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Abstract

Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density
and pressure. Therefore, the use of a global model is required that allows perturbations of a similar or even larger magnitude
to the time-averaged background value. The fluid-turbulence code GRILLIX is extended to use such a global model, which is
based on the drift-reduced Braginskii model. The extended model includes electromagnetic and electron-thermal dynamics, and
retains global parametric dependencies. Moreover, the Boussinesq approximation, a simplification often employed for numerical
reasons, is not justified in the SOL and has been relaxed in GRILLIX. In addition to extending the physical model, the penalisation
technique is combined with the flux-coordinate independent (FCI) approach employed in GRILLIX, which allows to study realistic
diverted geometries with X-point(s) and general boundary contours, which are in general not conformal with the computational
grid. We characterise results from turbulence simulations and investigate the effect of geometry by comparing simulations in
circular geometry with toroidal limiter against realistic diverted geometry at otherwise comparable parameters. Turbulence is found
to be intermittent with relative fluctuation levels of up to 40% showing that a global description is indeed important. In comparison
to circular geometry the fluctuation level is reduced in diverted geometry and has a more complex spatial distribution. Due to local
magnetic shear, which is in the edge region fundamentally different between circular and diverted geometry, turbulent structures
become distorted and eventually subject to strong perpendicular dissipation. Therefore, the X-point tends to disconnect the high-
field from the low-field side, where curvature is unfavourable.
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1. Introduction

Understanding the complex multi-physics of the edge region
– the scrape-off layer (SOL) and closed-field line region im-
mediately near the separatrix – is of critical importance for the
development of fusion energy. Due to the relative stiffness of
the internal profiles of temperature and density, the core values
and therefore the overall fusion performance is strongly deter-
mined by the edge profiles. Furthermore, in a fusion reactor
there will be a large exhaust of particles and heat due to imper-
fect confinement. This plasma exhaust is directed towards di-
vertor target plates, and preventing these fluxes from exceeding
engineering limits, above which the performance and lifetime
of the reactor is significantly reduced, is a high-priority area of
fusion research. Prediction of these heat fluxes for future de-
vices such as ITER or DEMO is complicated by uncertainty in
extrapolation of the width of the exhaust channel from current
devices [1, 2].

Modeling of the edge plasma is a significant challenge due
to the highly-coupled interplay of multiple different physics
regimes and disparate spatial and temporal scales. Magnetized
plasma physics, complex magnetic geometry, neutral physics
and momentum transfer, atomic and molecular chemistry, ra-
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diation from excited states, wall recombination, surface chem-
istry and impurity sputtering all can affect the edge plasma. Fur-
thermore, the edge can exhibit phenomena over a large range of
spatial and temporal scales – from the formation of small-scale
intermittent turbulent filaments to large-scale long-timescale ef-
fects such as equilibration of the background in response to the
magnetic and wall geometry. Inclusion of an extended physics
set or finer spatial and temporal scales typically improves the
accuracy of the code with respect to experiment, but at the ex-
pense of increased computational cost. Within the subset of
codes based on the multi-fluid approximation, the two broad
classes are ‘transport’ and ‘turbulence’ codes. Transport codes
such as SOLPS code [3] include a significant range of multi-
physics but do not treat turbulent transport self-consistently.
Instead, the effects of turbulence are approximated via an ef-
fective diffusion, which remains an ad-hoc input. In contrast,
turbulence codes self-consistently treat turbulence by evolving
the 3D Braginskii models [4] – at the cost of increased runtime
and/or a reduced physics set.

Several recent projects aim at developing fluid-turbulence
codes, of which we note the GBS [5, 6], HERMES (BOUT++)
[7], TOKAM3X [8], GDB [9] and GRILLIX [10] projects. In
contrast to the other codes mentioned, the GRILLIX project is
notable for its use of the flux-coordinate independent (FCI) ap-
proach [11, 12, 13]. This method prevents the issue of coordi-
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nate singularities at the separatrix and X-point which arise from
the use of field- or flux-aligned coordinates. GRILLIX employs
a cylindric grid (Ri, ϕk,Z j) where parallel operators are discre-
tised via field line tracing between toroidal planes and field line
map interpolation within each plane. This allows for the use of a
single consistent method to be used for all grid points, including
the possibility of (possibly multiple) X-points. Furthermore,
the use of Cartesian grids prevents resolution imbalances be-
tween the outboard midplane and the X-point region, allowing
the dynamics around the X-point to be investigated with high
accuracy. To allow for the treatment of general non-conformal
boundaries, the penalization method is used to enforce the de-
sired boundary conditions.

In this paper, the extension of GRILLIX by electromagnetic
and electron thermal dynamics is presented, with the result-
ing model being a global drift reduced Braginskii model. Here
’global’ means that parametric dependencies are kept and that
the Boussinesq approximation is not applied, i.e. nowhere a
separation is made between fluctuations and background for the
density and temperature. This is needed for the consistent de-
scription of high amplitude fluctuations which are regularly ob-
served in experiments [14]. We note that other codes –at least
as far as has been reported so far to our knowledge – either
use a global model only for simpler (e.g. circular) geometries
(e.g. [9]) or treat a more complex geometry but only with a lo-
cal model, where e.g. the Boussinesq approximation is applied
(e.g. [7, 8, 15]). GRILLIX on the other hand can deal with both
cases simultaneously, i.e. it retains the full global model even
for diverted geometries. A detailed study targeted on the impact
of the Boussinesq approximation carried out with GRILLIX in
simplified slab geometry is given in [16, 17]. Using parame-
ters characteristic for the COMPASS tokamak [18] turbulence
simulations are carried out with GRILLIX. The turbulence fea-
tures intermittency and exhibits large relative fluctuation levels,
which shows that a global description is important. The impact
of geometry is studied by comparing simulations in circular ge-
ometry with toroidal limiter against realistic diverted geome-
try at otherwise comparable parameters. The fluctuation level
is reduced in diverted geometry and exhibits a more complex
spatial distribution. We explain this as a consequence of local
magnetic shear, which fundamentally differs in the egde region
between circular and diverted geometry. Strong local magnetic
shear causes a distortion of turbulent structures, which become
subsequently subject to strong perpendicular dissipation. The
X-point, where magnetic shear becomes locally very strong,
thereby tends to disconnect the low field side from the high field
side, where curvature acts stabilizing [19]. Therefore, stronger
poloidal asymmetries in the fluctuation level are observed in
diverted geometry.

The remainder of this paper is organized as follows: In sec-
tion 2 we present the physical model employed in GRILLIX,
a global 3D drift reduced Braginskii model [20]. With respect
to the previous version [10] GRILLIX has been extended by
electromagnetic dynamics, electron temperature dynamics and
the Boussinesq approximation has been relaxed, which enables
to simulate plasma turbulence globally, i.e. without splitting
quantities into background and fluctuations. The implemen-

tation of important new features is described in section 3. A
geometric multigrid solver for the generalised 2D perpendic-
ular Helmholtz equation allows an efficient treatment of the
new electromagnetic terms and relaxation of the Boussinesq
approximation. The treatment of sheath boundary conditions
at the divertor/limiter plates via penalization techniques was
motivated from the GDB code [9, 21] and we give a general-
isation to diverted geometries. The extended model and new
features are verified by analytic means and the method of man-
ufactured solutions (MMS) [22]. In section 4 we characterize
edge turbulence with GRILLIX simulations and clarify the im-
pact of geometry by comparing simulations in circular geome-
try with toroidal limiter against simulations in diverted geome-
try at otherwise comparable parameters. A summary and out-
look is given in section 5.

2. Physical model

2.1. Global drift reduced Braginskii equations
Based on the assumptions of short mean free paths, i.e. λc �

R0, the drift reduced Braginskii model describes low frequency
(ω � Ωi) plasma dynamics [20, 4], which is suitable to de-
scribe turbulence at low temperature in the edge region self
consistently. As further practical approximations cold ions
(Ti � Te) are yet assumed in GRILLIX, and whereas electro-
magnetic effects are kept in Ohm’s law, the induced magnetic
flutter transport is neglected.

The following normalisation is employed: Time t is nor-
malised against R0/cs0 with the sound speed cs0 :=

√
T0/Mi

at some reference temperature T0. Parallel scales x‖ are nor-
malised against major radius R0 and perpendicular scales x⊥
against the sound Larmor radius ρs0 := c

√
T0Mi/(eB0) with

B0 the magnetic field strength on axis and Mi is the ion mass.
The dynamical variables in GRILLIX are density n normal-
ized against some reference density n0, electron temperature
Te against T0, parallel ion u‖ and electron v‖ velocities against
cs0, parallel current j‖ against en0cs0, electrostatic potential φ
against T0/e and the parallel component of the electromagnetic
potential A‖ against β0B0ρs0 with β0 := 4πn0T0/B2

0 the dynam-
ical plasma beta at reference values. In order to preserve its
positivity the logarithms of normalised density θn := log n and
temperature ξe := log Te are evolved in time. Finally, the nor-
malised set of equations implemented in GRILLIX are:

du

dt
θn + ∇ ·

(
bu‖

)
=C(φ) − Te

[
C(ξe + θn)

]
+

1
n
∇ ·

(
b j‖

)
+

1
n

[Dn (n) + S n] , (1)

∇ ·

[
n
B2

du

dt
∇⊥φ

]
= − nTe

[
C(θn + ξe)

]
+ ∇ ·

(
b j‖

)
+Dw (Ω) , (2)

du

dt
u‖ = − Te

[
∇‖θn + ∇‖ξe

]
+Du(u‖), (3)
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β0
∂

∂t
A‖ + µ

dv

dt

(
j‖
n

)
= −

( η‖0
T 3/2

)
j‖ + Te

[
∇‖θn + 1.71∇‖ξe

]
− ∇‖φ,

+Dp
(
ψ‖

)
(4)

dv

dt
ξe =

2
3
C(φ) − Te

[
2
3
C(θn) +

7
3
C(ξe)

]
−

2
3
∇ ·

(
bv‖

)
+

2
3

0.71
1
n
∇ ·

(
b j‖

)2
3

(
e−

5
2 ξe−θnη‖0

)
j2‖ +

2
3

e−θn−ξe∇ ·
[
χ‖0e

7
2 ξe∇‖ξe

]
1
Te

[Dt (Te) + S t] , (5)

∇2
⊥A‖ = − j‖. (6)

Equations (1-6) are the electron continuity equation, vortic-
ity equation or quasineutrality condition, parallel momentum
equation, Ohm’s law, electron temperature equation and Fara-
day’s law respectively. The total time derivatives contain ad-
vection by the E×B drift and the parallel velocity, i.e. du

dt :=
∂
∂t +

(
uE + u‖b

)
· ∇ and dv

dt := ∂
∂t +

(
uE + v‖b

)
· ∇ with b := B/B

the unit vector of the magnetic field. As auxiliary variables the
generalised vorticity Ω := ∇ ·

(
n
B2∇⊥φ

)
and the generalised par-

allel electromagnetic potential ψ‖ := β0A‖+µ
j‖
n have been intro-

duced. Within the FCI approach (see section 3.1) the advection
by E×B velocity and the curvature operator can be written as:

uE · ∇ f =
δ

B2 B × ∇ f ≈ −
δ

B
[
φ, f

]
R,Z ,

C( f ) = − δ

[(
∇ ×

B
B2

)
· ∇ f

]
≈ −2∂Z f ,

with the Jacobi bracket
[
φ, f

]
R,Z := ∂Rφ∂Z f − ∂Zφ∂R f . The

dimensionless parameters of the system are the drift scale
δ := R0/ρs0, electron to ion mass ratio µ := me

Mi
, the dy-

namical plasma beta β0, parallel resistivity at reference η‖0 :=
0.51µ/(τe0(cs0/R0)) with τe0 the electron-ion collision time at
reference values and the parallel heat conductivity at reference
χ‖0 := 3.15/µτe0(cs0/R0). Particle and thermal source terms
S n, S t have been added, and mostly for numerical reasons also
dissipation terms:

D f := ν⊥, f∇
2N
⊥ f + ν‖, f∇ ·

(
b∇‖ f

)
, (7)

with constant coefficients ν⊥, f , µ‖, f , and N controlling the or-
der of perpendicular dissipation. Note that in order to ensure
conservation of particles the dissipation in the continuity equa-
tion (1) does not act on the logarithm of the density θn, but the
density n itself.

The model is global in the sense that no separation of vari-
ables between a background part and fluctuating part is made
and the dependency of the parallel resistivity and heat conduc-
tion on density and temperature is kept. Moreover the depen-
dency on the density in the polarization term of the vorticity
equation (2) is also kept, i.e. the Boussinesq approximation is

not applied. The model conserves energy apart from the fact
that we have neglected advection by the polarization velocity,
which has been shown to have only a minor effect on conserva-
tion of energy [23].

2.2. Boundary conditions

The simulation domain in GRILLIX is usually bounded by
an inner (core) limiting flux surface, an outer (wall) limiting
flux surface and depending on geometry by limiter or divertor
baffle plates.

Sheath physics determining the boundary conditions for the
divertor/limiter is a rich topic by itself, especially in the case of
glancing angles between magnetic field and target plate. A so-
phisticated set of boundary conditions is discussed e.g. in [24],
but our boundary conditions originate from standard Bohm
sheath boundary conditions [25]:

u‖ ≷ ±
√

Te, (8)

j‖ = nu‖ ∓ n
√

Te exp
[
Λ −max

(
φ

Te
, 0

)]
, (9)

− χ‖∇‖Te = γeTeu‖, (10)

where the upper/lower sign denotes if the direction of mag-
netic field is directed towards/away from target plates, Λ ≈

0.5 ln
(

Mi
2πme

)
is the sheath floating potential and γe ≈ 2.5 the

effective electron sheath transmission factor. We limit the elec-
tron flow into the sheath as was also done in [7, 15], and there
is also the option to run with insulating sheath boundary condi-
tions:

j‖ = 0, φ = ΛTe,

The treatment of sheath boundaries within the FCI approach is
numerically cumbersome for which a penalization method is
employed described in section 3.2.

In the radial direction either homogeneous Neumann bound-
ary conditions (for n, Te, u‖) are applied or homogeneous
Dirichlet boundary conditions (for A‖, j‖, Ω). An exception
is the electrostatic potential which is set at the wall to φ|wall =

ΛTe. In order to avoid fluxes of energy and particles due to E×B
drifts through the core, the potential has to be constant on the
inner limiting flux surface, and we set it to φcore = Λ 〈Te〉LCFS ,
where 〈Te〉LCFS is the zonal averaged electron temperature on
the last closed flux surface. The motivation for this stems from
the fact that due to the sheath boundary conditions the potential
follows roughly φ ∼ ΛTe in the SOL, and the chosen boundary
condition does therefore not allow a global radial electric field
in the closed flux surface region. The large scale radial electric
field in the closed field line region is determined by effects that
are not yet included in the GRILLIX model, e.g. ion pressure
gradient [26, 27]. Therefore, the self-consistent modeling of the
global radial electric field in the closed field line region is post-
poned until at least ion temperature effects will be taken into ac-
count in GRILLIX. We want to note that from the geometrical
point of view GRILLIX is able to deal easily with the full toka-
mak including the core region with O-point [10]. Whereas this
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would exclude a possibly spurious influence from core bound-
aries and therefore allow a more self-consistent approach, it is
currently of low practical interest due to the large computational
overhead caused by the many additional grid points.

3. GRILLIX

3.1. Spatial discretisation

GRILLIX is based on the FCI approach [11, 12, 13] in a
toroidally staggered framework which is described in detail in
[10] and is therefore here only reviewed very shortly. For toka-
mak geometries a cylindric grid (Ri, ϕk,Z j) is employed be-
ing Cartesian within poloidal planes. Based on the assump-
tion of strong toroidal field (Bpol/Btor � 1), the discretisation
of perpendicular operators remains within poloidal planes for
which second order finite difference methods are used. The Ja-
cobi bracket is discretised according to the Arakawa scheme
[28] and the discretisation of the non-linear polarization term
in eq. (2) is described in [23]. The discrete parallel gradient is
computed at toroidally staggered positions ϕk+ 1

2
according to a

finite difference along magnetic field lines (see fig. 1):

∇‖ fi,k+ 1
2 , j

:=
fk+1

(
γi, j

(
∆ϕ
2

))
− fk

(
γi, j

(
−

∆ϕ
2

))
si, j

(
∆ϕ
2

)
+ si, j

(
−

∆ϕ
2

) ,

where γi, j(ϕ) is the poloidal projection of the characteristic
along field line and si, j(ϕ) the associated length along field line
defined as the solution of the following ordinary differential
equations which are solved via a Runge-Kutta integrator [29]:

dγi, j

dϕ
=

1
Bϕ

(
BR

BZ

)
, with: γi, j(0) =

(
Ri

Z j

)
,

dsi, j

dϕ
=
|B|
Bϕ
, with: si, j(0) = 0,

i.e. corresponding map points are computed by tracing along
magnetic field lines. The values on map points are obtained
from a 3rd order bi-polynomial interpolation within the poloidal
planes ϕk and ϕk+1. We note that the magnetic field is assumed
axisymmetric in GRILLIX, which is however not a general con-
straint for the FCI approach [30, 31]. In the same spirit opera-
tors are established that map quantities between the grid and the
staggered dual grid and vice versa. The parallel divergence op-
erator ∇ · (b f ) is obtained in its discrete version via the support
operator method [32, 33] as described in [10]. The structure of
the equations suggest that n, θn, ξe,Te, φ and Ω are collocated to
the canonical grid whereas u‖, v‖, j‖, A‖ and ψ‖ are collocated to
the staggered grid.

3.2. Penalization for sheath boundary conditions

The boundaries at the sheath are in general neither conformal
with the grid nor aligned with the exceptional parallel direc-
tion along the magnetic field line, which makes their treatment
numerically difficult and cumbersome. In such situations pe-
nalization techniques have proven themselves also for plasma

R

Ri, Zj

ϕ

γi,j(
∆ϕ

2
)

k = 1
2

Z

k = 1

γi,j(−
∆ϕ
2 )

k = 0

k = 3
2

k = 5
2

ψmin

k = 2

ψmax

Figure 1: Scheme for toroidally staggered FCI. A cylindric grid (Ri, ϕk ,Z j)
is used spanning the simulation domain by a set of Cartesian poloidal planes
bounded by limiting flux surfaces (ψmin, ψmax). In addition to the canonical grid
(black, k = 0, 1, 2, . . . ) a toroidally staggered dual grid (gray, k = 1

2 ,
3
2 ,

5
2 , . . . )

is introduced. The parallel gradient is discretised via field line tracing and in-
terpolation and maps from the canonical grid to the staggered grid.

fluid codes [34, 35]. A combination of the FCI with penaliza-
tion was firstly employed in GDB for limited plasmas [9, 21]
and we implemented in GRILLIX a generalization allowing to
deal also with diverted plasmas.

Equations (1-5) are each modified according to:

∂

∂t
f = (1 − χ) F f +

χ

ε
( fP − f ) , (11)

where f represents here the dynamical variables respectively
and F f the corresponding terms according to the Braginskii
model. χ is a characteristic function, which is 0 in the phys-
ical domain and 1 in the boundary region, where we choose in
practice a smooth transition [34] across the boundary based on
tanh functions (see fig. 5 left column for examples). ε � 1 is
the penalization parameter such that in the region where χ ≈ 0
eq. (11) approximates the original physical equation, whereas
in the region χ ≈ 1 the variable f is strongly damped to a pre-
scribed function fP. Via suitable choice for fP different bound-
ary conditions can be realized.

As an illustrative example we discuss here our implementa-
tion for general Neumann boundary conditions, i.e.:

∇‖ f
∣∣∣
sheath = α.

Firstly, we define an additional function ζ, which is 1 in the pe-
nalization region where the magnetic field is pointed towards
the target and −1, where the magnetic field is pointed away
from the target with possibly, i.e. in toroidal limiter geome-
try, a smooth transition between both regions (see fig. 5 right
column for examples). Secondly, we denote for some grid
point f ± := fk±1

(
γi, j(±∆ϕ)

)
the values on its map points which

are again obtained via interpolation within adjacent planes and
s± := si, j(±∆ϕ) the associated lengths along field line. The pe-
nalization value is then prescribed as:

fP =

|ζ | ( f − + s−α) + (1 − |ζ |) f ++ f −

2 for: ζ ≥ 0,
|ζ | ( f + − s+α) + (1 − |ζ |) f ++ f −

2 for: ζ < 0.
(12)
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The first terms set the actual boundary condition and use the
values obtained from the field line map towards the interior do-
main. The second terms ensure for toroidal limiter geometries
a continuous transition between both limiter sides.

3.3. Time stepping
The equations are advanced in time with the 3rd order Kar-

niadakis scheme [36]. Only the penalization term that is di-
rectly proportional to the quantity itself is treated fully implicit
in time, i.e. the equations written in the form of eq. (11) are
discretised in time according to:

f t+1
(
11 + 6∆t

χ

ε

)
=

∑
i=0...2

ai f t−i + bi∆t
[(

1 −
χ

ε

)
F t−i( f t−i) +

χ

ε
f t−i
P

]
,

with a0 = 18, a1 = −9, a2 = 2 and b0 = 3, b1 = −3, b2 = 1.
The solution for f t+1 is trivial as the implicit penalization term
on the left hand side is diagonal.

3.4. Elliptic solver
In order to compute the electrostatic potential φ from eq. (2)

and the parallel electromagnetic potential A‖ from eqs. (4) and
(6) two Helmholtz type equations have to be solved in each
time-step within each poloidal plane:

λ f − ∇ · (c∇⊥ f ) = b, (13)

with given right hand side b, and coefficients λ and c. In
the global model the coefficients have in generally a spatio-
temporal dependency, where direct solvers become very inef-
ficient as a costly matrix LU-decomposition would have to be
performed in each time-step. An efficient solution technique
for eq. (13) is provided by geometric multigrid methods [37],
which is implemented in GRILLIX based on a damped Jacobi
smoother with trivial restriction and bilinear prolongation.

3.5. Verification
One of the main new features in GRILLIX are electromag-

netic and electron inertial effects in Ohm’s law, which gives
rise to shear Alfvén dynamics. The core model for the shear
Alfvén wave is obtained by linearizing equations (1-6) in the
isothermal limit (Te = 1), neglect curvature, parallel ion ve-
locity (u‖ = 0) and parallel resistivity η‖0 = 0. In this limit a
wave equation is obtained [38] for the ’non-adiabaticity’ (ñ−φ̃),
where the tilde denotes a fluctuating quantity.

∂2

∂t2

(
ñ − φ̃

)
= v2

S AW∇
2
‖

(
ñ − φ̃

)
, (14)

with v2
S AW = (1 + k2

⊥)/(β0 + µk2
⊥) the phase velocity of the

shear Alfvén wave, where k⊥ is the perpendicular mode num-
ber. In the limit k⊥ � 1 the wave propagates at the Alfvén
speed vA = β−1/2

0 and in the limit k⊥ � 1 at the electron thermal
speed vTe = µ−1/2. In order to verify the implementation of the
electromagnetic and electron inertia effects we perform simu-
lations with GRILLIX in a 3D periodic slab (C = 0) without
the parallel momentum equation (3) and electron thermal equa-
tion (5), but set Te = 1 and u‖ = 0. Otherwise we run the global

Figure 2: Velocity of shear Alfvén wave obtained with GRILLIX against an-
alytic prediction for fixed β0 = 1 · 10−2 and µ = 1 · 10−4 in dependence of
k⊥

kρ (kθ, δθ) (kϕ, δϕ) ω

θn 1 (1, 0) (1, 0) 100
ξe 1 (1, 1.5) (1, 0.5) 73
φ 2 (2, 0) (1, 0) 80
u‖ 3 (1, 0) (1, 0) 65
A‖ 2 (1, 0) (1, 0) 88

Table 1: Parameters for analytic MMS functions used as inputs for different
dynamical fields.

version of the code but initialize the density with constant back-
ground plus a fluctuation of small amplitude ñ

nbck
= 0.1 being a

mode structure in the perpendicular plane and a Gaussian along
the parallel direction. The phase velocity of the divergent wave
along the magnetic field is measured and compared to the an-
alytic prediction for vS AW . The result shown in fig. 2 shows
an excellent agreement between GRILLIX simulations and the
analytic prediction.

A verification of the full system via the Method of Manufac-
tured Solution (MMS) [22] was performed in circular geometry
with purely closed flux surfaces. The same setup and procedure
as described in [10] for the previous simplified set of equations
is applied here to the global model. The analytic MMS func-
tions are prescribed for each dynamical field as a product of
radial (kρ), poloidal (kθ with phase shift δθ), toroidal (kϕ with
phase shift δϕ) and temporal (ω) modes (see table 1). The an-
alytic MMS functions are quite general for GRILLIX, as its
numerical approach is independent of flux surfaces. The nu-
merical error of the MMS analysis for all dynamical fields in
dependence of resolution is shown in fig. 3 and follows a sec-
ond order convergence, which is a good indication for correct
implementation of the equations in GRILLIX.

Finally, we want to note that also a validation in slab geom-
etry based on experiments in the Large Plasma Device (LAPD)
was performed for which results can be found in [16, 17].
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Figure 3: Numerical error of MMS verification procedure for different dy-
namical fields evolved in GRILLIX. Error is measured in L2-norm, i.e. ε2 =

|unum − umms |2 / |umms |2 at t = 0.2. Black dashed lines indicates second order
convergence for reference. Resolution is subsequently doubled in all directions
starting at the coarsest level with npol = 8 poloidal planes, h = 3 · 10−3 and
∆t = 1 · 10−4.

4. Simulation results

4.1. Setup

The parameters for our simulations are motivated from ex-
periments with deuterium plasma in the COMPASS tokamak
[18], where we normalise density and temperature to upstream
separatrix values:

R0 =56 cm, amin =20 cm, B0 =1.2 T,

n0 =1 · 1013 cm−3, T0 =30 eV,

with amin the minor radius. This corresponds to the following
dimensionless input parameters for GRILLIX:

β0 =1.68 · 10−4, δ =849, µ =2.72 · 10−4,

χ‖0 =340, η‖0 =4.72 · 10−3.

The strongest time-step limitation stems from the parallel elec-
tron heat conduction, and by linearizing this term we may an-
ticipate a rough scaling for the time-step of ∆t . n

χ‖0T 5/2 ∆ϕ2

with ∆ϕ the toroidal grid distance between adjacent planes. In
order to perform simulations at a larger time-step we employ in
our simulations presented here mostly a reduced heat conduc-
tivity of χ‖0 = 20, but still retain the parametric dependency on
temperature (∝ T 5/2). Correspondingly, we also use a reduced
value for the effective sheath transmission factor of γe = 0.15.
In section 4.4 we investigate the effect of this by comparing to a
run with more realistic heat conductivity. Development towards
relaxation of the time-step limitation by an implicit treatment of
parallel electron heat conduction is targeted for future work.

We performed simulations in circular geometry with toroidal
limiter and diverted geometry at otherwise comparable param-
eters. The background magnetic field for the diverted geometry

Figure 4: Safety factor q as function of normalised radial coordinate ρ for circu-
lar and diverted geometry. The limiting flux surfaces are indicated with dashed
blue respectively green lines and the source regions with colored shaded areas.

is given in terms of an analytic flux function ψ(R,Z) from the
class of solutions described in [39] with parameters chosen as
described in [40]. We define as normalised radial coordinate
ρ =

√
ψ−ψ0
ψX−ψ0

, where ψ0, ψx is the poloidal magnetic flux at
magnetic axis respectively at separatrix. For circular geome-
try we define equivalently the normalised radial coordinate as

ρ :=
√

(R−R0)2+Z2

amin
and the magnetic field is given in terms of a

prescribed safety factor profile q(ρ). The setup for the simu-
lations in terms of radial view is shown in fig. 4. The sheath
boundary conditions are treated via a penalization approach
and the characteristic function χ prescribing the location of the
sheath is illustrated for both geometries in fig. 5. We employ
yet insulating sheath boundary conditions as they were found
to be more robust.

The simulations are driven via particle and energy source
terms of the form

S n,T = cn,T exp

− (ρ − ρn,T )2

w2
n,T

 (〈n,T 〉ρ − fn,T
)
,

i.e. the sources drive the zonal averaged density 〈n〉ρ respec-
tively temperature 〈T 〉ρ towards target values fn,T , where cn,T is
the rate, ρn,T location and wn,T the radial width of the source.

The main simulations analyzed in section 4.2 and 4.3 were
run with 32 poloidal planes, perpendicular resolution of h =

1 [ρs0] corresponding to 0.066 cm and a time-step of ∆t =

5 ·10−5 [R0/cs0]. The total number of grid pints were ≈ 5.0 ·106

grid points for the circular case and ≈ 14 · 106 for the diverted
case. A sixth order hyperviscosity (ν⊥, f∇6

⊥) is applied in the
perpendicular direction and regular diffusion (µ‖, f∇ ·

(
b∇‖

)
) in

the parallel direction, where the coefficients were chosen as
ν⊥, f = 10 and µ‖, f = 0.025 cutting off turbulent spectra by
smoothing structures on the grid scale. The independence of the
results from these numerical parameters was checked at the cir-
cular case (see section 4.4). The radial extent of the simulations
in circular geometry is ∼ 1.5 cm (edge) + 3.5 cm (SOL) and in
diverted geometry ∼ 1.5 cm (edge) + 2.3 cm (SOL) at outboard
midplane respectively ∼ 3.2 cm (edge) + 5.5 cm (SOL) at in-
board midplane.

The simulations were initialized with uniform background in
density and temperature (0.2) plus small random noise (0.01).
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Figure 5: Penalization functions χ (left) and ζ (right) used in circular (top)
and diverted (bottom) geometry. Black lines indicate separatrix and limiter
respectively divertor target plates.

Particles and energy are injected via the sources, and the simu-
lations enter saturated phase, which is independent of the initial
state (for the circular case around t ≈ 30) from where data is
collected for performing statistical analysis. The overall simu-
lation time for the circular case was up to t = 77, corresponding
to ≈ 1ms. The simulations were carried out on the Marconi-A2
(KNL) partition on 16 nodes (2 MPI processes times 34 cores
per node). Within 24 hours GRILLIX ran a normalised time
interval of ≈ 10 [R0/cs0] for the circular case and ≈ 4 [R0/cs0]
for the diverted case.

4.2. Circular geometry

Snapshots of density, electron temperature, electrostatic po-
tential and parallel velocity for the circular geometry with
toroidal limiter are shown in fig. 6. There is a clear difference
between the closed field line region and the SOL, which is dom-
inated by the Bohm boundary condition for the parallel velocity.
Blob-like structures in the density can be observed around the
last closed flux surface.

Time traces of pressure during the saturated state at low
(LFS) and high (HFS) field side midplane are shown in fig. 7a.
Especially the LFS-signal is highly intermittent with fluctua-
tions of up to 200%, implying that a global model, which does
not rely on a splitting into fluctuations and background, is in-
deed important. The fluctuation level on the HFS is lower which
results from the ballooning character of the turbulence where
curvature acts stabilizing at HFS and destabilizing at LFS. It

Figure 6: Snapshots of density (top left), electron temperature (top right), elec-
trostatic potential (bottom left) and parallel ion velocity (bottom right) in circu-
lar geometry. Insets show outboard midplane region enlarged. Solid black line
indicates last closed flux surface and gray shaded area penalization region due
to toroidal limiter.

has been found that turbulence in the SOL of limited plasmas
is driven by resistive ballooning modes [41, 42] with linear
growth rates somewhat smaller than the interchange growth rate
γI =

√
2R0/Lp, where Lp is the background pressure gradient

length. Via the autocorrelation we may gain some insight into
the characteristic time scales of the turbulent dynamics, which
is computed discretely and in normalised form as:

A f (τi) :=

∑
n

f (tn) f (tn−i)∑
n

f (tn)2 ,

with f (tn) the signal at discrete time point tn. The autocorrela-
tion function for the pressure at LFS is shown in fig. 7b. A cor-
relation time in the order of τc ≈ 0.5 . . . 1 maybe deduced, al-
though the initial decay is not strictly exponential. The charac-
teristic turbulent time scales are therefore larger than the inter-
change time scale tI = γ−1

I ≈ 0.08, where the pressure gradient
length in the edge has been estimated from the self-consistently
obtained profiles (see fig. 8c) as Lp/R0 ≈ 0.012. The turbu-
lence is therefore compatible to be driven by resistive balloon-
ing modes.

Furthermore, we analyse the simulation by computing pro-
files 〈 f 〉, fluctuation levels δ f =

〈
f 2 − 〈 f 〉2

〉1/2
and skewness〈

f 3 − 〈 f 〉3
〉
/δ f 3, where angular brackets denote an average

over toroidal direction and time within the saturated phase. Our
statistical analysis was robust against averaging over different
time windows. In fig. 8 profiles of density, electron tempera-
ture and pressure are shown with the corresponding fluctuation
levels and in fig. 9 the relative pressure fluctuation level and
skewness of pressure. There is a kink in the density and pres-
sure at the last closed flux surface and a little distance outside
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a)

b)

Figure 7: a) Time traces of pressure on the last closed flux surface (ρ = 1.0)
at low (LFS) and high (HFS) field side midplane positions for circular limited
geometry. b) Corresponding autocorrelation function for low field side signal.
Dashed line indicates characteristic time-scale related with growth rate of inter-
change instability tI =

√
Lp/(2R0).

also for the temperature at ρ ≈ 1.05. The electrostatic poten-
tial follows in the SOL φ ≈ ΛTe and deviates from this in the
closed field line region where the potential at the inner limiting
flux surface is prescribed as φ|ρmin

= 〈ΛTe〉ρ=1. There is a small
difference in profiles and fluctuation levels between low field
side and high field side, where profiles are steeper and the fluc-
tuation level is slightly lower due to favourable curvature. The
relative fluctuation level (see fig. 9a) increases from the edge
towards the separatrix and is in the SOL on a level of around
30− 40%, which substantiates again the importance of a global
model. The skewness (see fig. 9b) approaches zero in the region
of strong pressure gradients, which is an indication for a Gaus-
sian probability density function and uncorrelated turbulence,
and it becomes positive in the SOL, which is an indication for
the presence of blobs.

4.3. Comparison with diverted geometry
Snapshots for the diverted case are shown in fig. 10, where

again a clear distinction between closed field line region, SOL
and private flux region in the dynamics is obvious. From the
snapshots there seems to be a qualitative difference with re-
spect to circular geometry: The turbulence is generally more
quiescent especially in the SOL and we do not identify blobs at
outboard midplane as clearly as in circular geometry.

Firstly, we consider again time traces of pressure at different
poloidal positions at the separatrix in fig. 11. In comparison
to circular geometry (see fig. 7a) the dynamics is more quies-
cent with smaller fluctuations and the poloidal asymmetry is
stronger pronounced, i.e. fluctuations at HFS are much weaker
than at LFS and at the X-point. The poloidal asymmetry be-
comes also obvious from fig. 12, where the pressure fluctuation

Figure 8: Radial cut of density (top), electron temperature (center) and pressure
(bottom) profiles at low field side (LFS) and high field side (HFS) for circular
geometry. Dashed lines indicate fluctuation amplitude added to and subtracted
from profiles. At the profile for the electron temperature the averaged φ/Λ at
LFS is additionally plotted as black line.

a)

b)

Figure 9: a) Relative pressure fluctuation level δpe/ 〈pe〉 and b) skewness of
pressure for circular geometry. Dashed lines in (b) show additionally pressure
gradient |∇ 〈pe〉| in arbitrary units.
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Figure 10: Snapshots of density (top left), electron temperature (top right),
electrostatic potential (bottom left) and parallel ion velocity (bottom right) in
diverted geometry at t = 48.25. Insets show outboard midplane region enlarged.
Solid black line indicates separatrix, dashed black lines flux surfaces ρ = 0.95
and ρ = 1.05 as reference. Gray shaded area marks penalization region due to
divertor plates.

Figure 11: Time traces of pressure on the separatrix at different poloidal posi-
tions for diverted geometry.

a) b)

Figure 12: Pressure fluctuation level δpe for a) circular geometry and b) di-
verted geometry.

is shown in poloidal cross section. In the edge region of the
circular geometry the pressure fluctuation level varies on a flux
surface within a factor of two, whereas in diverted geometry the
fluctuation level varies within a flux surface from LFS towards
HFS by an order of magnitude. Especially in the vicinity of the
X-point there is a strong drop in the fluctuation level towards
HFS.

To give a reason for the stronger poloidal asymmetries in di-
verted geometry we investigate the effect of magnetic geometry
on turbulent fluctuations and consider the local magnetic shear:

sloc(θ, ρN) =
∂

∂ρ

(
Bϕ

Bθ

)
,

where tan θ := Z/(R − R0) is the geometric poloidal angle. A
plot of the local magnetic shear for flux surfaces just inside
the separatrix is shown in fig. 13. Whereas the local shear is
obviously constant in circular geometry, it follows a compli-
cated course in diverted geometry, i.e. it is very low in the out-
board midplane region, increases towards the top and high field
side region and approaches a singularity at the X-point. Tur-
bulent structures, which are driven in the outboard midplane
region due to unfavourable curvature, become distorted in the
perpendicular direction due to local magnetic shear (see also
[43]). Being strongly distorted, i.e. especially in the vicinity of
the X-point, they become subject to perpendicular dissipation
damping fluctuations. Therefore the X-point ultimately acts as
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Figure 13: Local magnetic shear sloc on flux surface ρ = 0.992 close to separa-
trix for circular and diverted geometry as function of geometric poloidal angle.

kind of barrier for fluctuations [19] (See also resistive X-point
mode by Myra et al. [44]). This explains the drop of the fluctu-
ation level near the X-point towards HFS in our simulation (see
fig. 12b). The same mechanism in an alleviated explains also
the drop in fluctuation level towards HFS near the top region,
where local magnetic shear is also high.

In contrast to flux-aligned approaches GRILLIX does not
suffer from coordinate singularity and a loss of resolution near
the X-point due to flux expansion, but the FCI approach allows
an accurate treatment of the dynamics around the X-point. A
detailed view of the pressure at the X-point is shown in fig. 14a.
Fluctuations approaching the X-point fan out radially becom-
ing ever narrower in the poloidal direction, which illustrates
the mechanism described in the previous paragraph. A Quies-
cent X-point Region (QXR) directly next to the X-point in the
SOL was observed in MAST experiments [45]. It was argued
that the QXR results from quiescence in local plasma condi-
tions close to the X-point, and the QXR was found to be ubiq-
uitous to MAST plasmas bounded between the separatrix and
the ψN = 1.02 flux surface. In order to see if this phenomenon
appears at least qualitatively also in our simulations we give
a detailed view on the pressure fluctuation level in the direct
vicinity of the X-point in fig. 14b. The pattern of the pressure
fluctuation level around the X-point is complex and the result
is ambiguous. Our statistical analysis was checked to be ro-
bust against averaging over different time frames, but statistical
noise due to insufficient data or resolution cannot fully be ex-
cluded in this dynamically sensitive region. We observe only a
very narrow region between the separatrix and the ρ = 1.003
flux surface that could be an indication for the QXR. However,
the situation might change and become clearer if we considered
plasma parameters and magnetic geometry closer to MAST.

4.4. Convergence analysis and impact of heat conductivity
A posteriori, we subject our results to a convergence check

and study the impact of heat conductivity, as we decreased it
artificially.

For a convergence check we ran the circular case at nomi-
nal resolution, at half resolution and at a resolution that was
increased by a factor of one third. We correspondingly adapted
also other numerical parameters, i.e. we decreased numerical
dissipation coefficients with increasing resolution. Moreover,

a)

b)

Figure 14: Detailed view on X-point. Solid lines indicate flux surfaces ρ =

0.997, 1.0, 1.003. a) Snapshot of pressure where the distortion of structures
towards the X-point is visible. b) Pressure fluctuation level. The region in the
SOL directly next to the X-point might indicate the Quiescent X-point Region
(QXR) described in [45].
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h⊥ Npol ν µ wθ wρ

coarse 2.0 16 500.0 5.0 · 10−2 0.1 6.0 · 10−3

nominal 1.0 32 10.0 2.5 · 10−2 7.5 · 10−2 4.0 · 10−3

fine 0.67 48 2.0 1.5 · 10−2 5.0 · 10−2 3.0 · 10−3

Table 2: Numerical parameters used for convergence check. wθ is poloidal
decay length in radians and wρ radial decay length in units of R0 for penalisation
function, which is parametrized via tanh functions.

Figure 15: Result of convergence analysis: Outboard midplane profiles for den-
sity (top), electron temperature (center) and pressure fluctuation level (bottom)
obtained with coarse, nominal and fine resolution.

we also varied the poloidal and radial decay lengths of the pe-
nalisation functions χ in order to exclude spurious effects from
our penalisation approach. The numerical parameters employed
are listed explicitly in table 2. The obtained profiles and pres-
sure fluctuation level at LFS are shown in fig. 15. Whereas there
is a deviation in the temperature profile to the coarse resolu-
tion case, the fine and nominal resolution match here very well.
The density profiles between nominal and fine resolution match
overall well apart from the density shoulder at ρ = 1 which is
slightly more pronounced at finer resolution. Also the pressure
fluctuation converges and deviation between nominal and fine
resolution could also be owed to the fact that for the fine case
not as much statistics as for the other cases was available due to
computational constraints.

Compared to realistic COMPASS parameters we employed
a significantly reduced artificial heat conductivity of χ‖0 = 20
instead of χ‖0 = 340 and correspondingly also decreased the
effective sheath transmission factor to γe = 0.15 instead of γe =

2.5. In order to study the effect of this we restarted with reduced
time-step the circular limited simulation from a saturated state
with a more realistic heat conductivity of χ‖0 = 140 and γe =

1.0. The obtained profiles and pressure fluctuation level are
shown in fig. 16. While the increased heat conductivity does not
alter the density profile significantly it steepens the temperature

Figure 16: Impact of heat conductivity on density (top) temperature profile
(center) and pressure fluctuation level (bottom) at outboard midplane position.

profile in the SOL. The fluctuation level reduces slightly which
is consistent with [42], where a similar study was carried out.

5. Conclusions and Outlook

By incorporating full parametric dependencies and relax-
ing the Boussinesq approximation, GRILLIX was extended
to a global fluid turbulence code for the tokamak edge and
SOL, i.e. no assumption about fluctuation amplitudes of den-
sity or temperature is made. Further new features are electro-
magnetic and electron-thermal dynamics, and the implementa-
tion of the extended model was verified by analytical means
and the Method of Manufactured Solutions (MMS). The flux-
coordinate independent approach (FCI) is employed in GRIL-
LIX in order to deal with realistic geometries avoiding coor-
dinate singularities at the X-point or separatrix. As boundary
contours do in general not conform with the computational grid
nor the magnetic field as exceptional direction, a penalisation
technique is used in order to treat sheath boundary conditions.

Turbulence simulations in circular geometry with toroidal
limiter and in realistic diverted geometry at otherwise compa-
rable parameters were presented, where parameters were cho-
sen being characteristic for the COMPASS tokamak. A relative
fluctuation level of around 30 − 40% in the SOL, with isolated
highly intermittent phenomena of up to 200% fluctuation level
were observed in circular geometry, which implies that a global
description for SOL turbulence is indeed necessary. In diverted
geometry the turbulence was found to be generally more qui-
escent and exhibit a stronger poloidal asymmetry. We attribute
this poloidal asymmetry to local magnetic shear, which is fun-
damentally different in the edge region between circular and
diverted geometry. Approaching regions of strong local mag-
netic shear turbulent structures become distorted towards the
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high field side and subsequently subject to enhanced perpen-
dicular dissipation. As this mechanism is very strong near the
X-point, it tends to disconnect low field side and high field side,
where curvature is favourable [19]. Due to the FCI approach
GRILLIX is able to resolve the X-point region very well in con-
trast to field or flux-aligned approaches. However, concerning
the appearance of a Quiescent X-point Region (QXR), which
was found recently in MAST experiments [45], our simulation
results are yet ambiguous and further investigation is required.
Finally, a convergence analysis with respect to resolution was
performed successfully and the impact of the heat conductivity,
which was reduced for numerical reasons, was also studied.

The presented study has to be considered qualitative as there
are yet important effects in the physical modeling missing,
e.g. ion thermal dynamics, interaction with neutrals and more
realistic sheath boundary conditions that could also take into
account glancing angles of incidence. Moreover, also the core
boundary condition has to be improved in order to allow for
self-consistent evolution of the radial electric field in the closed
field line region. Efforts to extend GRILLIX in these direc-
tions are currently ongoing. Moreover, there are also numeri-
cal constraints in order to achieve realistic parameter regimes
concerning computational efficiency. The strongest time-step
limitation arises from the parallel non-linear heat conduction
scaling strongly with χ‖ ∝ T 5/2

e , for which an implicit treatment
is currently pursued.

In the near future our studies would concentrate on in-
vestigation of advanced divertor concepts such as double-
null, snowflake or super-X configurations, whose treatment is
straight forward with GRILLIX as its numerics is independent
of flux surfaces.
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