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Abstract In this work an open-ended coaxial cavity with a corrugated insert
and a relatively small number of corrugations on the outer wall is studied. In
particular, the Spatial Harmonics Method (SHM) is employed in order to de-
rive the TE modes characteristic equation, which is then solved by truncation
for the calculation of the corresponding eigenvalues. Special care is given in
the expansion functions used in order to avoid numerical instabilities in the
calculation of high-order spatial terms. Various cases of outer wall corrugations
are studied numerically in order to identify the effect of the outer corrugations
and understand the mode coupling mechanism.
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1 Introduction

Coaxial waveguides and open-ended cavities, with corrugations on the inner
conductor and smooth outer wall, as well as with smooth inner conductor
and corrugated outer wall have been proposed and used in multiple industrial
and scientific applications. Depending on the positioning, the number and
the size of the corrugations, such kind of coaxial structures have been used
extensively in vacuum tubes for microwave and millimetre wave generation
and amplification.

The multi-segment magnetron is one of the most representative examples
of microwave sources with a coaxial corrugated resonant system [1]. In these
sources the inner conductor of the resonator, which serves as the cathode, is
usually smooth and a small number of oversized corrugations is introduced on
the outer wall, which is the anode. Due to the small number and the large
dimensions of the corrugations, the latter are also refereed to as side cavities,
side resonators or vanes. Although various shapes of such side resonators have
been proposed, the wedge-shaped resonators are the most commonly used in
magnetrons [2].

Similar structures, with relatively small number of corrugations, have been
also proposed as the interaction region for gyro-TWTs and various studies ad-
dress the cases of smooth inner conductor with vane loaded outer wall as well
as smooth outer wall and longitudinally corrugated inner conductor [3], [4]. Al-
though such structures do not provide broadening of the amplifier bandwidth,
they compensate the gain loss that occurs other bandwidth broadening tech-
niques, such as the tapering of the cross section and of the external magnetic
field [5].

Of course, the introduction of longitudinal wedge-shaped corrugations is
not limited in gyro-amplifiers and applies for gyro-oscillators too. Gradually
tapered open-ended resonators are nowadays widely used in the development
of gyrotrons for high-frequency high-power microwave generation [6], [7]. In
these oscillators, a relatively large number of corrugations is introduced on the
inner conductor, whereas the outer wall of the resonator remains smooth [8].
Selecting the inner conductor’s radius and the corrugations properties prop-
erly, the eigenvalue spectrum of the cavity is significantly rearranged and the
quality factors of the competing modes can be selectively changed, providing
in this way an additional means for mode selection [9].

An additional idea to increase even more the mode-selectivity could be the
additional introduction of a small number of wedge-shaped corrugations on
the outer wall. Such a structure would work as a mode converter and could
couple close neighboring azimuthal modes of a gyrotron cavity with lower-
order modes with relatively small diffractive quality factors [10]. This structure
gained attention lately [11], [12], however, in those works the mode coupling
of the azimuthal modes, which would be the key element for the enhancement
of the selectivity properties of the cavity, is neglected. This is because they
supposed a large number of corrugations for both the inner and the outer walls
and thus the Surface Impedance Model (SIM) is used.



Open-ended Coaxial Cavities with Corrugated Inner and Outer Walls 3

In this work, we use a full-wave method to address the problem. In particu-
lar, the Spatial Harmonics Method (SHM) is employed to calculate the eigen-
value spectrum of TE modes in a coaxial cavity with corrugations on both the
inner and the outer wall. In Section II, the fields are expanded in terms of spa-
tial eigenfunctions, and the application of the appropriate boundary conditions
at the interfaces leads to a homogeneous system of infinite equations, which
is solved by truncation. In Section III various issues regarding the numerical
implementation of the method are discussed. Then, in Section IV we present
numerical results that highlight the way introduction of outer corrugations af-
fects the eigenvalue spectrum of a typical coaxial cavity with corrugated insert
yet smooth outer wall. Finally, we summarize our conclusions in Section V.

2 Mathematical Formulation

Fig. 1 presents the transverse cross-section of a coaxial cavity with inner and
the outer radius Ri and Ro, respectively. Fig. 2 presents the unfolded unit cell
of the same geometry. On the surface of the outer wall there are M wedge-
shaped corrugations with depth D and additionally N of them with depth d, on
the inner wall. Assuming that the ratio N/M is an integer number, the period
of the structure is ϕP = 2π/M , defined by the number of corrugations on the
outer wall. When the number of the inner corrugations is much larger than the
number of the outer corrugations, this assumption is not limiting because N
can be always selected accordingly. This is justified by [13] where it was shown
that minor changes on the number of inner corrugations have almost no effect
on the eigenvalue spectrum of a cavity, provided that the number of the inner
corrugations N is relatively large. The angular corrugation parameter, defined
as the ratio of the non-metallic part of the corrugation to the angular width
of the unit cell of the corrugation, is ϕD/ϕP for the outer wall and ϕL/ϕS
for the inner wall. Although the corrugations of each surface are identical
between each other, the outer corrugations are in general different from the
inner corrugations. In particular, we are interested in cases where the outer
wall has a small number of wide corrugations, whereas the inner wall has a
large number of relatively shallow surface corrugations. This is actually the
reason, why the Surface Impedance Method should not be applied to study
such a structure, as it cannot model correctly the outer corrugations.

In order to employ the SHM formulation, the structure is divided into three
regions. Region I represents the propagation volume between the surface cor-
rugations, Region II represents each of the inner corrugation slots, whereas
Region III represents each of the outer corrugation slots. Due to the angular
periodicity, the Floquet’s theorem is applicable in Region I and the longitu-
dinal component of the electric field is described as an infinite series of Bloch
components in the azimuthal direction:

HI
z =

+∞∑
n=−∞

[
AnFkn

(
χr

Ro

)
+BnGkn

(
χr

Ro

)]
ejknϕ (1)
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Fig. 1 Cross-section of a coaxial cavity with wedge-shaped corrugations on the surface of
both the inner and the outer wall.

Fig. 2 Detail of unfolded unit cell of Fig. 1.

where χ = k⊥Ro is the transverse wavenumber k⊥ normalized to the outer
radius Ro. Assuming that the fundamental azimuthal mode index is m, kn =
m+ nM is the wavenumber corresponding to the spatial harmonic n. An and
Bn are unknown expansion coefficients to be found and the functions Fn(a)
and Gn(a) are properly scaled Bessel functions of the first and second kind,
respectively, given by:

Fn (a) = Jn (a)/Jn (χ) (2)
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Gn (a) = Yn (a)/Yn

( χ
C

)
(3)

where C = Ro/Ri is the outer to inner radii ratio. It should be noted that
the scaled functions (2) and (3) have been selected properly in order to avoid
numerical issues even for very high orders.

In each slot of Region II, as well as in Region III, the longitudinal compo-
nent of the magnetic field will be a summation of standing waves, i.e.:

HII
z =

+∞∑
`=0

Ci`Qk`

(
χr

Ro
,
χ

Cd
,
χ

C

)
cos [k` (ϕ− iϕS)] (4)

HIII
z =

+∞∑
p=0

DpQkp

(
χr

Ro
,
χ

CD
, χ

)
cos [kp (ϕ− iϕo)] (5)

where k` = `π/ϕL and kp = pπ/ϕD are the transverse wavenumbers of Region
II and Region III, respectively, Ci` with i = 0, 1, ..., N/M − 1 and Dp are
unknown expansion coefficients, Cd = Ro/Rd, CD = Ro/RD, whereas the
function Qν(a, b, c) is a properly scaled linear combination of Bessel functions
of the first and second kind given by:

Qν(a, b, c) =
Jν (a) Y′ν (b)− J′ν (b) Yν (a)

Jν (c) Yν (b) + Jν (b) Yν (c)
. (6)

Note that for all the longitudinal components of the magnetic field a f(z)
longitudinal field dependence has been assumed, as well as harmonic variation
with time exp(jωt).

Substituting the longitudinal components in the Maxwell’s equations we
get the transverse components of the electromagnetic field in all regions. Then,
applying the boundary conditions, which demand the continuity of the tan-
gential components of the fields on the interface between the three regions
(r = Ro and ϕo < ϕ < ϕo + ϕD, r = Ri and iϕS < ϕ < iϕS + ϕL), the
homogeneous system of infinite equations is derived:

+∞∑
q=−∞

Aq
(
ZIII
nq − δnqZI

n

)
+Bq

(
ZIV
nq − δnqZII

n

)
= 0 (7)

+∞∑
q=−∞

Aq
(
N III
nq − δnqN I

n

)
+Bq

(
N IV
nq − δnqN II

n

)
= 0 (8)

The infinite system of (7) and (8) (see Appendix A for notation) can be
also presented in the simpler form:

X ·D = 0, (9)

where X is a vector that represents the unknown expansion coefficients An
and Bn, whereas D is a square matrix with infinite dimensions whose com-
ponents are given from (13)-(29) summarized in Appendix A. The expansion
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coefficients for field distributions in Region II and Region III are related to
An and Bn as:

Ci` =
2
∑+∞
n=−∞

[
AnFkn

(
χ
C

)
+BnGkn

(
χ
C

)]
I5

Qk`

(
χ
C ,

χ
Cd
, χC

)
ϕL (1 + δ`0)

(10)

Dp =
2
∑+∞
n=−∞ [AnFkn (χ) +BnGkn (χ)]I6

Qk`

(
χ, χ

CD
, χ
)
ϕD (1 + δp0)

. (11)

Non-trivial solutions for the expansion coefficients in (9) demand the de-
terminant of D to be equal to zero, i.e.

|D(χ)| = 0. (12)

Setting in (12) a specific value for the azimuthal index m, the eigenvalues
χ = χmt, t = 1, 2, . . ., are calculated. Then, for any specific eigenvalue the
system (9) is solved for the calculation of the unknown expansion coefficients
An and Bn.

3 Numerical Implementation

In order to calculate the determinant in (12) numerically we have to truncate
the infinite system of equations (7) and (8) to a maximum value, which in
practice means that we have to take into account a finite number of expansion
terms in expressions (1), (4) and (5). In particular, the total number of expan-
sion terms used for Region I is limited to those with indexes from −nmax to
nmax, whereas the summations in each part of Region II and Region III are
limited to terms with indexes up to `max and pmax, respectively.

Although, the integers nmax, `max and pmax are all independent variables
of the problem, the applications of SHM in similar eigenvalue problems [14],
[15] has led to the empirical rule `max = pmax = 2nmax, i.e 2nmax+1 terms are
taken into account in each neighboring region. Regarding nmax, it is increased
gradually and the eigenvalues of interest are calculated until the desirable
accuracy between two subsequent calculations is achieved. It should be noted
that usually more expansion terms are needed to achieve fields convergence
than to achieve eigenvalue convergence.

Recall that it has been already shown in [13] for a coaxial cavity with
inner corrugations that due to the presence of the surface corrugations the
azimuthal modes of the corresponding smooth structure (neglecting the inner
and outer corrugations) are coupled. Thus, in order to calculate the eigenvalue
spectrum up to the eigenvalue χmp(C) we should take into account at least
those expansion terms that satisfy the criterion |m + n ·N | ≤ χmp, where m
is the azimuthal index of the mode of interest, n = −nmax . . . nmax and N is
the number of the inner wall corrugations [13]. Following the same procedure
with the one presented in Section IV in [13], it can be shown that in a cavity
with corrugations on both walls and M < N , we have to take into account
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at least those expansion coefficients that satisfy |m+ n ·M | ≤ χmp, where M
is the number of the outer wall corrugations. The aforementioned procedure
is omitted here, since it can be derived from [13] in a straightforward way.
However, all the calculations in Section 4 satisfy this criterion unless stated
differently. Note that since the number of the inner corrugations N in an
integer multiple of the number of the outer corrugations M and M < N the
criterion |m+ n ·M | ≤ χmp ensures that all the proper coupled terms will be
taken into account for the outer corrugations too.

Summarizing, nmax is selected to be at least as large as the criterion |m+
n ·M | ≤ χmp indicates in order to account for the coupled modes and then
it is increased properly to obtain the preferable accuracy in the calculation of
the eigenvalue curve under interest.

4 Numerical Results

We use the semi-analytical model presented in the previous sections to study
the rearrangement of the eigenvalue curves of TE modes in coaxial waveg-
uides with corrugated inner and outer walls. The parameters that we selected
are primary for illustrative reasons. However, they are quite representative of
coaxial cavities that are frequently used in high-power high-frequency gyrotron
oscillators. In this context, we consider a coaxial structure having N = 88 sur-
face slots on the inner conductor with relative corrugation depth d/Ro = 0.015
and angular ratio ϕL/ϕS = 0.5. In this geometry we introduce various types
of outer wall corrugations and we study the rearrangement of the eigenvalue
spectrum of the TE mode with azimuthal index m = 28.

4.1 Effect of the outer to inner corrugation number ratio

As it was mentioned in Section 2, our formulation is suitable for integer N/M
ratios. For this reason we consider two different cases, where we introduce
M = 22 and M = 44 corrugations on the outer wall of the above described
structure, both with relative depth D/Ro = 0.01. In both cases we calculate
the eigenvalue curves of TE modes with azimuthal index m = 28 with respect
to the outer to inner radius ratio C = Ro/Ri. Note that we prefer to present
the eigenvalues with respect to the C-ratio in order our results to be directly
comparable with the eigenvalues of a coaxial structure without corrugations.

Fig. 3 presents the eigenvalue curves of TE modes with m = 28 (black
squares) for the case of M = 44 outer slots. It is easy to recognize in this fig-
ure that there are two sets of similar curves. Moreover it is evident that both
sets of curves have regions where their slope is positive and they form the, so
called, inner mode [8]. Having these in mind, we could say that the eigenvalue
spectrum of the complex structure with the inner and outer corrugations con-
sists of a combination of the TE modes in the corresponding coaxial structure
with inner corrugations only. The specific modes that are combined can be
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Fig. 3 Eigenvalue curves of TE modes with azimuthal index m = 28 (black squares) in
a coaxial cavity with N = 88 and M = 44 corrugations on the inner and the outer wall,
respectively, d/Ro = 0.015, D/Ro = 0.01, ϕL/ϕS = ϕD/ϕP = 0.5. The solid colored lines
correspond to the eigenvalue curves in a coaxial corrugated structure with smooth outer
wall for the cases of m = 28 (blue lines) and m = −16 (red lines).

identified from the transverse wavenumber kn = m+ nM . Indeed, piloting in
the same figure with coloured solid lines the eigenvalue curves of the modes
with azimuthal index m = 28 (blue lines) and m = −16 (red lines), in a coaxial
corrugated structure with smooth outer wall, we get a perfect match.

Of course, as it was described in detail in [13], the eigenvalue spectrum of
TE modes in a coaxial structure with inner corrugations consists of a combi-
nation of the modes in the corresponding smooth coaxial structure (no corru-
gations). The coupled modes can be easily identified by the different values of
the transverse wavenumber kn = m+ nN . Thus, from another point of view,
one could say that both the inner and the outer corrugations evoke azimuthal
coupling of the modes of the smooth coaxial structure and the eigenvalue
spectrum of the complex cavity is the combination of all the modes that are
coupled due to both surface corrugations. Although the latter approach seems
simpler, we prefer to address the coupling scheme progressively and in par-
ticular to think the spectrum of the complex structure as a combination of
modes in the structure with the coaxial corrugated insert. This scheme is even
more appropriate for cases with large number of inner corrugations N , where
the coupled modes are located relatively high in the spectrum and far away
from the χ-range of interest.

Fig. 4 presents the eigenvalues curves of TE modes with m = 28 in a coaxial
structure with M = 22 outer and N = 88 inner corrugations. In the same
figure we have plotted with colored lines the TE modes of the corresponding
structure with a corrugated insert and smooth outer wall. It is evident that
in this case the spectrum is more dense and this is due to the smaller number
of outer corrugation that couples modes that are closer in azimuthal index.
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Fig. 4 Eigenvalue curves of TE modes with azimuthal index m = 28 (black squares) in
a coaxial cavity with N = 88 and M = 22 corrugations on the inner and the outer wall,
respectively, d/Ro = 0.015, D/Ro = 0.001, ϕL/ϕS = ϕD/ϕP = 0.5. The solid colored lines
correspond to the eigenvalue curves in a coaxial corrugated structure with smooth outer
wall for the cases of m = 28 (blue), m = 6 (green) m = −16 (red), m = 50 (yellow) and
m = −38 (cyan).

For clarity reasons it is worthwhile to mention again that when we refer to
the mode TEm,p of a coaxial cavity with inner corrugations and smooth outer
wall, we refer to the mode whose fundamental spatial term corresponds to
azimuthal index m.

It should be noted here that if we followed a simplified method, such as
SIM, we would not be able to account for the higher-order coupled terms and
the representation of the eigenvalue spectrum would be questionable, since
SIM assumes an infinite number of corrugations N and M .

Summarizing, it is clear that the number of the outer corrugations defines
the modes that will be azimuthally coupled and may be used to bring in
the eigenvalue range of interest additional modes. These modes can be easily
identified from the different values that the transverse wavenumber kn attains.

4.2 Effect of the outer corrugation depth

In the first part of Section 4 we kept the outer corrugations depth relatively low
in order to avoid changing the eigenvalue curves significantly and focus on the
effect of their number M . Fig. 5 presents the eigenvalue curves of TE modes
with m = 28, in a coaxial structure with N = 88 inner and M = 44 outer
corrugations, ϕL/ϕS = ϕD/ϕP = 0.5, d/Ri = 0.015 and having the relative
corrugation depth D/Ro as parameter, with values 0.001 ≤ D/Ro ≤ 0.01.

It is evident that increasing the corrugation depth the coupled modes move
away from each other. Consequently, the distance between two coupled modes
can be used to gain insight about the intensity of the coupling that the outer
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Fig. 5 Eigenvalue curves of TE modes with azimuthal index m = 28 (black squares) in
a coaxial cavity with N = 88 and M = 44 corrugations on the inner and the outer wall,
respectively, ϕL/ϕS = ϕD/ϕP = 0.5, d/Ri = 0.015 and the relative outer corrugation depth
D/Ro as parameter.

corrugations evoke. Thus, when the introduction of the corrugations aims to
couple specific modes without changing their eigenvalue curves significantly,
the relative outer corrugation depth has to be kept relatively low

4.3 Effect of the outer corrugation angular ratio

Fig. 6 presents the eigenvalue curves with m = 28 in the same structure with
D/Ro = 0.12 and the relative angular width ϕD/ϕP as parameter in the range
0.1 ≤ ϕD/ϕP ≤ 0.9. In order to present clearly the effect of the later parameter
we focused in the area where 3.0 ≤ C ≤ 4.0 and 52.6 ≤ χ ≤ 53.0.

It can be seen in this figure that increasing the ϕD/ϕP -value progressively
from 0.1 to 0.9 the eigenvalue curves move to lower χ-values. This shall be at-
tributed to the fact that for the limiting cases of ϕD/ϕP ≈ 0 and ϕD/ϕP ≈ 1
we have in practice a smooth outer wall with radii Ro and RD, respectively.
Since RD ≥ Ro, the resonating volume of the structure increases and this
is why the eigenvalue, i.e the eigenfrequency, drops. Moreover, it is easy to
observe that from ϕD/ϕP = 0.1 and moving towards ϕD/ϕP ≈ 0.5 the dis-
tance between the neighboring modes increases, revealing a similar increase
in their coupling intensity. Then, moving from ϕD/ϕP ≈ 0.5 to ϕD/ϕP = 0.9
the eigenvalue curves approach each other again and the coupling intensity is
expected to decrease.

Although for manufacturing simplicity we would expect to use outer cor-
rugations with ϕD/ϕP = 0.5, Fig. 6 shows that the relative angular ratio
provides an additional means for the manipulation of the eigenvalue curves.
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Fig. 6 Eigenvalue curves of TE modes with azimuthal index m = 28 in a coaxial cavity with
N = 88 and M = 44 corrugations on the inner and the outer wall, respectively, ϕL/ϕS = 0.5,
d/Ri = 0.015, D/Ro = 0.12 and the relative outer corrugation depth ϕD/ϕP as parameter.

5 Conclusion

We presented a full-wave approach to calculate the eigenvalues in a coax-
ial structure having corrugations both on the inner and the outer wall. Is
was shown by example that the outer corrugations complicate the spectrum
by coupling the modes of the coaxial structure with a corrugated insert and
smooth outer wall. The modes that get coupled depend on the number of the
corrugations and can be foreseen from the different values of the transverse
wavenumber. Moreover, the outer corrugation depth d/Ro and the angular ra-
tio ϕD/ϕP can be used to control the shape of the eigenvalue curve of interest.

It is worthwhile to mention again that the mode coupling phenomena
that exist in such a complex structure can be only address with full-wave
approaches. Thus, the validity of SIM based results is questionable and should
be examined carefully.

A Formulation Notation Appendix

Herein we present the expressions of all quantities used in the mathematical formulation of
Section 2. In particular:

ZI
n = ϕPF′kn (χ) (13)

ZII
n = ϕPG′kn (χ) (14)

ZIII
nq =

2Fkq (χ)SI
nq

ϕD
(15)

ZIV
nq =

2Gkq (χ)SI
nq

ϕD
(16)
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SI
nq =

+∞∑
p=0

Q′kp

(
χ, χ

CD
, χ
)

Qkp

(
χ, χ

CD
, χ
) I1I2

1 + δp0
(17)

N I
n = ϕPF′kn

(
χ

C

)
(18)

N II
n = ϕPG′kn

(
χ

C

)
(19)

N III
nq =

2Fkq

(
χ
C

)
SII
nq

ϕL
(20)

N IV
nq =

2Gkq

(
χ
C

)
SII
nq

ϕL
(21)

SII
nq =

N
M
−1∑

i=0

+∞∑
`=0

Q′k`

(
χ
C
, χ
Cd
, χ
C

)
Qk`

(
χ
C
, χ
Cd
, χ
C

) I3I4

1 + δ`0
(22)

I1 = I (kq , kp, ϕo, ϕo + ϕD) (23)

I2 = I (−kn, kp, ϕo, ϕo + ϕD) (24)

I3 = I (kq , k`, iϕS , iϕS + ϕL) (25)

I4 = I (−kn, k`, ϕS , iϕS + ϕL) (26)

I5 = I (kn, k`, iϕS , iϕS + ϕL) (27)

I6 = I (kn, kp, ϕo, ϕo + ϕD) (28)

I (a, b, ϕ1, ϕ2) =

∫ ϕ2

ϕ1

ejaϕ cos [b (ϕ− ϕ1)]dϕ (29)
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