesses permit
to save extra and possibly inefficient gather/scatter operations or strided load/store. To access
memory efficiently, one has to favor inner loops with unit-stride, minimize indirect addressing,
and align data to 64-byte boundaries on both KNL and Skylake. The compiler is able to perform
specific vector optimizations if data is aligned to a certain byte boundary in memory. Some data
layout transformations may help in that regard. Fig. 2 sketches a modified algorithm of the 1D
v‖ advection that diminishes long-strided accesses along the v‖ dimension (ivpar). Instead of
updating directly the main distribution function f over the last contiguous dimension (original

algorithm not shown), copies are performed in lines 6-9 and 26-30 to work on a temporary 2D tile.
During the copy we mix the slowest varying index with the fastest varying one in order to benefit
from fast reads from the main memory. Computations are then performed on the 2D tile, typically
in L2 cache. Lines 13-22 copy data in ghost regions. This enables us to remove costly conditional
branches related to boundary conditions along v‖ in the main computations. This way, we have no
conditional statements in the advection kernel (line 24), and we get better vectorization. All these
modifications improve the quality of auto-vectorization and ensure cache-friendliness (use of L2
cache is improved and the TLB is less stressed by long-strided access). In addition, we added some
SIMD directives to guide the compiler. Notice the 1D ϕ advection was modified in the same way.

Benchmark Table 4 exhibits timing obtained after the integration of the alternative Lagrange
interpolant (5th order) and the cache-friendly strategy plus the SIMD directives in 1D advections.
In addition to the time values in Table 4, the reduction in percentage compared to those presented in
the previous Table 2 is shown. Execution time of advections is greatly alleviated on all architectures.� �

1 !$OMP DO SCHEDULE(dynamic ,1) collapse(2)
2 do i p h i = 0 , Nphi−1
3 do i t h e t a = t h s t a r t , th end
4 ! Copy from distrib function to tmp2d buffer
5 ! improve perf. because of contiguous access
6 do ivpar = 1 , Nvpar−1
7 do i r = r s t a r t , r end
8 tmp2d (ivpar , i r) = f (i r , i t h e t a , iphi , ivpar)
9 end do

10 end do
11 ! Boundary conditions with extra cells
12 ! avoid conditionals
13 do ivpar = −o f f s e t , 0
14 do i r = r s t a r t , r end
15 tmp2d (ivpar , i r) = f (i r , i t h e t a , iphi , 0)
16 end do
17 end do
18 do ivpar = Nvpar , Nvpar+o f f s e t
19 do i r = r s t a r t , r end
20 tmp2d (ivpar , i r) = f (i r , i t h e t a , iphi , Nvpar)
21 end do
22 end do
23 ! Perform advections in v//, update tmp2d(*,*)
24 . . . Useful work here / vec tor ized . . .
25 ! Copy back into distrib function
26 do ivpar = 0 , Nvpar
27 do i r = r s t a r t , r end
28 f (i r , i t h e t a , iphi , ivpar) = tmp2d (ivpar , i r)
29 end do
30 end do
31 end do
32 end do� �

Fig. 2: Sketch of the 1D advection along v‖ with a
copy that prevent long-strided accesses.

Architecture
Step Broadwell KNL Skylake

advec1D in v‖ 13.0 (-60%) 12.8 (-73%) 6.6 (-63%)
advec2D (r, θ) 16.5 (-42%) 26.3 (-24%) 9.4 (-41%)

transpose 31.2 13.4 15.6
heat source 9.7 17.2 6.0

diffusion in θ 10.4 10.7 5.4
. . .

Total 146 (-26%) 154 (-32%) 90 (-25%)

Table 4: Breakdown of timing (in s) for a small run. In
parentheses, improvement compared to the previous
version (Table 2). Domain size 256 × 128 × 64 × 64.

Architecture
Step Broadwell KNL Skylake

advec1D in v‖ 12.0 (-7%) 11.1 (-13%) 6.2 (-6%)
advec2D (r, θ) 7.2 (-46%) 6.9 (-74%) 4.1 (-56%)

transpose 30.9 13.1 15.5
heat source 4.3 (-56%) 3.6 (-79%) 2.3 (-62%)

diffusion in θ 4.1 (-60%) 3.3 (-69%) 2.6 (-52%)
. . .

Total 111 (-24%) 89 (-42%) 65 (-28%)

Table 5: Breakdown of timing (in s) for a small run. In
parentheses, improvement compared to the previous
version (Table 4). Domain size 256 × 128 × 64 × 64.

2.4 Additional vectorizing techniques

Vectorized LU solver Several routines of LAPACK can work with multiple right-hand-sides,
and dpttrs in one of them. It solves a tridiagonal system AX = B where X and B are general
matrices and A is positive definite real symmetric. The computations performed by such routine
is conceptually easy to transform into a set of SIMD instructions as the same steps are applied

at the same time to different right-hand-sides stored into small vectors. This can be achieved if
caution is taken to well organize the storage of the right-hand-sides in memory. The developer has
to carry out a data layout transform that may introduce a minor overhead, but it allows for a very
efficient and vectorized implementation of the solve in the dpttrs routine. Fig. 3 displays the way
we modified our code to benefit from a vectorized LU solver. Lines 6-8 precompute reciprocals in
order to save many divide operations at line 18 within the solve. Lines 14-16 reorganize the storage
layout such as the contiguous dimension correspond to vectorizing dimension. At line 18, we call
an ad hoc version of dpttrs which is improved in order to take as input a vector of reciprocals
(Adiag inv) to dampen the cost of division on KNL. The vectorized LU solver is a algorithms that
has been incorporated inside three operators: source, diffusion, derivation of the spline coefficients.

� �
1 !*** Precomputation ***

2 !*** A factorisation with LAPACK ***
3 Adiag(:) = 4._F64

4 Aodiag(:) = 1._F64

5 call DPTTRF(n+1,Adiag,Aodiag,err)

6
7
8
9

10 !*** Many many times during execution
11 !*** Solving of x = (Aˆ-1).rhs with LAPACK
12 do ...many times...
13 do i = 0, n

14 x(i) = rhs(...,i)

15 enddo

16
17
18 call DPTTRS(n+1,1,Adiag,Aodiag,x,n+1,err)

19 end do� �

� �
1 !*** Precomputation ***

2 !*** A factorisation with LAPACK ***
3 Adiag(:) = 4._F64

4 Aodiag(:) = 1._F64

5 call DPTTRF(n+1,Adiag,Aodiag,err)

6 do i = 0, n
7 Adiag_inv(i) = 1.0/Adiag(i)

8 enddo

9
10 !*** Many many times during execution
11 !*** Solving of x = (Aˆ-1).rhs
12 do ...many times...
13 do i = 0, n

14 do k = 0, nrhs-1

15 x(k,i) = rhs(...,k,i)

16 enddo

17 end do

18 call DPTTRS_modified(n+1,nrhs,Adiag_inv ,Aodiag,x)

19 end do� �
Fig. 3: Sketch of a code part with tridiagonal solves with multiple right-hand sides (left-hand position), versus
the new version vectorizing over the right-hand sides (right-hand position)

� �
1 !$OMP DO SCHEDULE(static)
2 do ivpar = 0,Nvpar

3 do iphi = 0,Nphi-1

4 do itheta = th_start ,th_jend

5 do ir = r_start, r_end

6 Sce_mu_tmp = Sce_mu(ir,itheta,ivpar)

7 dSdx_mu_tmp = dSdx_mu(ir,itheta,ivpar)

8
9 dxdt = v_gradx(ir,itheta,iphi,ivpar)

10
11 deltaf = dt*Sce_mu_tmp - dt**2 * &

12 (dxdt*dSdx_mu_tmp)

13 f(ir,itheta,iphi,ivpar) += deltaf

14 end do

15 end do

16 end do

17 end do� �

� �
1 !$OMP DO SCHEDULE(dynamic, 1), collapse(2)
2 do ivpar = 0, Nvpar

3 do itheta = th_start ,th_end

4 !DIR$ IVDEP
5 do ir = r_start, r_end

6 Sce_mu_vec(ir) = Sce_mu(ir,itheta,ivpar)

7 dSdr_mu_vec(ir)= Sdr_mu(ir,itheta,ivpar)

8 end do

9 do iphi = 0, Nphi-1

10 !DIR$ IVDEP
11 do ir = istart, iend

12 dxdt = v_gradx(ir,itheta,iphi,ivpar)

13 deltaf = dt*Sce_mu_vec(ir) - dt**2 * &

14 (dxdt*dSdr_mu_vec(ir))

15 f(ir,itheta,iphi,ivpar) += deltaf

16 end do

17 end do

18 end do� �
Fig. 4: Sketch of a code part of source operator (left-hand position), versus the new version of the same
computations with loop interchange and fission (right-hand position)

Loop Fission Loop fission (also named loop distribution) consists in splitting a single loop into
more than one, generally to remove or simplify dependencies. It attempts to build simpler loop
bodies (part of the original one) while keeping the same index range. One expects to ease the
job of the compiler concerning dependency’s analysis and isolate parts of the loop which inhibit
vectorization (in addition one reduces the pressure on the vector registers).
In this manner, automatic vectorization is enhanced. This technique has been applied in several
innermost loops of the code. It also has been combined with loop interchange in order to move

vector loops in the innermost region, and to move loop carried dependencies or conditional
branches outermost. Fig. 4 depicts these loop transformations that have been carried out on the
source operator. We also introduced intermediate aligned vectors in this algorithm (lines 7-8), it
permitted us to reorganize data while transferring from the memory to the cache (peeling the
memory accesses from the loop along ϕ direction) and to have them aligned.

Strip-mining, auto-tuning We introduced strip-mining technique within some gysela’s operators.
Also, we introduced small vectors declared as local variables. Their size were set accordingly with
the strip-mining segment, it allows us to get a better SIMD-encoding from the compiler. For the
specific case of 2D advection operator which represents a major cost, this size was auto-tuned. We
will not give details here, but other parameters were also taken into account for this procedure:
different compilers, languages (C/Fortran), several types of inlining, etc. It turned out, that once
the compiler is chosen, the most crucial parameter is the size. Practically, we determined this size
through a set of standalone tests using the BOAST framework[10] for each hardware we considered.

Contiguous In Fortran, one can use contiguous keyword (Fortran 2008) to tell the compiler that
dummy arguments of a routine will always be contiguous in memory. Thus, the compiler is able
to generate more efficient code.

Benchmark Timing measurements are shown in Table 5. The contiguous keyword helped to
gain a few percents everywhere. The strip-mining were employed in 2D advection with success.
Loop fission and LU vectorization helped to shorten the execution time of heat source and diffusion
computations. Vectorization were widely improved, therefore the KNL execution times on one node
became less than those of one Broadwell node, which is a good result. Also, these optimizations
were valuable for all three processors we focused on. If one compares the final timers (Table 5) to
the original timers (not displayed in this paper), the time reductions are -56% on Broadwell, -68%
on KNL and -68% on Skylake. The process to vectorize this application code has resulted in major
performance leap. Incremental work meant a large payoff for gysela without resorting to writing
assembly code or using low-level intrinsics. Finally, we end up with a speedup of 7× on advection
operators on all processors, and a speedup of 2 × to 3 × for the global execution times of the test
cases we focused on.

3 Strong scaling on clusters

We ran a strong scaling test displayed in Figs. 5 and 6 using a domain size 512×256×128×128×16,
which is close to a production case used by physicists. The execution time is shown in Fig. 5
depending on the number of cores. One can see the decomposition in term of CPU time for the
different components of the code. Even after decreasing the advection costs by a factor 7× (for the
computational portion), these advections remain the biggest part in the breakdown of timings.
Field solver, diagnostics and collisions take the largest fraction of the remaining elapsed time.

On Fig. 6, the diffusion and collisions parts scale almost perfectly because they are composed of
computations only, also well balanced between MPI processes, without any communication. Other
parts involve a mix of computations and communications. As the work is well balanced thanks
to a domain decomposition that dispatches equally the computations, the overheads come mainly
from communication costs.

1024 2048 4096
Nb. of cores

1

10

100

1e+03

1e+04

1e+05
Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Execution time, Broadwell - Marconi

1024 2048 4096 8192
Nb. of cores

1

10

100

1e+03

1e+04

1e+05
Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Execution time, KNL - Marconi

1024 2048 4096
Nb. of cores

1

10

100

1e+03

1e+04

1e+05
Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Execution time, Skylake - Marconi

Fig. 5: Execution time from 16 to 128 nodes of a short Gysela run

1024 2048 4096
Nb. of cores

0

20

40

60

80

100

120

Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Relative efficiency, Broadwell - Marconi

1024 2048 4096 8192
Nb. of cores

0

20

40

60

80

100

120

Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Relative efficiency, KNL - Marconi

1024 2048 4096
Nb. of cores

0

20

40

60

80

100

120

Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Relative efficiency, Skylake - Marconi

Fig. 6: Relative efficiency from 16 to 128 nodes of a short Gysela run

We tested a few experiments at larger scale on KNL partition (32k cores). We established that two
components do not scale well: field solver and derivatives computation. They are characterized
by many-to-many communication patterns and large data volumes exchanged[8,9]. In one test
case, their cost was about 10 % to the total cost with 1k cores, but about 30% with 32k cores.
Investigations are underway to find a remedy if possible. But, the continuously increasing gap
between CPU speed and network bandwidth will make this task difficult.
Relative efficiency of the entire application considering 128 nodes reaches 103% on Broadwell
(because of beneficial cache effects), 82% on KNL and 85% on Skylake. Execution time on 128
nodes are quite close for Broadwell and KNL, whereas Skylake performs much better.

4 Conclusion

Using both MPI and OpenMP parallelism was helpful to tune the gysela code for optimal per-
formance on KNL and to fit the memory structure. We managed to have MPI processes that do
not spread over more than one quadrant, which guaranteed uniform access to the memory and
non-problematic cache and network behaviors. Good performance were achievable for the hybrid
MPI+OpenMP code at medium scale (up to 128 nodes) without particular optimization of the
MPI part. However, several OpenMP parts needed to be revised and prepared to welcome a large
number of threads and hyper-threading (two threads per core was our best setting on KNL).

Most modern processors contain vector arithmetic units that benefit from the fine grain paral-
lelism of vector operations. A large fraction of the peak performance originates from these vector

units. One can take advantage of these features through vectorizing compilers or by explicitly
programming them with intrinsics (something we choose not to investigate for portability issues).
In this paper, we have shown several manual transformations that can be applied to overcome
compiler limitations and that allow for speedup through automatic vectorization. Namely, strip-
mining, loop fission, inlining, transforming conditional branches and loops, SIMD directives are
the techniques we employed to help the compiler to generate SIMD instructions. We also designed
higher level approaches to reduce costs and shorten execution time. These include cache-friendly al-
gorithms, high-order interpolants, transforming data layouts to use an efficient multiple right-hand
side vectorized solver, and auto-tuning with the BOAST tool. Applying all these transformations,
we achieved a speedup of 7× on the advection operators on all three architectures: KNL, Broadwell,
Skylake. Furthermore, a speedup of 2× to 3× were observed on the global execution times of the
test cases we focused on.

Strong scaling benchmarks show that performance behaves well up to a few thousands of cores.
Relative efficiency stands in the range of 82% up to 103% on 128 nodes for the three hardware we
considered. The field solver becomes a bottleneck at 32k cores on KNL partition and we are still
investigating solutions to improve the involved communication schemes.

Acknowledgments We benefited greatly from many fruitful discussions and advices from B. Pajot (Atos/Bull) and
A. Farjallah (Intel). We would also like to stress that this work was supported by the Energy oriented Center of Excellence
(EoCoE), grant agreement number 676629, funded within the EU’s H2020 framework. We acknowledge GENCI for
awarding us access to Frioul/CINES machine, especially G. Hautreux for support. Thank you to Eurofusion consortium
and PRACE for using Marconi/CINECA partitions. The authors wish to commend C. Passeron for her constant help in
the development of the Gysela code. This work has been carried out within the framework of the EUROfusion Consortium
and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No
633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References
1. Bigot, J., Grandgirard, V., Latu, G., Passeron, C., Rozar, F., Thomine, O.: Scaling gysela code beyond

32K-cores on bluegene/Q. In: CEMRACS 2012. ESAIM: Proc., vol. 43, pp. 117–135. Luminy, France (2013)
2. Bouzat, N., Bressan, C., Grandgirard, V., Latu, G., Mehrenberger, M.: Targeting realistic geometry in

Tokamak code Gysela. To be published - ESAIM: Proc. (2018), https://hal.archives-ouvertes.fr/hal-01653022
3. Bouzat, N., Rozar, F., Latu, G., Roman, J.: A new parallelization scheme for the hermite interpolation

based gyroaverage operator. In: 16th Int. Symp. on Parallel and Distrib. Comp. (ISPDC). pp. 70–77 (2017)
4. Crouseilles, N., Latu, G., Sonnendrücker, E.: A parallel Vlasov solver based on local cubic spline interpo-

lation on patches. Journal of Computational Physics 228, 1429–1446 (2009)
5. Grandgirard, V., et al.: A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation. Journal of

Computational Physics 217(2), 395 – 423 (2006)
6. Grandgirard, V., et al.: A 5d gyrokinetic full-f global semi-lagrangian code for flux-driven ion turbulence

simulations. Computer Physics Communications 207, 35 – 68 (2016)
7. Latu, G., Crouseilles, N., Grandgirard, V., Sonnendrucker, E.: Gyrokinetic semi-Lagrangian parallel simu-

lation using a hybrid OpenMP/MPI programming. In: Recent Advances in PVM and MPI, Lecture Notes
in Computer Science, vol. 4757, pp. 356–364. Springer (2007)

8. Latu, G., Grandgirard, V., Crouseilles, N., Dif-Pradalier, G.: Scalable quasineutral solver for gyrokinetic
simulation. In: PPAM (2). pp. 221–231. LNCS 7204, Springer (2011)

9. Latu, G., Bigot, J., Bouzat, N., Giménez, J., Grandgirard, V.: Benefits of SMT and of parallel transpose
algorithm for the large-scale GYSELA application. In: PASC proc., Lausanne, June 8-10 (2016)

10. Videau, B., Pouget, K., Genovese, L., Deutsch, T., Komatitsch, D., Desprez, F., Méhaut, J.F.: BOAST: A
metaprogramming framework to produce portable and efficient computing kernels for HPC applications.
IJHPCA 32(1), 28–44 (2018)

https://hal.archives-ouvertes.fr/hal-01653022

	Scaling and optimizing the Gysela codeon a cluster of many-core processors

