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Abstract—Coaxial-cavity gyrotrons for electron cyclotron 

heating in plasma experiments for nuclear fusion can operate 

with very high-order modes, having reduced mode competition 

and decreased voltage depression compared to hollow-cavity 

tubes. However, since exact alignment of coaxial insert and cavity 

wall can only be ensured up to a certain precision, the effects of 

misalignment must be properly understood. In this work an 

efficient method is presented to determine the voltage depression 

on beam electrons for arbitrary misalignment between cavity 

wall and insert, and for a beam with arbitrary shape and density 

distribution. This method has been verified using a 3D code, and 

it can be generalized to some other geometries. 

 
Index Terms—Gyrotron, electron beam, voltage depression, 

mirror charge, misalignment, coaxial cavity. 

 

I. INTRODUCTION 

S a means of electron cyclotron heating of plasmas 

relevant for magnetically confined fusion, gyrotrons with 

output power around or above 1 MW and frequencies from 

140 GHz upwards have been built for experiments such as 

Wendelstein 7-X [1], will be used in ITER [2], and are 

foreseen for subsequent demonstration fusion power plants 

[3]. An important issue concerning high-power high-frequency 

gyrotrons is the dense mode spectrum and thus strong 

competition between modes, see e.g. [4]. One possible method 

of reducing this mode competition is to use coaxial-cavity 

gyrotrons [5], where a longitudinally corrugated metallic 

insert is placed along the gyrotron axis, inside the annular 

electron beam, reaching from the electron gun through the 

interaction region (cavity) well into the quasi-optical launcher. 
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As a convenient side-effect, a grounded coaxial insert reduces 

the voltage depression on the beam electrons. 

Ideally, emitter, cavity wall and, if present, coaxial insert 

have axially symmetric cross-sections and are concentric 

within the gyrotron. However, perfect alignment and 

circularity cannot be achieved in practice and some 

mechanical misalignments can be present in an evacuated 

tube. 

In addition, due to possible mutual misalignment of the 

coils during manufacturing of the superconducting gyrotron 

magnet, its magnetic axis might not be an exactly straight line, 

leading to a possible displacement of the electron beam in the 

cavity region. However, in an assembled tube, one usually has 

the freedom to center the beam either with the insert or with 

the wall (or neither) by moving or tilting the gyrotron with 

respect to the magnet or by using dipole coils. 

The described misalignments will in general influence the 

performance of gyrotrons. First, a misaligned beam with 

respect to any wall can lead to unequal voltage depression on 

the beam electrons, which increases their energy spread and 

thus affects interaction efficiency. Second, a misaligned insert 

will lead to TE mode patterns which are no longer 

axisymmetric and which might have a field maximum with a 

radius other than in the aligned case (if still circular at all). 

Third, a misaligned beam might no longer be located 

everywhere at this field maximum. All these situations would 

lead to a decrease of interaction efficiency, output power, and 

stability of the gyrotron; and since these requirements are 

critical, in particular for high-power fusion gyrotrons, proper 

analysis of possible misalignment and related effects is 

necessary. 

Concerning voltage depression, exact analytic formulas are 

known for simple cases, such as for thin beams in perfectly 

aligned hollow (1) or coaxial (2) cavities [6] 
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(where Kbeam is the linear charge density of the beam, Rbeam is 

the beam radius, RW is the cavity wall radius, RI is the coaxial 

insert radius; see Section II) but also for thick beams, see e.g. 

[7]. However, it is not immediately clear how to generalize 
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those formulas to misaligned geometries such that they still 

describe proper solutions of the underlying Dirichlet problem. 

On the other hand, full 3D simulations of electron trajectories 

in gyrotron cavities (or other capacitors) are time- and/or 

resource-consuming. 

In this paper, a fast, yet reliable method for voltage 

depression calculations is introduced, generalizing (1), (2) and 

[7] (9c). The method presented is solely based on the concept 

of mirror charges, as described in Section II. For coaxial 

cavities, truncated series of mirror charges are needed; see 

Section III. Axially symmetric beams greatly reduce the 

calculation effort, as described in Section IV. Verification of 

the code with 3D simulations is given in Section V. 

II. METHOD AND FORMALISM 

Voltage depression in gyrotrons is relevant mainly in the 

part of the cavity where the beam-wave interaction takes 

place. For usual high-power gyrotrons, this is a cylindrical 

resonator with a smooth metallic wall “W”. The insert “I”, if 

present, has a small taper angle (not larger than 2°) and 

metallic walls, too. Any (longitudinal) corrugations are 

neglected here, since they are usually small enough that the 

insert can be regarded as smooth at the relevant distances 

(possibly with a smaller, “effective” radius). The magnetic 

field has its maximum in the cavity region, and as a result, its 

variation along the cavity axis is small in that region. Since the 

electron guiding centers follow the magnetic field lines, any 

change in radial position of the electrons along the axis is only 

of second order with respect to the corresponding axial 

position. These preconditions allow approximating the 

electrostatic potential within cross-sections at any position 

inside the cavity with that in an infinite cylinder having the 

same geometry as the cavity at that position. Thus, instead of 

using a 3D Cartesian coordinate system (X,Y,Z) with the Z-

axis pointing into the axial direction of the gyrotron, only the 

2D cross-section at one fixed position in the cavity Zcav, 

(X,Y)≡(X,Y,Zcav) may be considered, and all locations in the 

plane are expressed by complex numbers 

YXz i:  , (3) 

where 1i  is the unit imaginary number. (Lowercase 

letters are used for complex numbers/functions and uppercase 

letters for real (including integer) numbers, with the exception 

of constants e, π and ε0.) At any given cross-section and at any 

given time, the electron beam can be expressed as several 

fixed electron bundles, each carrying linear charge density 

K:=dQ/dZ≡I/VZ (abbreviated “charge” in the following). The 

potential due to a charge K
(0)

 located at z
(0)

, measured at z, is 

known from Gauss’s law as 
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Here, L is a characteristic length to cancel out the units in the 

logarithm. The arbitrary magnitude of L, if taken constant for 

all charges in a system, defines a voltage normal. The 

superposition principle holds, namely 
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Circular inversion mS of point z on a cylindrical surface “S” 

with center zS and radius RS is described as 
2
S

*
SSS )')((,': Rzzzzzzm  . (6) 

Consequently, in a hollow cavity, the location of the mirror 

charge z
(1)

 on cavity wall W is z
(1)

=mW(z
(0)

). Its charge is 

K
(1)

=−K
(0)

, which results, through (4), in the total potential 
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being constant at the cavity wall. A cavity wall at a given 

potential would then require a proper normalizing additive 

term. The electrostatic potential resulting from a charged 

beam, modelled as a sufficiently large number NC of line-

charges (not necessarily with equal charge or uniformly 

distributed; typically NC~10000 is needed), in a hollow cavity 

can then be expressed by NC original charges, NC mirror 

charges and a final normalization. The voltage depression on 

that beam can be determined by calculating the potential at 

several sample positions inside the beam, which should not be 

at, close to, or in regular distances from the original line-

charges in order to avoid overflows and to obtain meaningful 

statistical results. For nonuniform beams modelled by a large 

number of line-charges, however, one can obtain meaningful 

results if the potentials are determined directly at the charge 

positions, each time omitting the (infinite) potential of the 

charge located at that respective position. 

III. COAXIAL CAVITIES 

In coaxial cavities, the original line charge induces two 

mirror charges, one at each mirror, z
(1)

=mW(z
(0)

) and 

z
(−1)

=mI(z
(0)

). In order to fully account for them, one needs two 

additional mirror charges, namely the mirror of z
(−1)

 on the 

wall, z
(2)

=mW(z
(−1)

), and of z
(1)

 on the insert, z
(−2)

=mI(z
(1)

). The 

effect of those has to be compensated by another pair of mirror 

charges, and so on, resulting in a series of charges, 

N = 0 … Nmax: 
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It is obvious that the Dirichlet boundary conditions cannot be 

exactly fulfilled for a finite number of mirror charges, 

Nmax < ∞, and even convergence of the resulting potential for 

large, but finite Nmax is not obvious. 

However, one can make use of the fact that insert and wall 

surfaces of a misaligned cavity define a set of Apollonian 

circles of the first family (named after APOLLONIUS OF PERGA, 

c. 262-190 BCE [8]) with poles z
(∞)

 and z
(−∞)

. All iterated 

mirror charges of z
(0)

 lie on the circle defined by the points 

{z
(−∞)

;z
(0)

;z
(∞)

} and converge towards the two poles. This 

means that, after a certain Nmax=Ncrit, each subsequent 

mirroring has just the effect that the total charge within a 

domain located around each pole oscillates by ±K
(0)

/2 around a 

mean value (which itself can be either −K
(0)

/2 or +K
(0)

/2), but 

contributes not otherwise to the shape of the electrostatic field. 

If one now assigns for the last iteration 



    21 0)( maxmax KK
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additionally to (9), this oscillation is damped drastically. For 

most geometries, Nmax≈15 is sufficient for convergence, 

meaning that the potentials on insert and wall become constant 

along their circumferences. Grounding (or any other choice of 

potential on the two surfaces) can be achieved by placing one 

additional charge on each pole. Voltage depression on a beam 

modelled with NC charges can thus be determined as the 

potential by around 15∙NC+2 charges. 

Fig. 1 shows positions of the original and mirror charges for 

a configuration with mutually misaligned wall, insert and 

beam. One can see that for N > 2, the positions of all mirror 

charges converge to the pole z
(∞)

≈0+0.234i. 

 

 
Fig. 1.  Original and mirror charges for a misaligned beam (red dots marked 

with “0”; 2004 charges) and insert (grey circle) in the cavity (black circle), 

with iteration numbers N indicated. The signs of the charges are color-coded 

and alternate with each iteration. 

 

 
Fig. 2.  Electric potential along cavity wall (black curves) and coaxial insert 

(grey curves) for different numbers of iterations Nmax. Both circles are 

sampled with 997 azimuthal positions, the IDs of which are given as the 

horizontal axis. 

 

 

The convergence of electric potentials for a configuration 

similar to Fig. 1 can be seen in Fig. 2. Initially, the electric 

field of the hollow, symmetric beam vanishes inside and 

follows (4) outside, hence the curves for Nmax=0. The first pair 

of mirror charges partly compensates the unphysical voltage 

variation along the wall, but also affects the inside of the 

beam, so the Dirichlet boundary condition on the insert is no 

longer fulfilled (Nmax=1). However, with increasing number of 

mirror charge pairs, both potentials approach constant 0 V 

along the whole circumference. Already for Nmax=5, the 

Dirichlet condition is almost fulfilled. 

IV. AXIALLY SYMMETRIC BEAMS 

The electrostatic potential of an infinitely long, annular, 

homogeneous electron beam with inner radius 𝑅in and outer 

radius 𝑅out at the radial distance R can be expressed 

analytically [7]: 
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This potential can be used directly to calculate the voltage 

depression on such a beam in aligned hollow or coaxial 

cavities, see e.g. [7]. However, it is not immediately clear how 

to generalize this handy approach to misaligned geometries. 

However, one can use the findings in Section III and the 

fact that an axially symmetric charge distribution cannot be 

distinguished from a line charge when seen from positions 

outside of this distribution. Hence, the mirror charge of a 

whole axially symmetric beam can be expressed by one line-

charge only, rather than the NC mirror charges per iteration 

required for the general, nonsymmetrical distribution 

discussed in Section II. Therefore, voltage depression on 

gyrotron-relevant annular, homogeneous thick (or thin) beams 

in a coaxial cavity, still with arbitrary mutual misalignment of 

beam and metallic wall(s), can be expressed analytically using 

(11) and only around 32 mirror charges in total according to 

Section III. Similar to Fig. 1, these mirror charges of the 

charge center have alternate signs and converge to the poles of 

the insert-wall geometry. Using the same geometry as in 

Fig. 2, the simplified method returns exactly the same curves. 

For hollow cavities, only one mirror charge is sufficient to 

substitute the cumulative effect of mirror charges of all 

beamlets. For annular beams, the charge center is located 

outside of the area of charge density and, in coaxial cavities, 

usually lies within the insert. This ensures that the sample 

positions can never coincide with line-charges, as opposed to 

the general situation in Section II. 

For illustration, Fig. 3 shows how the voltage depression 

within a very thick beam is distributed if the beam is 



misaligned in an aligned cavity and is closer to the insert than 

to the wall. Despite the untypical thickness and large 

misalignment, the depression on beams of typical thickness 

and position in such geometries is basically the same: high 

depression (HD) at the beam center on the distant side of the 

insert (red), low depression (LD) at the outer fringe of the 

beam on the near side (blue), and very low depression (VLD) 

close to the insert (green). 

 

 
Fig. 3.  Voltage depression on the charges of a very thick, misaligned beam in 

an aligned coaxial cavity, calculated using mirror charges. The grey structures 

within the insert are the corresponding mirror charges. “HD”: high-depression 

region, “(V)LD”: (very-)low-depression region; see text. 

V. VERIFICATION 

Based on the above considerations, the C++ code 

WickedQueen was developed to calculate voltage depression 

on annular or arbitrary charged beams, based purely on 

physics in two dimensions. For verification the gyrotron 

design (MIG, magnet, beam tunnel, cavity) given in [9-10] 

(TE49,29 mode setup, Ibeam=69.3 A) was considered, using 

Ariadne [11] as 3D electron beam trajectory code. 

Misalignment was achieved by a lateral shift of the magnetic 

axis relative to the gyrotron geometry by up to 1 mm, resulting 

in a beam shift of 0.88 mm in the cavity region. For 

simplification of the geometry definition in Ariadne, no 

misalignment between cavity wall and insert was considered. 

Further simulation parameters are given in Table I. 

Two scenarios have been used for comparison with the 

depression voltages directly obtained from Ariadne. In the first 

scenario, the beamlet positions given by Ariadne were taken 

and the voltage depression at these positions was calculated 

according to Section III, each time omitting the charges’ self-

potential. In the second scenario, the given beam was 

approximated by an annular beam with uniform charge 

distribution (as opposed to the distribution given by Ariadne, 

which is more concentrated in the middle – not towards the 

center – of the beam, obviously due to space-charge effects) 

and the voltage depression was calculated according to 

Sections III and IV. In both cases, the number of mirror 

charges per original charge, Nmax, was 15. 

Fig. 4 shows the corresponding voltage depression 

distributions over the particles. In all three cases, there are two 

statistical maxima: around −1.1 kV where the beam is closest 

to the insert (LD region), and around −2.8 kV where the beam 

is farthest away from the insert (HD region). The 

characteristic tail at the low-depression end (VLD region) is 

present in all three cases. 

The error resulting from the coincidence of charges and 

measurement points in scenario #1 (cf. Section II), compared 

to scenario #2, is negligible. 
TABLE I 

SIMULATION PARAMETERS (SEE TEXT). 

Parameter WickedQueen Ariadne 

Cavity wall radius (mm) 31.78 

Insert radius (mm) 8.60 

Beam radius (mm) 
inner / central / outer 

10.10 / 1.26 / 10.42 

Beam misalignment (mm) 0.88 

Axial electron velocity βz 0.325 

Number of electrons 36259 36360 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  Histograms of the voltage depression distributions calculated with (a) 

Ariadne, (b) WickedQueen scenario #1 (original charge positions), and (c) 

scenario #2 (homogeneous beam). “HD”, “(V)LD” as in Fig. 3. 

  



 
Fig. 5.  Positions of the high-depression (HD) peak, of the low-depression 

(LD) peak and of the end of the low-depression tail (VLD) for the 3D 

simulation (blue, dotted) and the 2D method (green, lines), and for three 

misalignments. 

 

In Fig. 4(c), the voltage depression histogram of the 

homogeneous beam with all (>1000000) individual mirror 

charges is shown together with a histogram calculated using 

30 point-like mirror beams (black crosses). Both distributions 

agree perfectly, confirming the considerations in Section IV. 

In Fig. 5, the positions of the two peaks and of the end of 

the low-depression tail in the histograms (equivalent to 

Fig. 4(a) and (c) are plotted for three different misalignments 

and for both codes. One can see that the simplified method 

agrees well with the numerical calculation for the HD peak, 

while the low-depression regions disagree slightly. As one can 

see from Fig. 4, this is not caused by the different charge 

densities (as the distributions in scenarios #1 and #2 

practically coincide), and it was also found that the actual 

velocity distribution of the electrons is neither responsible for 

this effect. Thus, one may conclude that this disagreement is 

caused by the finite length of the realistic cavity (it is of the 

order of the cavity radius) as simulated in Ariadne. This finite 

length leads to axially dependent space charge, voltage 

depression, and beam radius, the combined effect of which 

might lead to the observed discrepancy. In any case, the 

difference of 0.2 kV is smaller than the usual accuracy of 

high-voltage measurements. 

VI. SUMMARY AND OUTLOOK 

A method to determine the voltage depression on charged 

particle beams in hollow and coaxial gyrotron cavities has 

been developed, using a finite number of mirror charges, with 

arbitrary accuracy. Verification with a 3D trajectory code 

shows that this method, albeit purely two-dimensional, returns 

accurate results, both qualitatively and quantitatively. For 

axially symmetric beams, calculation can be simplified 

drastically without loss of accuracy, since no more than 40 

charges have to be taken into account. Apart from 

misalignments, it is self-evident that the proposed method can 

also be used to calculate the depression on electron beams in 

symmetric geometries which, however, have azimuthally or 

radially varying current density, such as investigated in [12]. 

For aligned cavities, algebraic infinities (such as z
(∞)

=∞) have 

to be treated properly, e.g. using projective geometry in the 

code, as we have done for the calculations in Section V. 

With the help of the new code, systematic studies on 

voltage depression in coaxial cavities with mutually 

misaligned wall, insert, and thick symmetric beam can be 

conducted, which will be the subject of later publications.  

The presented method can be generalized in at least two 

ways. First, the discussed considerations are also valid for 

mirrors with infinite radius, i.e. straight lines on the X-Y 

plane, as long as they are parallel. In this case, the mirror 

charge locations do not converge; however, their distance 

from the region of interest (the original charge) increases 

linearly with every iteration step, while their potential grows 

only logarithmically, ensuring convergence of the total 

potential. Second, the infinite mirror-charge method can be 

generalized to higher dimensions. One could for example 

consider three dimensions: metallic spheres and/or planes and 

point-like charges. 
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