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Abstract. The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, 

are usually understood to lie somewhere between those of ITER and a “first of a kind” commercial plant. Hence, 

in DEMO the issues related to efficiency and RAMI (Reliability, Availability, Maintainability and Inspectability) 

are among to most important drivers for the design, as the cost of the electricity produced by this power plant will 

strongly depend on these issues. In the framework of the EUROfusion Work Package Heating and Current Drive 

(WPHCD) within the Power Plant Physics and Development (PPPT) activities, a conceptual design of the Neutral 

Beam Injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with 

other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions 

have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum 

pumping systems. 
 

1. Introduction 

DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is 

intended to follow the ITER experimental reactor. While in ITER the goal is to demonstrate the 

possibility to obtain a plasma able to sustain the fusion nuclear reaction, in DEMO the main 

objective is to prove the industrial feasibility of fusion by showing the electricity production 

from the fusion reaction, the safety aspects and the Tritium self sufficiency. 

The injection of high energy neutral beams is one of the main tools to heat the plasma up to 

fusion conditions. In the framework of the EUROfusion Work Package Heating and Current 

Drive (WPHCD) within the Power Plant Physics and Development (PPPT) activities, a 

conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor [1][2] has 

been developed by Consorzio RFX in collaboration with other European research institutes and 

integrated into the DEMO1 reference design, as shown in FIG. 1. 

 
FIG. 1: Integration of the Heating Neutral Beam in the DEMO1 pre-conceptual design. 
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High efficiency and low recirculating power, which are fundamental requirements for the 

success of DEMO, have been taken into great consideration for the conceptual design of the 

DEMO NBI. Moreover, essential is the design of a system with the highest reasonably 

achievable Reliability, Availability, Maintainability and Inspectability (RAMI). 

2. Implementation of efficiency and RAMI enhancements 

A large R&D effort is implemented in Europe to maximize the efficiency and obtain the most 

effective system with respect to the RAMI analysis meeting the requirements for the DEMO 

power plant. In particular with respect to the state-of-the-art negative ion based neutral beam 

injector (NNBI) under construction for ITER the following aspects have been identified for 

efficiency and RAMI improvements. 

(i) In ITER the neutralizer component is foreseen to have an efficiency of 55%, defined as the 

ratio between the power flux of neutral particles at the exit of the neutralizer and the negative 

ions at the entrance. To increase efficiency of the neutralizer up to 70% or more for DEMO, 

innovative concepts of this component, based on Photo-Neutralization (PN), are being 

considered for DEMO. These concepts take into account the results of the studies and NB R&D 

that is in progress by various laboratories throughout Europe, working on the “closed 

recirculating cavity with nonlinear gating” or RING concept [5] (RFX Padova/Italy), and on 

the Fabry-Pérot cavity (Siphore injector concept at CEA/France [6] and a proof-of-principle 

test facility HOMER at IPP Garching/Germany [7]). 

The conceptual design of a neutralizer based on the RING concept has been implemented as 

one option in the DEMO NBI conceptual design. Nevertheless, as the PN feasibility and 

reliability are still to be demonstrated, the DEMO NBI has been designed to be compatible both 

with a PN and a gas neutralizer similar to the one foreseen for ITER. This approach aims at 

minimizing the development risks, by keeping more optional solutions to be selected in a later 

design stage. 

(ii) Another possibility to increase the overall efficiency of a NBI system (of about 15% 

compared to ITER NBI, according to the present calculations) is to decrease the beam losses in 

the beam duct, which is the part that connects the NB injector with the tokamak chamber. This 

is particularly critical in DEMO because the duct is several meters long. To reduce re-ionization 

losses, the NB duct has been designed with a high performance vacuum pumping system, 

allowing to significantly decrease the gas pressure in that region. 

(iii) To increase availability, the beam source for the DEMO NBI has been designed with 20 

sub-sources in parallel (two adjacent columns of 10 sub-sources each) rather than a single one, 

following a modular design concept. Each sub-source features its Radio Frequency (RF) driver, 

designed following the research carried out by IPP Garching on the negative ion source 

BATMAN [8][9]. Alternative concepts for the ion sources are being studied at CEA (the Cybele 

source [6], which is based on a high power Helicon antenna developed at SPC [10]) and IPP 

Garching [11]. The modular solution provides an optimized alignment among the 

corresponding apertures of the accelerator grids, since the modules have a significantly smaller 

size than the whole accelerator, leading to reduced horizontal and vertical deformations of the 

grids compared with a non-modular solution. 

(iv) An additional improvement introduced in this conceptual design compared with the 

existing machines is the blade-like shape of the beam. In fact, the ion beam is formed by two 

“blades” with large height (about 3.7 m) and small width (76 mm). Each of these blades is 

formed by 10 sub-beams, one per sub-source. The blades are strongly convergent in the vertical 

direction, with a fan shape. This solution is both compatible with the PN and the gas neutralizer 

with reduced/optimized vacuum conductance. It also permits to obtain a simpler shape of the 

residual ion dump compared to the ITER design.  

(v) Moreover, the accelerator has been designed and optimized to maximize the vacuum 

pumping to achieve reduced stripping losses. This goal has been reached by adopting an 
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increasing size of the apertures in the accelerator, with three main layouts of the apertures 

(circular apertures, slotted apertures and frame-like apertures for each sub-source) and a design 

of the supporting frames that permits an optimal lateral pumping. In order to increase reliability 

of the vacuum pumping system, Non-Evaporable Getter (NEG) pumps are an option instead of 

cryopumps to provide the required vacuum pumping. This solution is under R&D phase in RFX 

Padova, KIT Karlsruhe Germany and industrial contributions [12]. Compared to the 

cryopumps, NEG pumps present numerous advantages, i.e. they are more resistant to neutron 

radiation, they do not need liquid helium (and nitrogen) to maintain cryogenic temperatures and 

they imply a lower investment and operative cost. This solution is very attractive for the future 

fusion devices, but its effectiveness is under validation in present R&D programme. An 

alternative solution, under development at KIT within the EUROfusion WPTFV (Work 

Package on Tritium Fuelling and Vacuum), is represented by the mercury diffusion pumps [13]. 

3. Definition of DEMO NBI requirements 

The main requirements of the DEMO NBI, developed within the EUROfusion WPHCD 

activities in comparison with the ITER NBI are reported in TAB. 1.  
 

TAB. 1: Main requirements for the DEMO NBI, with a comparison to the ITER NBI. 
 ITER NBI Advanced DEMO NBI 

Species H0/D0 D0 
Beam energy [keV] 1000 800 

Accelerated current [A] 40 34 
Max. ion source filling pressure [Pa] 0.3 0.2 

Beamlet divergence [mrad] <7 <7 
Beam on time [s] 3600 7200 

Extracted e-/D- fraction <1 <1 
Neutralization efficiency not specified* >0.70** 

*This value was not a requirement for ITER; it is foreseen to be about 0.55 for ITER. 

**Theoretically obtainable with PN. 
 

These requirements refer to the case “Advanced DEMO NBI”, while the requirements for an 

“ITER-like DEMO NBI” are identical to those of ITER, except for the duration of the beam on 

time. In fact, in this last case the DEMO NBI would be an up-to-date version of the ITER NBI, 

taking into account the DEMO operating scenario. 

It can be noted that the requirements of the advanced DEMO NBI are similar but not identical 

to the ones of the ITER NBI. Namely, it can be observed that: 

• In the DEMO NBI, only Deuterium negative ions (D-) are considered, whereas ITER NBI is 

required to operate with hydrogen negative ions (H-) in hydrogen discharges. A beam made 

of deuterium neutrals (D0) is the final goal also in both NBIs. 

• The beam energy requirement has been slightly decreased in the DEMO NBI compared to 

ITER (from 1 MeV to 800 keV) to improve the overall reliability of the NBI system 

integrated into the reactor. The voltage holding of 1 MV DC potential in presence of 

magnetic fields can be obtained only with optimal conditions of the electrode surfaces, in 

terms of smoothness and vacuum conditions [14]. 

• The maximum ion source filling pressure has been decreased, to increase efficiency. In fact, 

the beam losses in the accelerator are strictly linked to the gas density in the accelerator, that 

in turn is proportional to the pressure in the ion source. 

• The maximum divergence of the beamlets must be very small in both cases; allowing a large 

fraction of the particles to reach the plasma inside the main chamber. 

• The required total accelerated current has been decreased of about 15%, to increase 

availability of the NBI. Presently, high values of accelerated currents are obtainable only in 

the case of a perfect set up of the ion source, that is likely to be obtained only in particularly 

optimised operating conditions. 
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• The extracted e-/D- fraction (or e-/H- fraction if the operations are with hydrogen ions) must 

be in both experiments kept lower than 1. A low ratio permits to limit the heat loads on the 

extraction grid and to increase the efficiency of the extraction/acceleration system. It requires 

a good conditioning of the ion source [8]. 

• The neutralization efficiency requirement has been introduced, differently from ITER, 

because it is one of the main tools to decrease the recirculating power of the plant and to 

increase the reliability and availability of the injector. 

• The beam-on time is doubled with respect to ITER (two hours instead of one hour), to cope 

with the so-called DEMO 1 requirements a non-continuous fusion power plant. 

4. Choice of the main design parameters 

Based on the requirements described in Sec. 3, a set of functional parameters was proposed by 

the design team and is reported in TAB. 2, where also the corresponding parameters of the ITER 

NBI are reported for comparison. 
 

TAB. 2: Main parameters assumed for the advanced DEMO NBI, with a comparison to the ITER NBI. 
 ITER NBI Advanced DEMO NBI 

Extracted current density [A m-2] 293 200 
Aperture radius [m] 0.007 0.007 

Number of aperture columns per source 20 4 
Number of aperture rows per source 64 15 

Number of sub-sources 1 20 
Total extraction area [m2] 0.197 0.185 

Extracted Current [A] 57.7 36.9 
Acceleration voltage [kV] 1000 800 

Auxiliaries/extraction overall efficiency 0.9 0.9 
Gross Power [MW] 64.1 32.8 

Stripping/halo current losses efficiency 0.7 0.9 
Accelerated current [A] 40 33.3 

Beam source transmission efficiency 0.95 0.98 
Neutralizer efficiency 0.55 0.7* 

Beam line/duct transmission efficiency 0.8 0.92 
Power released to the plasma [MW] 16.7 16.8 

Injector overall efficiency 0.26 0.51 
Number of injectors 3 3 

Overall NBI power to the plasma [MW] 50.2 50.4 
*theoretically obtainable with PN. 

 

Generally, the efficiencies of the main components are increased in DEMO NBI compared to 

the ITER NBI values. This is achievable mainly by changing the working principle of the 

neutralizer (from gas to photo-neutralization), re-designing all the main components and 

decreasing the density of the background gas in the accelerator, in the beam line components 

and in the duct. All of these contribute to decrease the beam losses generated by the stripping 

and re-ionization reactions. In the advanced DEMO NBI, the power consumption of the neutral 

beam would be approximately half than the ITER one (32.8 MW instead of 64.1 MW), while 

having the same nominal power injected to the plasma. This would represent a large advantage 

in terms of recirculating power reduction and efficiency of the whole DEMO. 

5. Development of the conceptual design  

The present conceptual design of the advanced DEMO NBI, shown in FIG. 2, features the 

following main components: 

• A negative ion beam source, composed of 20 sub-sources (two adjacent columns of 10 sub-

sources each). The dimension of each sub-source is approximately 0.4 x 0.4 x 0.4 m3. Each 

sub-source features 4 x15 apertures (4 in the horizontal direction, 15 in the vertical direction) 

with 20 horizontal x 22 vertical mm steps, like in the SPIDER [15] and MITICA [16] 
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experiments. The ion beam is formed by two “blades” with large height (about 4 m) and 

small width (about 70 mm). The blades are strongly convergent in the vertical direction, with 

a fan shape, to focus the entire beam to the opening in the Breeding Blanket (BB), where it 

enters in the main chamber. 

• A PN based on the (RING) concept, but compatible with other options. 

• A Residual Ion Dump (RID) featuring a flat water-cooled CuCrZr plate.  

• A beam source vessel, containing the entire beam source with the related NEG pumps. 

• A beam line vessel, containing the complete neutralizer and RID structures. 

• A duct connecting the beam line vessel to the tokamak chamber. The duct features a large 

NEG pump (to reduce gas density and re-ionization losses) and two heat dumps (to dump 

the heat loads by re-ionization). 

 
FIG. 2: Overview of the DEMO NBI with the main components and a sketch of the grids of the 

modular extraction/acceleration system. 
 

The modular solution for the beam source is found to have the following main advantages: 

• A better alignment between the corresponding apertures of the grids, also in presence 

of thermal expansion. Each module has a significantly smaller size than the whole 

accelerator, hence the horizontal and vertical deformations are also reduced compared 

with a non-modular solution. In ITER NBI, for instance, the modularity is only in the 

vertical direction (where there are four separated modules) but not on the horizontal 

one, introducing a quite difficult alignment and a significant thermal sensitivity for the 

alignment of both grids and beamlets. 

• A more uniform magnetic filter field inside each sub-source, because magnets and/or 

coils can be put among the two columns of sub-sources; magnetic filter field is a primary 

factor for the performance of negative ion source [8]. A more uniform magnetic filter 

field could be an advantage considering the helicon ion sources [10][11], that operate 

with a higher field (around 12 mT) than the classic IPP-type RF drivers. 

• An increased neutralization efficiency, considering the present choice of RING PN, but 

also considering a gas neutralizer. This modular solution with two blade-like beams is 

the most convenient to limit the width of the neutralizer channels minimising the gas 

throughput thanks to a reduced neutralizer vacuum conductance. 

• A higher availability during the operations in DEMO; if some sub-sources do not work 

properly, the remaining ones can in any case provide the negative ion beam. 

• The R&D phase can be carried out using a small beam source, which is more flexible 

and less expensive than a full size prototype. Once optimized, the sub-source can be 

replicated to form a cluster in the DEMO NBI. 

On the other hand, there are also some drawbacks: 

• A more complex construction of the ion sources, because there are 20 small ion sub-

sources rather than a single large one. 
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• A more complex construction of the extraction/acceleration system, because the 20 grid 

segments composing each grid must be supported by a single frame structure that has 

to cope with high voltage and cooling issues. 

The PN, based on the RING concept [5], uses two lasers with 35 kW power each, 1.5 μm 

wavelength (infrared), 100 ps pulse length and 1 μs interval between pulses. By means of a 

second harmonic generator, only the 2nd harmonic is circulated in the PN, having a wavelength 

of 0.75 nm, half of the initial one injected by the laser. The 2nd  harmonic remains trapped in 

the mirror system, given by a certain number of upper/lower mirrors (6 in the presented design) 

and additional 4 mirrors with a 45° angle. The negative ion beam must have enough intersection 

(limited to 76 mm for laser technological limitations). Additionally the laser has to intercept the 

beam in a sufficient number of times (14 in the presented design), so that a suitable 

neutralization power of the ion beam can be provided. 

 
FIG. 3: Neutralizer conceptual design. 

 

In order to have a sufficient precision on the position of the mirrors, a double frame design is 

proposed as shown in FIG. 3. The internal structure supports the laser optical systems, while the 

external structure supports the other auxiliary components, subjected to significant thermal 

loads (electron dump, neutron dump and NEG pumps). The electron dump stops the electrons 

accelerated together with the negative ions out of the accelerator, while the neutron dump stops 

the neutrons coming from the tokamak chamber. The NEG pumps keep a high vacuum in the 

region minimizing the gas density inside the beam line vessel and consequently the stripping 

and re-ionization losses. In fact, the density of background gas can be much lower than with 

gas neutralizer, because the efficiency of the neutralizer with photo-neutralization is not 

depending on the background gas density. This represents a significant advantage of the PN 

with respect to the gas neutralizer. 

The connection of the optical systems to the upper flange permits to regulate the mirrors when 

they are outside the beam line vessel and then put the system in the operating position. The 

dedicated cooling for the internal structure permits to carefully control the temperature of this 

structure during operation. On the other hand, the thermal expansion of the external structure is 

not so delicate hence; all the high heat load components are mounted on this structure. 

The interface between the NBI and the BB is critical for several reasons: 

• The reduction of TBR (Tritium Breeding Ratio) due to the presence of the NBI opening on 

the BB. This has been minimised by focusing the neutral beam at the center of the opening 

corresponding to the removed BB. This permits to have minimum aperture on the BB and 

consequently a small impact on the TBR. 

• The amount of neutron radiation reaching the NBI components from the tokamak, 

depending on the dimension of the NBI aperture and on the injection angle. 
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• The interaction of the beam with the plasma (and walls, because of shine-through) inside 

the tokamak, depending on the injection angle. 

• The layout of the port region, that is critical because of the interface between several critical 

components, like BB, NBI, toroidal field (TF) coils etc. 

• The local modifications on the design of the BB needed around the aperture zone. 

 
FIG. 4: Interface with breeding blanket: comparison between the three design options. 

 

Regarding this critical aspect, three design options have been proposed, as shown in FIG. 4). A 

feedback has involved different EUROfusion groups working on the BB (WPBB) and on the 

remote maintenance (WPRM), the CCFE group studying the neutronic aspects and the 

CIEMAT group designing the Dual Coolant Lithium Lead (DCLL) BB. Option 2 was identified 

as the reference design. In fact, thanks to the reduced injection angle of 30°, this option requires 

no modification of the vacuum vessel (VV) due to the reduced injection angle. For the same 

reason, the clearance with the TF coils is larger. On the other hand, the neutronic load on the 

NBI components The neutronic loads on the NBI components are insignificantly larger for 

option 2 compared to option 1. Studies on the influence of the injection angle on the interaction 

between the injected neutral beam and the plasma inside the tokamak are also foreseen in the 

next future. 

FIG. 5: Maintenance strategy: (a) beam source and beam line components; (b) duct components. 
 

To increase the maintainability of the fusion power plant, the DEMO NBI has been designed 

in such a way that all the main components can be substituted without removing other 

components. For example, the beam source can be removed from the lateral opening of the 

beam source vessel (see FIG. 5a), the neutralizer and the residual ion dump from the dedicated 

upper flanges (see FIG. 5a), and the duct components from the radial port close to the NBI 

tangential port (see FIG. 5b). 
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6. Conclusions 

The conceptual design of the DEMO NBI has been developed in the framework of the 

EUROfusion activities on the heating and current drive (HCD) systems aiming to increase the 

efficiency (>50%) and better coping with RAMI requirements. The design features a modular 

approach for the beam source and is ready to adopt the photo-neutralisation concept. 

The main components of the DEMO NBI have been drafted, based on the present knowledge 

and on the R&D currently being carried out in various European Research Institutes. The design 

of most components will be further studied and developed within EUROfusion. 

In future, the various NB injector concepts under development (ITER-like and DEMO-like), 

could be tested, after demonstrating their feasibility and performances in the different facilities 

throughout Europe, in the neutral beam test facility PRIMA hosted in Padova (Italy). 
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