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Gyro-kinetic theory and global simulations of the collisionless tearing instability:
the impact of trapped particles through the magnetic field curvature
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The linear instability of the tearing mode is analysed using a gyro-kinetic approach within a Hamiltonian formalism,
where the interaction between particles and the tearing mode through the wave-particle resonance is retained. It is
shown that the presence of trapped particles leads to an overall increase of the growth rate of the tearing instability.
In addition, the curvature of the magnetic field is shown to play no role in the linear instability when only passing
particles are present in the plasma. Gyro-kinetic simulations using the state-of-the-art Gkw code confirm these
findings and are further used to evidence the impact of the magnetic field curvature and the temperature gradient
in the presence of a population of trapped particles. It is observed numerically that the curvature modifies the
stability of the tearing mode by means of trapped particles. Two cases are reported. First, without any temperature
gradient, it tends to stabilize the tearing mode through wave-particle resonance with the trapped electrons. Second,
with increasing temperature gradient, magnetic curvature tends to destabilize the mode, suggesting an interchange
mechanism. The balance of these two stabilizing/destabilizing effects leads to a threshold in temperature gradient
beyond which the magnetic curvature plays a destabilizng role. This opens the way to a deeper understading and
control of the tearing instability in fusion plasmas.

I. INTRODUCTION: THE GYROKINETIC MODEL TO
DESCRIBE THE TEARING INSTABILITY

In magnetised laboratory and space plasmas, a special class
of instabilities can occur in the presence of non-ideal effects
(such as resistivity or inertia) and can tear apart the magnetic
field lines resulting in their reconnection. This process leads
to a modification of the magnetic topology, characterised by
the formation of magnetic islands. For this reason, these in-
stabilities are called tearing instabilities. Their understand-
ing is of prime importance in plasmas, since they increase the
transport of particles, degrading the confinement and even-
tually leading to disruptions in laboratory plasmas.

The tearing mode instability has been extensively studied
in the framework of MagnetoHydroDynamics (MHD) theory.
The main assumption has been high dissipation in the form
of collisional resistivity. However future tokamaks are ex-
pected to operate at very low collisionality, thus the need
to treat this instability in the collisionless limit. In addi-
tion, particles in a tokamak exhibit different types of trajec-
tories, characterised by different frequencies and scales. So
far, the kinetic aspects of the tearing instability steming from
the trajectories and the resonances between particles and the
tearing mode has not been analysed in detail. For this pur-
pose, a self-consistent and more accurate calculation is re-
quired. One needs in particular to consider a kinetic model-
ing of the plasma, where the kinetic effects are intrinsically
included. Of course, a fully kinetic model is extremely com-
plicated due to the high dimensionality of the problem. For
this reason, we will make use of the gyro-kinetic approach,

consisting upon averaging over the gyromotion of the particle
to reduce the dimensionality. In this paper we will therefore
present a gyro-kinetic description of the tearing mode and
we will analyse the impact of trapped particles on its linear
excitation. This will be done with analytic theory and with
global gyro-kinetic simulations, through which we will also
perform an extensive parametric study of the tearing insta-
bility. The remainder of the paper is structured as follows.
In section II, we derive, within the gyro-kinetic approach,
the perturbed parallel current using a Hamiltonian formal-
ism. Section III is devoted to the derivation of the tearing
mode dispersion relation. This will be done by integration of
Ampère’s law, under the so-called constant-ψ approximation
and separating the radial domain into an ideal MHD (outer)
region where kinetic effects are negligible and where we cal-
culate numerically the so-called tearing stability parameter
(∆′), and a non-ideal (inner) region where kinetic effects are
retained through the wave-particle resonance. In section IV
the different resonances between the tearing mode and the
particles are studied analytically and the presence of trapped
particles is shown to increase the growth rate of the instabil-
ity. We also show that the magnetic curvature does not play
any role in the tearing instability when only passing particles
are considered. Section V is devoted to the numerical anal-
ysis using Gkw simulations. We will in particular confirm
the analytic results and study in detail the impact of trapped
particles, curvature and temperature gradient. In section VI
we report on the different responses of particles to the tearing
instability through an energy exchange diagnostic. We evi-
dence in particular the interaction between trapped particles
and the tearing mode.
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II. HAMILTONIAN FORMALISM TO CALCULATE THE
PERTURBED PARALLEL CURRENT WITHIN A
GYRO-KINETIC APPROACH

The tearing instability can be described at the simplest
level using Ampère’s law

∇× (∇×A) = µ0j (1)

where A is the vector potential, j is the current and µ0 is the
vacuum permeability. We assume that we have only parallel
component of A. Therefore A = δA‖b, where b is the unit
vector along the magnetic field lines. Projecting onto the
parallel direction straightforwardly gives an equation for the
perturbed parallel current j‖

∇2
⊥δA‖ = −µ0j‖ (2)

that has to be integrated to obtain the dispersion relation.
In Eq.(2), ∇2

⊥ is the Laplacian operator in the direction per-
pendicular to the equilibrium magnetic field.

In the following, we assume that the main response is that
of electrons. Therefore, in order to calculate the perturbed
parallel current, we will first of all calculate the exact linear
response of electrons, which will yield the perturbed parallel
current after integration in velocity space. The details of this
calculation are given in Appendix A. The idea is to start with
the Vlasov equation in conservative form using a Hamiltonian
formalism

∂F

∂t
− [H, F ] = 0 (3)

where [X,Y ] represents the Poisson brackets between X and
Y , i.e. [X,Y ] = ∂xX∂pY − ∂pX∂xY , where x and p are
the position and momenta, forming a set of canonical vari-
ables satisfying Hamilton’s equations. We can introduce an-
other system of canonically conjugated variables, satisfying

Hamilton’s equations, especially suitable for the analysis of
particles in a tokamak, since they reflect the three directions
of periodicity of the trajectories. These are the angle-action
variables α,J, with α = (α1, α2, α3) and J = (J1, J2, J3),
where α1 represents the gyro-phase, α2 represents the peri-
odicity angle in the poloidal direction and α3 represents the
periodicity angle in the toroidal direction. The actions are
motion invariants associated to each direction of the particle
trajectory. In particular, J1 is proportional to the magnetic
moment µ = mev⊥/ (2B) and J3 is the toroidal canonical
momentum J3 ≡ Pϕ = −eZeψ + meRvϕ, with me the elec-
tron mass, v⊥ the projection of the electron velocity onto the
direction perpendicular to the magnetic field, B is the modu-
lus of the magnetic field, e is the elementary charge, Ze is the
charge number (in the special case of electrons, Ze = −1),
ψ is the poloidal flux of the magnetic field, R is the major
radius and vϕ is the projection of the electron velocity onto
the toroidal direction. The second action, J2 is not very con-
venient for analytic calculations. This is why we perform a
change of variables J → I = (J1,Heq, J3), where Heq is the
equilibrium Hamiltonian, representing the energy in the ab-
sence of any perturbation. Following Hamilton’s equations,
the time derivative of the angles is α̇ = ∂JH ≡ Ω, where
we have introduced the three frequencies of motion, satisfy-
ing the ordering Ω1 � ω,Ω2,Ω3, with ω the frequency of the
tearing mode. The distribution function and the Hamilto-
nian are decomposed into equilibrium and perturbed parts.
By definition, the equilibrium quantities do not depend on the
angles, but only on the actions. This allows us to linearize
the Vlasov equation and, owing to the periodicity of the per-
turbations with respect to the angles α, we can write the
perturbed distribution function and Hamiltonian as Fourier
series {δF, δH} =

∑
ω,n {δFn,ω, δHn,ω} exp (i (n ·α− ωt)).

After some algebra, it can be shown that the exact linear
solution of the Vlasov equation is written as

δFn,ω =
∂Feq

∂Heq
δHn,ω +

1

B

∂Feq

∂µ
δHn′,ω −

ω∂Heq
Feq + n3∂J3Feq

ω − n? ·Ω
δHn?,ω (4)

where n′ = (n1 6= 0, n2, n3) and n? = (n1 = 0, n2, n3).
The perturbed parallel current is calculated as

j‖ = eZe

∫
d3p

(
v‖,eqδF + δv‖Feq

)
(5)

where the perturbed parallel velocity is expressed in terms of
the parallel vector potential

δv‖ = −eZe
me

δA‖ (6)

In order to continue further with analytic calculations we
assume a Maxwellian equilibrium distribution function

Feq =
neq

(2πTeq/me)
3/2

e
−Heq

Teq (7)

which satisfies ∂Heq
Feq = −Feq/Teq. The perturbed parallel

current will be written in normalized units. For this purpose
we normalize the velocities to the thermal velocity of elec-
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trons vth, the distances to R0, the frequencies to the transit
frequency ωt = vth/R0, the equilibrium distribution function
to n0/v

3
th, with n0 some normalizing density, the parallel vec-

tor potential to B0R0ρ
2
? and the temperature to a normalizing

temperature defined as T0 = mev
2
th/2. Using the perturbed

distribution function given by Eq. (4) and considering only
deeply passing electrons, we show in Appendix B that the
perturbed parallel current can be expressed as

j‖ (x, t) = ρ?en0vth
2

T̂eq

∑
m,n,ω

〈
v̂2
‖

ω̂ − ω̂?g
ω̂ − k̂‖v̂‖ − ω̂D

〉
δÂ‖m,n,ω (x) ei(mθ+nϕ−ωt) (8)

where m and n are the poloidal and toroidal mode num-
bers, respectively. The angles have been replaced by θ
and ϕ, representing the poloidal and toroidal angles, re-
spectively. The symbol ·̂ indicates normalized quantities,
the parallel wave vector k‖ is given by k‖ = (m/q − n) /R0

and the magnetic drift frequency ωD is given by ωD =

2qn/r
(
mev

2
‖,eq + µB0

)
/ (eZeB0R0), with q the safety fac-

tor and R0 and B0 the major radius and the modulus of the
magnetic field, respectively, evaluated both at the magnetic
axis. The notation 〈· · · 〉 has been introduced to represent an
average over gyro-centre equilibrium velocity space weighted
by the equilibrium distribution function

〈· · · 〉 =

∫
J dv‖,eq dµ · · · Feq (9)

Notice that k‖ vanishes on the rational surface defined
as q = m/n. In the remainder of this paper, the eq sub-
script for the parallel velocity will be dropped for the sake
of simplicity. Note that ρ? gives the typical ordering be-
tween the equilibrium and the perturbed distribution func-
tion and en0vth is the normalization for the current. In this
expression we have introduced the generalized diamagnetic
frequency ω?g = nTeq∂J3 logFeq, which includes all the spa-
tial dependence of the equilibrium. For thermal particles, at
lowest order in ρ?, one can write J3 ≈ −eZeψ. Therefore, the
derivative with respect to J3 can be reduced to a derivative
with respect to the radial position.

III. GYRO-KINETIC DISPERSION RELATION OF THE
TEARING INSTABILITY

In this section, we will use the expression for the perturbed
parallel current, given by Eq. (B16), in Ampère’s law, given
by Eq. (2), to derive the dispersion relation of the tearing in-
stability. Ampère’s law can also be written using normalized
quantities and projecting onto one single (m,n, ω) Fourier
mode

δ̂2
e∇̂2
⊥δÂ‖m,n,ω (x) =

2

T̂eq

〈
v̂2
‖

ω̂ − ω̂?g
ω̂ − k̂‖v̂‖ − ω̂D

〉
δÂ‖m,n,ω (x)

(10)

where δ̂e = δe/R0 and δe =
√
me/µ0e2n0 is the electron

skin depth. In the following, the ˆ̇ symbol will be dropped
for the sake of simplicity and all quantities are assumed to
be normalized. The dispersion relation of the tearing mode
is obtained integrating equation (10), but for this purpose
we need to give convenient equilibria that will allow us to
perform analytic calculations.

Regarding the equilibrium distribution function Feq, we
assume that it is given by the background Maxellian repre-
sented in (7), in normalized units it takes the form

Feq =
neq

(πTeq)3/2
exp

(
−
v2
‖ + v2

⊥

Teq

)
(11)

As for the vacuum equilibrium field, we suppose a simpli-
fied expression of the magnetic field in cylindrical geometry
B = B0R0 (r/qR0eθ + eϕ) /R. The poloidal flux is then writ-
ten as

ψ (r) = B0

∫ r

0

r′

q (r′)
dr′ (12)

and therefore its radial derivative is

dψ

dr
= B0

r

q (r)
(13)

the expression for the generalized diamagnetic frequency can
be written as follows

ω?g =
nTeq

e

q

rB0

[
1

neq

dneq

dr

+
1

Teq

dTeq

dr

(
v2
‖

v2
th

+
µB

Teq
−

2v‖ue

v2
th

− 3

2

)
+ 2

v‖

v2
th

due
dr

]
(14)

Note that we keep the electron mean parallel velocity, to-
gether with its radial gradient. However, in the following,
the assumption is made that ue � vth, so that the term mul-
tiplying the temperature gradient simplifies to the standard
E/Teq − 3/2. Nevertheless, the gradient ∇ue is kept. There-
fore, the diamagnetic frequency can be split into standard
density and temperature terms, ω?n and ω?T , respectively,
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and a term coming from the radial gradient of the parallel
velocity ω?u, i.e.

ω?g = ω?n + ω?T + ω?u ≡ ω? + ω?u (15)

where the notation ω? has been used to gather both den-
sity and temperature gradients. Using normalized quantities,
each of these frequencies read

ω̂? = ρ?nT̂eq
q

2r̂

[
1

n̂eq

dn̂eq

dr̂
+

1

T̂eq

dT̂eq

dr̂

(
Ê − 3

2

)]
(16)

ω̂?u = ρ?n
q

r̂
v̂‖

dûe
dr̂

(17)

The mean parallel velocity must be related to the safety
factor by the Ampère’s law applied to the equilibrium. In
the cylindrical limit, Ampère’s law in normalized units can
be approximated as

ρeR0

δ2
e

Ĵeq =
1

r̂

d

dr̂

(
r̂2

q

)
(18)

where the equilibrium current is obtained from the integra-
tion of the equilibrium distribution function

Jeq = eZe

∫
J dv‖ dµv‖Feq (19)

with J = 2πB/me. The equilibrium parallel current is then
Jeq = eZeneque and in normalized units

Ĵeq = Zen̂eqûe (20)

Unless stated otherwise, all quantities are normalized and
thus the .̂ will be dropped. We assume that the gradient of
the equilibrium parallel current is mainly due to the gradient
of the mean electron parallel velocity. Therefore, one can in-
tegrate the normalized Ampère’s law to obtain the expression
of the safety factor in terms of the integrated mean velocity

q (r) =
δ2
e

ρeR0Zeneq

r2∫ r
0

dr′r′ue (r′)
(21)

Therefore, the differential equation (10) can be written using
only the radial profile of the safety factor, which yields the
linear dispersion relation of the tearing mode. Nevertheless,
solving analytically this dispersion relation in the whole ra-
dial domain for general profiles of density, temperature and
electron velocity is rather arduous. Therefore the tearing
mode dispersion relation is solved by splitting it into two
linear differential equations that will be solved in two differ-
ent regions of the radial domain: an ideal outer region and a
narrow resonant layer. For each region we will make some as-
sumptions. In the resonant layer, |k‖| � 1 and therefore the
whole resonance ω−k‖v‖ must be kept leading to the ordering
ω ≈ k‖vth, however in the ideal region, |ω| � |k‖v‖|, |ω?g|.
The two solutions are matched by considering the so-called
constant-ψ approximation1 that assumes that the perturbed
parallel scalar potential of the magnetic field is constant in-
side the non-ideal layer.

A. The tearing mode equation in the outer (ideal MHD) region

In the ideal region where ω?g � ω and k‖v‖ � ω, ωD the
expression in between brackets of equation (10) reads〈

v2
‖

ω − ω?g
ω − k‖v‖ − ωD

〉
=

〈
v2
‖
ω?
k‖v‖

〉
(22)

Since ω? (resp. ω?u) is an even (resp. odd) function in v‖,
the only remaining term in the numerator of expression (22)
is ω?u. This leads to the differential equation

δ2
e∇2
⊥δA‖m,n,ω (x) = −ρ?nneq

q

rk‖

due
dr

δA‖m,n,ω (x) (23)

Using the relation between the safety factor and the mean
electron parallel velocity given by equation (21) and assuming
again that the density gradient does not affect significantly
the parallel current gradient we can write

d2A‖ (r)

dr2
+

1

r

dA‖ (r)

dr
− m2

r2
A‖ (r) = Λ (r)A‖ (r) (24)

where we have noted A‖ ≡ δA‖m,n,ω for simplicity and

Λ (r) =
−3q′ (r) + 2rq′2 (r) /q (r)− rq′′ (r)

r
(
m
n − q (r)

) (25)

with q′ and q′′ representing respectively, the first and second
derivatives with respect to r of the safety factor. We consider
that q > 1, q′ > 0 and q′′ > 0 for all r. We will also suppose
that there is a radial position rs such that q (rs) = m/n.
This means that for r < rs ⇒ q (r) < m/n and for r >
rs ⇒ q (r) > m/n. Then, for r < rs (resp. r > rs) we
have the inequality Λ (r) < 0 (resp. > 0), which means that
for A‖ > 0 the second derivative must be negative (resp.
positive) and therefore the solution is concave (resp. convex).
In addition, note that limr→r±s Λ (r) = ±∞. This means that
the first derivative is discontinuous at the position r = rs,
which allows us to define the parameter ∆′1

∆′ = lim
ε→0

A′‖(rs + ε)−A′‖(rs − ε)
A‖(rs)

(26)

where A′‖ denotes the derivative with respect to r of A‖. This
parameter represents the jump of the solution accross the
resonant surface and it will be used as a matching parameter
between the solution in the inner region and the solution in
the outer region.

Equation (24) can be solved using the shooting method2

for a general q profile, but in the following we use a q profile
of the Wesson-type3

q(r) = qa
r2/ε2

1− (1− r2/ε2)ν+1
(27)



5

Figure 1: The tearing mode eigenfunction for different
values of ν, qa = 3.5 and ε = 1/3.3.

where qa is the value of the safety factor at the position
r = a and ν is a parameter that controls the current den-
sity peaking. The solution of the tearing mode equation
in the outer region is presented in Fig. 1 for three dif-
ferent values of the parameter ν, and fixing qa = 3.5 and
the aspect ratio R0/a = 0.3. The boundary conditions
A‖ (rmin) = A‖ (rmax) = 0 are used, and at the resonant
surface r = rs, we fix a normalized value A‖ (rs) = 1. The
fact that the solution is not necessarily symmetric with re-
spect to the resonant surface r = rs is represented by the
parameter

Σ′ = lim
ε→0

A′‖(rs + ε) +A′‖(rs − ε)
A‖(rs)

(28)

Although it is not as widely used as ∆′, it was shown in
resistive MHD4, that the stability of the tearing mode de-
pends on both ∆′ and Σ′. In fact it is shown in Ref. 4 that a
tearing mode can be stable even with a positive ∆′. In Fig.
2 we show the contours of ∆′ in solid black lines and Σ′ in
solid red lines scanning over qa and ν. The magenta lines
denote the position of the resonant surface. The dashed blue
line presents the limit q (rmin) = 1. The domain of inter-
est for the analysis of the (m,n) = (2, 1) mode relies above
that limit. Beneath it, the mode would co-exist with the
(m,n) = (1, 1) mode. In this region the contours of ∆′ and
Σ′ are almost parallel. In the next section we assume that the
value of ∆′ is known and determined from the outer solution,
and we use it to solve the tearing equation in the inner layer.

B. The tearing mode equation in the inner region

In the region around the resonant surface k‖ � 1 and there-
fore the resonance in the expression in between brackets of
Eq. (10) is kept as it is. Due to parity reasons, the contribu-
tion from ω?u in the numerator can be neglected, so that the
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Figure 2: Contours of ∆′ (black), Σ′ (red) and the resonant
surface position rs (magenta) as a function of the q profile
parameters ν and qa. The blue dashed line denotes the limit
q(rmin) = 1 and the blue asterisks denote the parameter of
the simulations that will be shown in section V.

tearing mode equation reads

δ2
e∇2
⊥δA‖m,n,ω (x) =

2

Teq

〈
v2
‖

ω − ω?
ω − k‖v‖ − ωD

〉
δA‖m,n,ω (x)

(29)
We assume that the widht of the resonant layer is 2∆.

Integrating the equation over this region yields

δ2
e

∫ ∆

−∆

d2A‖

dx2
dx = A‖ (0)

∫ ∆

−∆

Λ dx (30)

where we have again noted A‖ ≡ δA‖m,n,ω and the so-called
constant-ψ approximation has been made, assuming that the
solution is constant in the resonant layer. In addition, to
perform the integration in the resonant layer the assump-
tion of slab geometry is made, such that ∇2

⊥ ≡ d2/ dx2,
where x = (r − rs) /R0 represents the distance to the ratio-
nal surface at the radial position rs, normalized to R0. This
assumption is justified due to the small width of the resonant
layer. Moreover, the coefficient Λ is now given by the more
general expression

Λ =
2

Teq

〈
v2
‖

ω − ω?
ω − k‖v‖ − ωD

〉
(31)

The integral on the left hand-side of Eq. (30) gives
∆′A‖(0). For the integral on the right-hand side we perform
a change of variable v′‖ = −v‖ and x′ = −x to the negative
domain of the space integral. In addition, since the perturbed
parallel current is localised in a very narrow region around
the resonant surface, we can extent the integral with respect
to the radial distance to infinity without introducing signifi-
cant errors. Under these assumption, the collisionless tearing
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mode dispersion relation in the magnetic limit is expressed in normalized units as

δ2
e ∆′ =

8neq

T
5/2
eq
√
π

∫ +∞

0

dx

∫ +∞

−∞
dv‖

∫ +∞

0

v⊥ dv⊥v
2
‖ e
−

v2
‖+v2
⊥

Teq
ω − ω?

ω − k‖(x)v‖ − ωD
(32)

In this expression, the parallel wave vector can be expressed
as k‖(x) = ky/Lsx = k′‖x, with Ls the magnetic shear scale
length and ky = m/r, and the diamagnetic frequency is ex-
pressed as

ω? = ω?n

[
1 + ηe

(
v2 − 3

2

)]
(33)

where v2 = v2
‖ + v2

⊥, ω?n = ρ?nTeqq/2r n
′
eq/neq and ηe =(

n′eq/neq

)
/
(
T ′eq/Teq

)
.

IV. ANALYTICAL SOLUTION OF THE TEARING MODE
DISPERSION RELATION

It is not straightforward to compute the integral (32). In
order to shed some light of the underlying physics, we make
first of all the assumption that all the particles are deeply
passing. Afterwards, we assume that a fraction of the electron
population is deeply trapped and analyse its effect on the
tearing instability.

A. Solution of the dispersion relation with only passing particles

As a first step, we neglect the curvature and gradient of the
magnetic field, such that ωD = 0 and only the k‖v‖ resonance
is taken into account, i.e. the resonance with the parallel mo-
tion (ω− k‖v‖). In this case, since the denominator does not
depend on the perpendicular velocity, we can first of all per-
form the integral with respect to v⊥. Secondly, the velocity
space integral can be performed using the plasma dispersion
function and its derivatives as defined in Ref. 5.

After some algebra, the dispersion relation of the tearing
mode reads

iδ2
e∆′ =

4neq
√
π√

Teq|k′‖|

[
ω − ω?n

(
1 +

(
2Teq −

3

2

)
ηe

)]
(34)

Writing ω = ωr + iγ, where ωr is the real frequency and γ
is the growth rate, the solution of Eq. (34) reads

γ =
1

4
√
π

√
Teq

neq
δ2
e |k′‖|∆

′ (35)

ωr = ω?n

[
1 +

(
2Teq −

3

2

)
ηe

]
(36)

Strictly speaking, if one chooses the normalization constant
T0 as the value of the temperature at the resonant surface, in
this case T0 = Teq i.e. T̂eq = 1, then the background density
and temperature profiles do not change the growth rate of
the mode, however they additionally make the mode oscillate
with a real frequency that scales linearly with the density
and temperature gradients. It is important to note that we
have taken into account density and temperature gradients
in the local approximation. This means that although we
consider radial profiles of the background quantities, they are
evaluated locally, so they enter the equation as a constant
value on the resonant surface. Of course, a more rigorous
approach is to consider the profiles. However this makes the
x-integral far too complicated to be solved analytically. The
effect of profiles will be evaluated more adequately in the next
section with a numerical code.

We look now into the effects of the inhomogeneity of the
magnetic field on the stability of the tearing mode. This
means that the term containing the toroidal effects are kept
in the resonant term of Eq. (32). Of course, the concept
of toroidicity in slab geometry is quite contradictory. In
fact, several assumptions are made for the magnetic drift ωD.
First, we consider the local approximation, meaning that the
x-dependence is omitted but the derivative with respect to
x can be non-zero. Therefore, the geometry term b×∇B
responsible for the curvature of the magnetic field can be
treated as a parameter in the equation. Second, all oscilla-
tions in the perpendicular direction are neglected, we assume
to be at the low field side of the tokamak where θ = 0. Thus
the toroidal coupling between modes is not considered.

Integrating first over the radial direction allows to make no
assumption on the dependence of ωD on the velocity space.
Then using the well known gaussian integrals for the velocity
space, we obtain the same expressions for the frequency and
growth rate as those given by Eq. (35). A more accurate
calculation can be performed by considering that the mag-
netic drift is actually a differential operator in the poloidal
angle, which introduces nonloncal effects due to mode-mode
coupling. It can be shown that even when these effects are
taken into account, the mode frequency and growth rate are
not modified. The details of the calculations are not given
here for the sake of readiness and clarity, but the interested
reader can find the complete calculation in Appendix D.

Therefore, when considering only passing particles, and in
the collisionless magnetic limit, the drift of particles due to
the magnetic field inhomogeneity does not have an impact on
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the stability of the mode.

B. Correction due to the presence of trapped electrons

To consider the impact of trapped electrons on the stabil-
ity of the tearing mode, we need to use the resonant response
given by expression (4), which is the one valid for both pass-
ing and trapped electrons, since no assumption on their orbits
were made at that step. For trapped particles, Ω2 � ω,Ω3.
Therefore, for a resonance to occur the only possibility is
n2 = 0. This is mathematically equivalent to performing a
bounce-average of the Vlasov equation. The resonance then
reduces to ω−n3Ω3. In Appendix C we show that for trapped
particles, the precessional frequency is proportional to the
magnetic drift (see Eq. (C30)). In the absence of magnetic
drift the response of trapped particles to the tearing mode is
purely non resonant. Therefore, trapped particles do not con-
tribute to the growth rate and the response of the whole elec-
tron population is reduced to the response of deeply passing
electron. Note that even if the response was resonant, it can
be shown (see Appendix E) that the Hamiltonian of deeply
trapped particles in the absence of magnetic drift vanishes.
Thus, the velocity integral in Eq. (32) must be performed
only in the passing domain

∣∣v‖∣∣ > √2ε |v⊥| and the growth
rate and frequency finally read

γ =
δ2
e |k′‖|
2
√
π

T
3/2
eq

neq
∆′ (1 + 2ε) (37)

ω = ω?n

[
1 +

(
2Teq −

3

2

)
neq

]
(38)

Therefore, when a fraction of the electron population is
magnetically trapped, the growth rate of the tearing mode
is increased by a factor 1 + 2ε. Physically, this can be un-
derstood as follows. The free energy for the tearing mode
to be excited comes from the radial gradient of the equilib-
rium parallel current. This free energy is encapsulated in
the stability parameter ∆′. Therefore, the free energy comes
from the ideal region outside the resonant layer. This energy
is subsequently transferred to particles within the resonant
layer, where kinetic effects must be retained. The difference
between the free energy that the mode takes from the idea
region and the energy that the mode transfers to the parti-
cles in the resonant layer is the energy available for the mode
to grow. Since deeply trapped electrons do not contribute to
this transfer of energy, there is an increase of energy available
for the mode to grow, resulting in an increased growth rate.

When the magnetic drift is taken into account, a resonance
can occur between the tearing mode and the precessional mo-
tion of trapped particles, opening a new channel of energy
transfer from the mode to the particles and therefore stabi-
lizng the mode. The analytic calculation of the modification
of the growth rate in the presence of trapped particles and

magnetic drift is not straightforward. Therefore, we use a
gyro-kinetic code for the remaining analysis.

V. LINEAR GYROKINETIC SIMULATIONS OF
COLLISIONLESS TEARING MODES WITH GKW

The self-consistent treatment of tearing modes requires a
radial profile in geometry and physical quantities. For this
reason, the global version of the gyrokinetic code Gkw6is
used. In this section we provide a brief description of the
code and then we present the implementation of the tearing
mode instability in Gkw.

A. The gyrokinetic model in GKW

The code Gkw solves a set of gyrokinetic equations. The
full details can be found in Ref. 6 and references therein.
Here we outline the basic set of linear equations that are
solved. As in our theoretical approach presented in the pre-
vious sections, the δF approximation is used. The equation
for the perturbed distribution function, for each species is,

∂gs
∂t

+
(
v‖b + vD

)
·∇δFs−

µs
ms

B · ∇B
B

∂δFs
∂v‖

= S (Feq,s) (39)

where gs = δFs + (Zse/T )v‖
〈
A‖
〉
Feq,s, µ = msv

2
⊥/2B is

the magnetic moment, v‖ is the velocity along the mag-
netic field, and ms and Zs are, respectively, the particle
mass and charge number for species s. The drift velocity
due to the gradient and curvature of the magnetic field is
vD = (1/Zse)(msv

2
‖ + µsB)/BB × ∇B/B2. Note that the

nonlinear term (vE×B ·∇gs, where vE×B is the E×B veloc-
ity) is not taken into account in this linear study. S (Feq,s)
is the source term which is determined by the species s equi-
librium distribution function. The last term of the left-hand
side of Eq. (39) is responsible for the trapping of particles
(the so-called µ-gradB or mirror term). The temperature and
density profiles have the radial form,

n(r) = n0 exp

[
− R

Ln
w tanh

(
r − r0

w

)]
(40)

T (r) = T0 exp

[
− R

LT
w tanh

(
r − r0

w

)]
(41)

where the distances are normalised to R0, w is the width of
the region where the gradient is localised, R/Ln, R/LT , n0

and T0 are the logarithmic density and temperature gradients
and the density and temperature, respectively, all evaluated
at the reference radius r0. All the normalizations in the code
are consistent with the ones used so far in the present paper.
The electrostatic potential is calculated from the gyrokinetic
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quasineutrality equation given by,∑
s

Zse

∫
(J0 · δFs)† Js dv‖ dµs

+
∑
s

Z2
s e

2

Ts

∫
(
(
J2

0 · δFs
)† − φ)Feq,sJs dv‖ dµs = 0 (42)

where the first term is the perturbed charge density and the
second is the polarisation density which is only calculated
from the local Maxwellian. In this expression, J0 is the gyro-
average operator and the dagger symbol represents its con-
jugate. Similarly, the parallel vector potential is calculated
from parallel Ampère’s law

−∇2A‖+
∑
s

µ0Z
2
s e

2

Ts

∫
v2
‖
(
J2

0 ·A‖
)†
Feq,sJs dv‖ dµs

=
∑
s

µ0Zse

Ts

∫
v‖ (J0 · gs)† Js dv‖ dµs (43)

B. Simulations set-up to analyse the tearing instability in GKW

The tearing mode is linearly excited in the code7 by in-
troducing an electron flow ue in the equilibrium distribution
function. The generated tearing mode is driven due to the
inertia of electrons when we neglect resistivity through col-
lisions. The mean velocity of electrons is related to the im-
posed q profile following the expression (21). We use the
same q profile as for our analytic calculations, given by the
Eq. (27). As an example, a linear collisionless simulation of
a self-consistent tearing mode has been run for the following
parameters: aspect ratio R0/a = 3.33, normalized ion Lar-
mor radius ρ? = ρi/R0 = 0.002815, the safety factor at the
edge qa = 3.5, current peaking parameter ν = 2.6. This cor-
responds to a tearing mode with ∆′ ≈ 0.99, calculated using
the shooting method to solve the tearing equation outside
the resonant layer, as presented in section IIIA. We repre-
sent in Fig. 3 the safety factor profile described by Eq. (27)
(bottom) for these parameters, the radial eigenfunction of the
parallel vector potential (middle) and its second radial deriva-
tive (top) which is highly localized around the resonant layer
at the q(r/R0) = 2 surface, represented by a vertical dashed
line together with the label r = rs. For linear simulations, a
single n = 1 toroidal mode is considered and the numerical
resolution is Nr×Ns×Nv‖ ×Nµ = 512×30×64×15, where
Nr is the number of radial grid points, Ns is the number of
points in the parallel direction, Nv‖ is the number of points
in parallel velocity and Nµ is the number of points in the
magnetic moment direction. The selected number of points
in the radial direction are enough to describe the physics
around the thin resonant layer7. In our collisionless simula-
tions we can artificially suppress the electrostatic potential,
the mirror term and the curvature of the magnetic field. This
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Figure 3: The radial profiles of the imposed safety factor q
(bottom), the parallel vector potential (middle) and its
radial second derivative (top) as calculated by Gkw in
toroidal geometry for density and temperature gradients
R/Ln = R/LT = 2.2. The most unstable mode locates at
the q = 2 surface, indicated by a vertical dashed line and
labeled by r = rs, where the parallel current is highly
localized.

capability allows us to run the code in the same limit as the
one where the analytic theory has been derived. When radial
gradients are used in the simulations, the reference position
r0 is the same as the position of the resonant surface, i.e.
r0 = rs, and the width of the region where the gradient is
localized is set to w = 0.03.

C. Parametric study of the collisionless tearing mode

Analytically, we have shown previously that, when particle
trapping is taken into account, the growth rate is increased
by a factor 1 + 2ε. The position of the resonant surface is
inversely proportional to ∆′. This means that including trap-
ping effects will amplify the growth rate by a ∼ 1.44 factor
that should decrease with ∆′. In Fig. 4, we represent the ra-
tio between the tearing mode growth rate with and without
trapping as a function of the stability parameter ∆′, calcu-
lated using the shooting method and the q profile used in
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Analytic theory

Figure 4: The ratio between the growth rate with and
without trapping in terms of ∆′, in solid black line as
calculated numerically with Gkw and in red dashed line as
predicted by our analytic theory.

Gkw. The scan on ∆′ has been performed by changing the
qa and ν parameters in the q profile. The points used in
this scan are indicated by asterisks in Fig. 2. The analytical
prediction in dashed red line agrees with the numerical cal-
culation from Gkw simulations, represented by solid black
line, with an error of ∼ 1−5%. One can conclude that in the
absence of curvature of the field, magnetic trapping destabi-
lizes the mode by a factor that depends on the position of
the resonant surface of the mode.

We have subsequently performed a parametric study of the
linear instability of the tearing mode to further study the im-
pact of the curvature, radial gradients and particle trapping.
For this purpose, we have run a set of global simulations, with
and without temperature gradient, with and without parti-
cle trapping and with and without magnetic curvature. Note
that the density gradient is always set to R/Ln = 0. This is
due to the fact that the equilibrium parallel current depends
linearly on the density. Therefore, in the absence of density
gradient the stability parameter ∆′ is not modified.

The growth rate in the absence of temperature gradient is
presented in Fig. 5. The calculated growth rate is plotted
as a function of ∆′ on the top panel and |k′‖|∆

′ on the bot-
tom panel. The black curves represent the case of no particle
trapping, neglecting (solid) and taking into account (dashed)
the curvature of the magnetic field. These curves are conve-
niently labeled in the figure. For the sake of readiness, the
same labels, colours and symbols are used in the following. As
predicted by theory, in the absence of particle trapping, the
two curves with/without magnetic curvature overlap in the
case of flat density and temperature profiles. When trapping
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Figure 5: The growth rate of a collisionless tearing mode for
flat background profiles as a function of ∆′ (top) and |k′‖|∆

′

(bottom) given by Gkw simulations, for several cases of a
population consisting of only passing particles, and passing
and trapped particles and neglecting/considering magnetic
curvature.

is considered, the collisionless tearing mode is more unstable,
which is consistent with Fig. 4. In that case, it is observec
that the magnetic field curvature stabilizes the mode. The
reason for this effect is analysed in section VIB.

Regarding the dependence on the stability parameter, our
analytic theory predicts a linear scaling of the growth rate
with ∆′, regardless of the pressure profile. We observe that
the trend of the curve with ∆′ is linear only for small values
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Figure 6: The growth rate of a collisionless tearing mode for
a flat density gradient and a non zero temperature gradient
(R/LT = 6.9) as a function of ∆′ given by Gkw
simulations, for several cases of a population consisting of
only passing particles, and passing and trapped particles
and neglecting/considering magnetic curvature.

of ∆′ and departs from the linear behaviour when increas-
ing ∆′. Actually, when modifying ∆′, the position of the
resonant surface is also modified and so is the value of |k′‖|,
which implies that the proportionality coefficient is modified.
However, when looking at the dependence of the growth rate
on |k′‖|∆

′, a linear behaviour is observed, which is in better
agreement with the analytical relation found in section IV.

Note nonetheless, that a nonlinear behaviour of the growth
rate was reported in Ref. 8, where the growth rate was found
to scale as

√
∆′. This behaviour was explained by the short

wavelength effects taken into account in the Bessel function
J0(k⊥ρe). The Bessel function was then expanded for large
arguments, and a scaling of the growth rate with

√
∆′ and

(ρea)1/4 was found. The latter is a finite Larmor radius effect.
However when we eliminate the finite Larmor radius effect in
the code, by not computing the gyroaverage, we have not ob-
served any change in the growth rate of the mode. The effect
of variations of the wave vector in the radial direction cannot
be verified per se in our simulations since a Fourier repre-
sentation is used for the binormal coordinate (perpendicular
to the field) and we consider only one binormal mode. One
would need to consider more than a single mode to check this
effect, which is left for a future publication.

When temperature gradient is included, the growth rate
is amplified with respect to the case R/LT = 0 only when
considering the particle trapping. If particle trapping is ne-
glected, the impact of the temperature gradient is negligible.
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Figure 7: The growth rate of a collisionless tearing mode as
a function of ∆′ for flat temperature and density profiles.

This is shown in Fig. 6, where the dependence of the growth
rate on the stability parameter ∆′ is plotted considering a
temperature gradient R/LT = 6.9. It is observed that the
effect of the magnetic drift frequency is opposite to that in
the absence of temperature gradient, i.e. the magnetic curva-
ture tends to destabilize the collisionless tearing mode. This
is in agreement with recent analytic results based on a fluid
approach9, which suggests an interchange-like destabilization
of the collisionless tearing mode.

We have seen that, in the presence of particle trapping, for
R/LT = 0 (resp. R/LT = 6.9), the magnetic curvature stabi-
lizes (resp. desctabilizes) the mode. This implies that there
must exist a temperature gradient at which the interchange
destabilization ?? compensates for the stabilization observed
in Fig. 5. To analyse this more in detail we have selected one
single ∆′ and we have performed a scan on the temperature
gradient R/LT . The result is shown in Fig. ??. It is observed
that, when neglecting the particle trapping, the temperature
gradient does not have any significant impact on the tearing
mode stability. However, when some particles are trapped,
the temperature gradient destabilizes the mode. This desta-
bilization is further increased by the magnetic field curvature
only beyond an R/LT -threshold around R/LT ≈ 2.

For the sake of completeness, we have run simulations with
flat density and temperature profiles, but considering the
electrostatic potential by solving the quasi-neutrality equa-
tion, coupled to the gyrokinetic Vlasov-Ampère system. We
show the results in Fig. 8, We confirm that including trapping
effects destabilizes the mode even in the presence of electro-
static potential. We confirm also a stabilizing role for the
curvature in the case of zero gradients, even when the desta-
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Figure 8: The growth rate of a collisionless tearing mode as
a function of ∆′ for flat temperature and density profiles.

bilizing effect10 of the electrostatic potential is considered.

We can see that the role of magnetic field curvature through
particle trapping is to stabilize the mode when no gradients
are considered, and to destabilize it when temperature gradi-
ents are considered, beyond an R/LT -threshold. This thresh-
old occurs when a stabilizing effect due to trapped particles
is compensated by the interchange destabilization. To get a
better understanding of the underlying physics, a quantita-
tive analysis of the energy exchange between the particles and
the mode has been made by using a diagnostic that computes
the variation the kinetic energy of particles in the code.

VI. ENERGY EXCHANGE DIAGNOSTIC FOR
WAVE-PARTICLE INTERACTION

The following diagnostic is used to identify in velocity space
the various contributions of passing and trapped particles to
the linear growth rate of the most unstable mode. It is based
on the energy conservation property of the Vlasov-Poisson
system of equations which allows to directly link the mode
growth rate to the work done by the perturbed electric field
on the particles. Strictly speaking, this method is only ap-
plicable if the set of equations solved and their numerical
implementation conserves energy.

A. Conservation of energy

The time variation of the space-integrated potential energy
of an electromagnetic wave is given by

dEp
dt

=
d

dt

∫
d3x

(
ε0
2

E ·E +
ε0c

2

2
B ·B

)
=

∫
d3x

(
ε0E ·

∂E

∂t
+ εc2B · ∂B

∂t

)
(44)

Using Faraday’s induction law ∇×E = −∂tB and Ampère’s
law∇×B = µ0J+µ0ε0∂tE, where E, B and J are the electric
field, the magnetic field, and the current density, respectively,
Eq. (44) becomes

dEp
dt

= −
∫

d3x

[
J ·E− 1

µ0
∇ · (E×B)

]
(45)

Owing to the conservation of the total energy of the system,
we have

dEk
dt

= − dEp
dt

(46)

where Ek is the kinetic energy of particles. This gives the
time evolution of the kinetic energy

dEk
dt

= −
∑
s

∫
d3x d3v Zse Fs v ·

(
∇φ̃+

∂Ã‖

∂t
b

)

+

∫
d3x

1

µ0
∇ · (E×B) (47)

The sign of the time evolution of the kinetic energy indi-
cates the contribution to the growth rate of the mode. If
Ėk > 0, the energy is transferred from the mode to the parti-
cles and therefore the mode is damped. In the opposite case,
the mode gains energy and is therefore unstable. It is impor-
tant to note that in the case of global modes such as tearing
modes, a positive variation of the particles kinetic energy at a
local point does not necessarily suggest destabilization of the
whole mode. Some transport of energy should be taken into
account through advection, especially when the electrostatic
potential is considered and the ∇ · (E×B) term is non zero.
In our simulations, we check that even when the electrostatic
potential is taken into account that term is negligible com-
pared to the J ·E term. We have implemented in the code
the first term on the right hand-side of Eq. (47) as a function
of (r, v‖, v⊥). The last term on the left hand-side is calculated
in a separate diagnostic that computes all the radial flows.
The implemented diagnostic reads

Ėk = −eZs
∫

dsF
(
v‖b + vE + vD

)
·
(
∇J0 · φ+ ∂tJ0 ·A‖b

)
(48)
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B. Response of the particles to the tearing mode

We present the results from the described diagnostic, which
allows us to characterize the particle response to the collision-
less tearing instability in the purely magnetic case, i.e. the
electrostatic potential is set to zero and therefore the E×B
flux in Eq. (47) vanishes. The local interaction between
the waves and particles in the velocity space can thus be de-
scribed by Eq. (48) with the A‖ term only.

Fig. 9 illustrates the local exchange of energy between
particles and the mode in the velocity space for R/Ln =
R/LT = 0. The plots are shown for a local point around the
resonant position r = rs where the exchange of energy is the
most localized. The dashed line in the middle panel denotes
the trapping cone v‖ =

√
2rs/R0v⊥. As discussed earlier,

this relation is valid only at the tokamak midplane where the
magnetic field intensity has a maximum value. Therefore,
one needs to be aware of the position on the magnetic field
when setting the trapping boundary. In our simulations, the
amplitude of the mode is localized at s = 0, which makes
this relation valid. The three different panels represent the
three different curves that we have shown in Fig. 5 (actually
we have four curves, but when there is no particle trapping
the two black curves are the same). It is observed that when
trapping is considered without magnetic curvature the effect
is the suppresion of the particle response inside the trapping
cone, as predicted by our analytic theory. This leads to a de-
creasing energy transfer from the tearing mode to particles,
resulting in an increased growth rate. However, when in-
cluding magnetic curvature and trapping is allowed, trapped
particles respond to the presence of the tearing mode, allow-
ing this way the transfer of energy from the tearing mode
to the trapped particles, which results in a decrease of the
growth rate. This is evidenced by the bottom panel, where
the red curve represents the positions in velocity space at the
resonant surface where the precession frequency of trapped
particles equals the tearing frequency, i.e. ω = n3Ω3

(
v‖, v⊥

)
,

with n3 = 1. The frequencies of motion are calculated in de-
tail in Appendix C. In particular, we use the expression C30
to plot the red curve. It is observed that the maximum of the
response is located on the red curve and corresponds to barely
trapped particles. Consequently, one can assess that adding
particle trapping in the presence of magnetic curvature can
modify the stability of the mode through the resonance be-
tween the tearing mode and barely trapped particles.

VII. CONCLUSIONS

In this paper we have studied the stability of a collisionless
tearing mode in a curved and inhomogeneous magnetic field.
The tearing mode equation is derived in the framework of
gyrokinetic theory with a Hamiltonian approach. We have
found a unique equation that can be used to solve the tearing
instability in both the outer (ideal or non-resonant) and inner
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Figure 9: Particle response in the presence of a collisionless
tearing mode without density/temperature gradients, i.e.
R/Ln = R/LT = 0.
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(non-ideal or resonant) regions. Using the gyrokinetic theory
in the analysis of the tearing mode allows us to look into
the kinetic aspects of the instability. This means analyzing
possible resonances between particles and the mode in the
inner region. In the outer region, the fluid limit is used to
avoid the resonances. A shooting method has been employed
to integrate the equation of the tearing mode for a general
safety factor profile and a diagram of the stability parameter
∆′ has been obtained.

We have solved analytically the equation of the tearing
mode in the inner region, where the kinetic effects are kept
and we have recovered the result that the growth rate scales
linearly with |k′‖|∆

′, where k′‖ is the radial derivarive of the
parallel wave-vector evaluated at the resonant surface. We
have also found that trapping effects in the absence of mag-
netic curvature lead to an increase of the growth rate by a
factor 1+2ε, where ε = r/R0. This is due to the fact that the
mode transfer its energy mainly to passing electrons in the
resonant layer. Therefore, introducing trapped electrons in-
creases the energy available for the mode to grow. Moreover,
we have predicted that the magnetic field curvature does not
play any role in the stability of the tearing mode when only
passing electrons are considered.

Further analysis has been carried out numerically, by
means of linear global gyro-kinetic simulations using Gkw
code. We have verified our analytic results, namely the linear
scaling of the growth rate with |k′‖|∆

′ and the destabilization
due to trapped electrons. We have subsequently performed
a parametric study of the stability of the tearing mode and
we have obtained two main results. First, in the presence of
trapped particles, the temperature gradient plays a destabi-
lizing role. Second, we have reported that the magnetic field
curvature tends to further destabilize the mode in combina-
tion with the temperature gradient, suggesting a destabiliza-
tion through an interchange mechanism9. We have shown
that there exists a threshold in temperature gradient below
which the magnetic curvature is stabilizing. We have identi-
fied a response of trapped particles to the tearing mode which
results in a kinetic damping of the mode. The threshold in
temperature gradient appears when this kinetic damping is
balanced by the interchange destabilization due to the com-
bination of the temperature gradient and the magnetic field
curvature. These findings open the way to a deeper under-
standing of the tearing instability in tokamaks in the pres-
ence of kinetic effects and shed light on the dependence of its
growth rate on a set of tokamak control parameters.
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Appendix A: Exact linear solution of the gyro-kinetic equation

The starting point to obtain the linear response of electrons
is the Vlasov equation in conservative form using a Hamilto-
nian formalism

∂F

∂t
− [H, F ] = 0 (A1)

Here [X,Y ] represents the Poisson brackets between X and
Y , i.e. [X,Y ] = ∂xX∂pY − ∂pX∂xY , where x and p are the
position and momenta, forming a set of canonical variables
satisfying Hamilton’s equations.

The calculation is performed in the so-called δF -
approximation. For this purpose we decompose the distri-
bution function and the Hamiltonian into equilibrium and
perturbed parts, respectively,

F = Feq + δF (A2)

H = Heq + δH (A3)

and assume the gyrokinetic ordering |δF |/Feq ≈ ρ? and
|δH|/|Heq| ≈ ρ?. Vlasov equation (A1) for electrons is then
linearized and written for δF as

∂δF

∂t
− [Heq, δF ]− [δH, Feq] = 0 (A4)

The equilibrium Hamiltonian is given by

Heq =
|p− eZeAeq|2

2me
+ eZeφeq (A5)

where Aeq and φeq are respectively the equilibrium vector
and electrostatic potentials, p = mev + eZeA is the electron
momentum and Ze the atomic number of the species, which
is Ze = −1 in this particular case where only electrons are
considered. The perturbed Hamiltonian is written in terms
of the perturbed vector and electrostatic potentials, A‖ and
φ, respectively, as

δH = eZe
(
φ− v‖,eqA‖

)
(A6)

where v‖,eq is the projection of the electron velocity onto
the unperturbed magnetic field lines. This formulation can
lead to simple insightful equations of motion when expressed
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in canonical variables (x,p). However, the periodicity of
particle motion in a tokamak suggests the use of a differ-
ent set of canonically conjugated variables, called action-
angle variables and represented by J = (J1, J2, J3) and
α = (α1, α2, α3), respectively. These angles describe the
gyro-motion (α1), the motion in the poloidal direction (α2)
and the motion in the toroidal direction (α3). The equations
of motion using these coordinates can be written as

α̇ =
∂Heq

∂J
= Ωeq(J) J̇ = −∂Heq

∂α
(A7)

where the angles are supposed to vary linearly in time giving
the characteristic frequencies of motion at equilibrium Ω =
(Ω1,Ω2,Ω3). For completeness, these frequencies are derived
in detail in Appendix C.

We define an equilibrium quantity Xeq as the average of
the quantity X over the angles α, i.e.

Xeq ≡
∫

d3αX (A8)

which means that the only dependence of Xeq is on the ac-
tions J, i.e. Xeq = Xeq (J). The equilibrium distribution
function and the equilibrium Hamiltonian are therefore func-
tions of the motion invariants and the perturbed distribution
function and Hamiltonian are functions of ((α,J, t). Follow-
ing this definition, the equations of motion A7 introduce the
actions as motion invariants, i.e. J̇ = 0. Therefore, without
any loss of generality, any equilibrium quantity can be de-
fined as a function of the motion invariants associated to the
three directions of periodicity.

The periodicity of the perturbed quantities with respect to
the angles α allows us to perform a Fourier expansion{

δH
δF

}
(α,J, t) =

∑
nω

{
δHnω

δFnω

}
(J) exp [i (n ·α− ωt)]

(A9)

where n = (n1, n2, n3) are the wave numbers associated to
the angles α = (α1, α2, α3) and ω is the frequency of the
tearing mode. Plugging Eq. (A9) into the linearized Vlasov
equation (A4) and using the equations of motion (A7), an
exact linear solution can be found

δFn,ω = − n · ∂JFeq

ω − n ·Ω
δHn,ω (A10)

In the adiabatic limit, the first motion invariant is pro-
portional to the magnetic moment µ = mev⊥/ (2B), i.e.
J1 = meµ/ (eZe) and the third motion invariant is the
toroidal canonical momentum J3 = Pϕ = −eZeψ + meRvϕ,
where ψ is the poloidal flux, R is the major radius of the
tokamak and vϕ is the projection onto the toroidal direction
of the particle velocity. The second motion invariant J2 does
not have a straigthforwardly useable expression for our pur-
pose. Therefore, we perform a change of variable J → I,
where I = (J1,Heq, J3). This change of variable introduces
the equilibrium Hamiltonian, i.e. the energy in the absence of
any perturbation, which is more convenient for physical anal-
ysis. The numerator of Eq. (A10) can therefore be written
as follows

n · ∂JFeq = n · ∂I

∂J
· ∂Feq

∂I
= n1

∂Feq

∂J1
+ n ·Ω ∂Feq

∂Heq
+ n3

∂Feq

∂J3

(A11)

We can now consider that Ω1 � ω,Ω2,Ω3. This ordering
yields the exact linear response to be used in the following

δFn,ω =
∂Feq

∂Heq
δHn,ω +

1

B

∂Feq

∂µ
δHn′,ω −

ω∂Heq
Feq + n3∂J3Feq

ω − n? ·Ω
δHn?,ω (A12)

where n′ = (n1 6= 0, n2, n3) and n? = (n1 = 0, n2, n3).

Appendix B: Perturbed parallel current

The perturbed parallel current is calculated as

j‖ = eZe

∫
d3p

(
v‖,eqδF + δv‖Feq

)
(B1)

where the perturbed parallel velocity is expressed in terms of
the parallel vector potential

δv‖ = −eZe
me

δA‖ (B2)

Therefore, the perturbed parallel current reads

j‖ = eZe

∫
d3p

(
v‖,eqδF −

eZe
me

δA‖Feq

)
(B3)
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Passing from (x,p) to action-angle variables (α,J) at this
point requires to pass from a three-dimensional to a six-
dimensional space. For this purpose we use the δ-Dirac func-
tion such that j‖ for electrons is calculated as a 6D integra-
tion.

j‖(x, t) = eZe

∫
d3pd3x′ δ (x′ − x)

(
v‖,eqδF −

eZe
me

δA‖Feq

)
(B4)

where x′ is a spatial position for the integration. We can now
make the canonical change of variable (x,p)→ (α,J) which
gives

j‖(x, t) = eZe

∫
dτ? dα1δ(x

′ − x)

(
v‖,eqδF −

eZe
me

δA‖Feq

)
(B5)

where we have separated the integration variables into gy-
rophase dα1 ≡ dϕc and dτ? = dα2 dα3 dJ1 dJ2 dJ3. We

make use of Parseval’s identity for Fourier series,∫
dα1

2π
δ(x′ − x)δF =

∑
n1

[δ(x′ − x)]n1
δF †n1

(B6)

where the † designates the complex conjugate of the per-
turbed quantity. The n1 mode of the Dirac function can be
calculated using the definition of the Dirac distribution

[δ(x′ − x)]n1
=

∫
dα1

2π
δ(x′ − x) e−in1α1

=

∫
dα1

2π

∫
d3 k

(2π)3
eik·x

′−ik·x e−in1α1 (B7)

Therefore, the parallel current density in Eq. (B5) can be
expressed using the Bessel function of the first kind, defined
as
∫
dα1/(2π) ei(k⊥ρc cosα1−n1α1) = (−i)n1Jn1

(k⊥ρc)

j‖(x, t) = eZe

∫
dτ?

∑
n1

(−i)n1

∫
d3k

(2π)3
eik·(xG−x)Jn1(k⊥ρc)

(
v‖,eqδF

†
n1
− eZe
me

δA†‖n1
Feq

)
(B8)

Here the perturbed quantities are functions of (xG,Heq, Pϕ).
Note that through this Hamiltonian formalism one can obtain
the parallel current associated to the particle motion, in terms
of particle coordinates x, using physical quantities describing
the guiding-center motion, which depend on guiding-center
coordinates xG. Similarly, we calculate the n1-mode of each
component of δF and we plug it into the expression of the
parallel current in Eq. (B8). Anticipating the fact that we
will later use the deeply passing particle approximations, we
pass to an integration in guiding center coordinates dτ? =
dα2 dα3 dJ1 dJ2 dJ3 → J dxG dv‖,eqv⊥ dv⊥, where J is the
Jacobian of the transformation. We now make use again of
the ordering Ω1 � ω,Ω2,Ω3, which implies that the third
term in the right-hand side of Eq. (4) is negligible except
for n1 = 0. Therefore, we keep only the n1 = 0 terms, which
strictly speaking is the exactly the same as performing a gyro-
average. Using the Bessel function property

∑+∞
n=−∞ J2

n (x) =

15 and the inverse Fourier transform∫
d3k

(2π)3
δĤ†(k, t) e−ik·x = δH(x, t) (B9)

we obtain the following general expression for the parallel
current in the gyro-kinetic approach using the magnetic limit,
i.e. neglecting the electrostatic potential

j‖ (x, t) = −e2

∫
J dv‖,eq dµ

{
v2
‖,eq∂Heq

FeqδA‖ (x, t)

+ v2
‖,eq

1

B

∂Feq

∂µ

(
1 − J2

0

)
δA‖ (x, t)

+
∑
n2,n3

v2
‖,eq

ω∂Heq
Feq + n3∂J3Feq

ω − n2Ω2 − n3Ω3
J2

0 δA‖n2,n3,ω (x)

× ei(n2α2+n3α3−ωt)

+
1

me
FeqδA‖ (x, t)

}
(B10)

where J0 ≡ J0 (k⊥ρc), J2
0 represents the gyro-average opera-

tor applied twice and the squared electron charge Z2
e = 1 has

been removed for the sake of clarity. We choose the equilib-
rium distribution function

Feq =
neq

(2πTeq/me)
3/2

e
−Heq

Teq (B11)

where neq and Teq are the equilibrium density and tempera-
ture, respectively. After integrating the first and last terms of
the right-hand side in expression (B10), they cancel out. The
second term with the ∂Feq/∂µ vanishes as Feq does not ex-
plicitly depend on the magnetic moment. For electrons, one
can take the small orbit limit and approximate the Bessel
function as J2

0 (k⊥ρc) ≈ 1 for k⊥ρc � 1. Finally, j‖(x, t) is
written as
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j‖ (x, t) =
e2

Teq

∑
n2,n3

〈
v2
‖,eq

ω − n3Teq∂J3 logFeq

ω − n2Ω2 − n3Ω3

〉
δA‖n2,n3,ω (x) ei(n2α2+n3α3−ωt) (B12)

where the notation 〈· · · 〉 has been used for simplicity to rep-
resent an average over gyro-centre equilibrium velocity space
weighted by the equilibrium distribution function

〈· · · 〉 =

∫
J dv‖,eq dµ · · · Feq (B13)

If we restrict our analysis to deeply passing electrons, we
can write α2 = θ and α3 = ϕ, where θ and ϕ are the poloidal
and toroidal angles, respectively. Consequently n2 = m and
n3 = n, with m and n the poloidal and toroidal mode num-
bers, respectively. The frequencies Ω2 and Ω3 are calculated
in detail in Appendix C. For deeply passing particles, these
frequencies can be approximated as

Ω2 ≈
v‖,eq

qR0
(B14)

Ω3 ≈
2q

r

mev
2
‖,eq + µB0

eZeB0R0
+
v‖,eq

R0
(B15)

where q is the safety factor, which represents the helicity of
the magnetic field lines, and r is the minor radius. B0 and R0

are respectively, the modulus of the magnetic field and the
major radius, measured at the magnetic axis. The perturbed
parallel current will be written in normalized units. For this
purpose we normalize the velocities to the thermal velocity
of electrons vth, the distances to R0, the frequencies to the
transit frequency ωt = vth/R0, the equilibrium distribution
function to n0/v

3
th, with n0 some normalizing density, the

parallel vector potential to B0R0ρ
2
? and the temperature to

a normalizing temperature defined as T0 = mev
2
th/2. The

parallel current can then be rewritten as

j‖ (x, t) = ρ?en0vth
2

T̂eq

∑
m,n,ω

〈
v̂2
‖

ω̂ − ω̂?g
ω̂ − k̂‖v̂‖ − ω̂D

〉
δÂ‖m,n,ω (x) ei(mθ+nϕ−ωt) (B16)

with ·̂ representing normalized quantities. The paral-
lel wave vector k‖ is given by k‖ = (m/q − n) /R0

and the magnetic drift frequency ωD is given by ωD =

2qn/r
(
mev

2
‖,eq + µB0

)
/ (eZeB0R0). Notice that k‖ vanishes

on the rational surface defined as q = m/n. In the remainder
of this paper, the eq subscript for the parallel velocity will
be dropped for the sake of simplicity. Note that ρ? gives the
typical ordering between the equilibrium and the perturbed
distribution function and en0vth is the normalization for the
current. In this expression we have introduced the generalized
diamagnetic frequency ω?g = nTeq∂J3 logFeq, which includes
all the spatial dependence of the equilibrium. For thermal
particles, at lowest order in ρ?, one can write J3 ≈ −eZeψ.
Therefore, the derivative with respect to J3 can be reduced
to a derivative with respect to the radial position.

Appendix C: Equilibrium frequencies of motion

The motion of a charged particle in toroidal geometry can
be divided into a parallel and a drift motion (at lower order),

v = v‖b + vg, in which we omit the E×B drift. Note
that this term can be added, however one needs to be care-
ful that it is independent of the toroidal motion so that the
toroidal momentum can still be a motion invariant. The time
evolution of the motion can be given by,

Ψ̇ = v.∇Ψ (C1)

θ̇ = v‖b.∇θ + vg.∇θ (C2)
ϕ̇ = v‖q b.∇θ + vg.∇ϕ (C3)

where Psi is the poloidal flux, θ and ϕ are the poloidal and
toroidal coordinates, respectively. The magnetic drift veloc-
ity vg is given by,

vg =
mv2
‖ + µB0

eB0

(
b0 ×

∇B0

B0

)
(C4)

The energy is defined as

E =
1

2
mv2
‖ + µB0(θ) (C5)

so that equation (C2) is expressed at lowest order in ρ?, the
Larmor radius normalized to the Tokamak major radius, as
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follows

θ̇ = ε‖
√

2/m [E − µB0(θ)]
1/2 B0 · ∇θ

B0
(C6)

ε‖ designates the sign of the parallel velocity. We define the
helical angle as ζ = ϕ− qθ. The time derivative of ζ gives,

ζ̇ = ϕ̇− q(Ψ̄)θ̇ (C7)

where Ψ̄ is the flux surface at the resonance layer. Using eq.
(C2) and the fact that q(Ψ)− q(Ψ̄) = (dq/dr)δΨ, we get,

ζ̇ =
dq

dΨ
δΨθ̇ + vg · ∇ζ (C8)

It follows that the three angular motions are found to be
the gyromotion, the poloidal motion and the toroidal motion
(also called, respectively, the bounce and precessional mo-
tions, for trapped particles). Their respective frequencies are
written as,

Ω1 = Ωb

∮
dθ

2π

1

θ̇
γ̇ ≈ Ωb

∮
dθ

2π

1

θ̇

eB0

m
(C9)

Ω2 = Ωb ≈ 2π

(∮
dθ

θ̇

)−1

(C10)

Ω3 = Ωb

∮
dθ

2π

1

θ̇
ϕ̇ ≈ Ωb

∮
dθ

2π

1

θ̇
vD.

[
−q′(Ψ̄)θ∇Ψ

+∇
(
(ϕ− q(Ψ̄)θ)

)]
+ q(Ψ̄)Ωb

∮
dθ

2π
(C11)

Note that for passing particles,
∮

=
∫ +π

−π whereas for trapped

particles oscillating on [−θ0, θ0],
∮

=
∫ +θ0
−θ0 .

1. The poloidal frequency Ω2

At the lowest order, the parallel velocity dominates the
drift velocity, and the bounce frequency can be rewritten as,

Ω−1
2 =

∮
dθ

2π

1

b · ∇θv‖
(C12)

We consider a simple circular equilibrium, with a large aspect
ratio where the equilibrium magnetic field is given by

B0 = ∇Ψ×∇ζ (C13)

Here ζ = ϕ − q(Ψ)θ is the binormal coordinate. In this ge-
ometry, the magnitude of the equilibrium magnetic field can
be expressed to the first order as B(0) = B0(1 − ε cos θ) and
b·∇θ ≈ 1/qR. It comes,

Ω−1
2 =

∮
dθ

2π

qR

v‖
(C14)

To the first order in ε = r/R0, the major radius is expressed

R = R0 (1 + ε cos θ) (C15)

Expressing the parallel velocity in terms of the energy defined
in Eq. (C5)

v‖ =
√

2(E − µB(0))/m =

√
2E

m

√
1−

µB(0)

E
(C16)

one can write Eq. (C14) as

Ω−1
2 = ε‖qR0

√
m

2E
Ω̄−1
b (C17)

Where Ω̄−1
b is the integral given as a first order in ε by

Ω̄−1
b =

∮
dθ

2π

1√
1− λ(1− ε cos θ)

(C18)

with λ = µB0/E. Keeping the first order effects in ε, we
define a parameter κ which differentiates the trapping and
passing domains

κ2 =
2ελ

1− (1− ε)λ
(C19)

and we rewrite Eq. (C18) as

Ω̄−1
b =

κ√
2ελ

∮
dθ

2π

1√
1− κ2 sin2(θ/2)

(C20)

The integral (C20) is to be solved separately for passing and
trapped particles by integrating over the appropriate bound-
aries

for passing particles(κ < 1) : θ1 = −π, θ2 = +π (C21)
for trapped particles(κ > 1) : θ1 = −θ0, θ2 = +θ0 (C22)

Consequently, an appropriate change of variables is made for
treating each class of particles. For passing particles, we make
the change of variable u = θ/2, and for trapped particles
sinu = κ sin(θ/2) such that 0 ≤ u ≤ π/2 and 0 ≤ θ ≤ θ0.
The integral (C20) is then expressed in terms of the elliptic
integral of the first kind K(m) as defined in Ref. 5,

K(m) =

∫ π/2

0

dθ
1√

1−m sin2 θ
(C23)

It finally comes that

Ω̄−1
b =

κ√
2ελ

2

π

{
K(κ2) for passing particles

1
κ K(1/κ2) for trapped particles (C24)

Finally, the poloidal frequency Ω2 is calculated for passing
and trapped particles, locally, in circular geometry to the
leading order in ε and it is expressed as

Ω2 = ε‖
q

R0

√
2E

m

√
2ελ

κ

π

2

{
K−1(κ2) for passing

κ K−1(1/κ2) for trapped
(C25)
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2. The toroidal frequency Ω3

The precessional frequency is given to the first order in ε
by

Ω3 = Ω̄b

∮
dθ

2π

µB(0) +mv2
‖√

1− λ(1− ε cos θ)

B(0) ×∇B(0)

eB3
(0)

·

·
[
− dq
dΨ

sθ∇Ψ +∇ζ
]

+ q(Ψ̄)Ωb

∮
dθ

2π
(C26)

In order to evaluate the integral in Eq. (C26), we explicit the
projection of the curvature term onto ∇Ψ and ∇ζ using Eq.
(C13)

(B0 ×∇B0).∇Ψ = −∇B0 · (∇Ψ×∇B0)

= −∇B0 · [∇Ψ× (∇Ψ×∇ζ)] (C27)

= − |∇Ψ|2 |∇ζ|2 (∂B0/∂ζ)

(B0 ×∇B0).∇ζ = ∇B0 · (∇ζ ×∇B0)

= −∇B0 · [∇ζ × (∇Ψ×∇ζ)] (C28)

= − |∇ζ|2 |∇Ψ|2 (∂B0/∂Ψ)

Writing µB0 + mv2
‖ = 2E − µB0, the expression of the

toroidal frequency Ω3 becomes,

Ω3 = Ω̄b
EB0

eR0B3
0

|∇ζ|2 |∇Ψ|
∮

dθ

2π

(2− λ)(sθ sin θ + cos θ)√
1− λ(1− ε cos θ)

+ δpassingq(r)Ω2 (C29)

Since dΨ/ dr = B0r/q and |∇ζ| ≈ q/r, it follows that Eq.
(C29) is written

Ω3 =
q

r

E

eB0R0
Ω̄d + δpassingq(r)Ω2 (C30)

Where Ω̄d is given in terms of Ω2 given by Eq. (C25)

Ω̄d = Ω̄b(2− λ)Ωκ (C31)

With 2− λ = 4ε+κ2(1−2ε)
2ε+(1−ε)κ2 and Ωκ is the integral given by

Ωκ =

∫ θ2

θ1

dθ

2π

(sθ sin θ + cos θ)√
1− λ(1− ε cos θ)

(C32)

The integral (C32) is also solved separately for passing and
trapped particles by integrating over the appropriate bound-
aries given in Eqs. (C21) and (C22). For the cos θ inte-
gral, we notice that cos θ = 1 − sin2 θ

2 , so the convenient
change of variable would be u = θ/2 for passing particles and
sinu = sin θ/2 for trapped particles. As for the sin θ integral,
we solve it integrating by parts as we notice that

d

dθ

(√
1− κ2 sin2 θ

2

)
= −κ

2

2

sin θ

2
√

1− κ2 sin2 θ
2

(C33)

Therefore,

∫ θ2

θ1

dθ

2π

θ sin θ√
1− κ2 sin2 θ

2

= − 4

κ2

[
θ

2π

√
1− κ2 sin2

(
θ

2

)]θ2
θ1

+
4

κ2

∫ θ2

θ1

dθ

2π

√
1− κ2 sin2

(
θ

2

)
(C34)

The term between brackets is equal to zero for trapped par-
ticles, as κ2 sin2(θ/2) = 1. However, for passing particles,
θ1 = −π and θ2 = +π, it does not vanish and it gives√

1− κ2. Using the standard definition of the complete ellip-
tic integrals of the first kind given by (C23) and that of the
second kind given by5,

E(m) =

∫ π/2

0

dθ
√

1−m sin2 θ (C35)

Finally, Ω̄d can be expressed as

Ω̄d =


4ε+κ2(1−2ε)
2ε+(1−ε)κ2

[
1 + 2

κ2

(
E(κ2)
K(κ2) − 1

)
+ 4s

κ2

(
E(κ2)
K(κ2) −

π
2

√
1−κ2

K(κ2)

)]
for passing particles (κ < 1)

4ε+κ2(1−2ε)
2ε+(1−ε)κ2

[
2
K(1/κ2)
E(1/κ2) − 1 + 4s

(
K(1/κ2)
E(1/κ2) + 1

κ2 − 1

)]
for trapped particles (κ > 1)

(C36)

Appendix D: Impact of the magnetic field curvature on the tearing
instability through mode-mode coupling

In all the previous sections, we have considered a single
harmonic for the perturbation, thus neglecting possible cou-

plings between the different harmonics. However multiple
rational surfaces may be present within the domain and so
allows double tearing modes and toroidal coupling of modes,
a process which is known to be destabilizing11. We have
neglected also the electrostatic potential and treated the in-
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stability in a purely magnetic approach. Of course, although
they can be insightful, these approximations make our model
less accurate as we neglect some physical mechanisms that
are important in understanding the role of magnetic curva-
ture. For this reason, we investigate in this section the effect
of curvature through toroidal coupling of main resonating
mode, which we consider here as the principal harmonic, and
one of its side bands. The electrostatic potential is consid-
ered here. However, Poisson equation is not solved because
we use the ideal MHD condition outside of the resonant sur-
face to to relate φ̃ to Ã‖. We start with the electromagnetic
drift kinetic equation that describes the electron dynamics.
The perturbed distribution function δF is decomposed into
adiabatic and non adiabatic parts

δF =
e

Te
Feqφ+ g (D1)

where Feq is the background distribution, considered as a
Maxwellian, and g is the non adiabatic distribution function,
satisfying the equation

(ω − k‖v‖ − ωD)g = −(ω − ω?n)
eFeq

Te

(
φ−

v‖

c
A‖

)
(D2)

where φ and A‖ are the perturbed electrostatic potential and
the parallel component of the magnetic vector potential, re-
spectively. In this equation, the magnetic drift frequency is
expressed as a differential operator

ωD = −ivD · ∇ =
v2
‖ + µB

eB0R0

(
sin θ

∂

∂r
+ cos θ

∂g

r∂θ

)
(D3)

r and θ are respectively the radial coordinate and the poloidal
angle. We consider the toroidal coupling of modes m and
m+ 1, where m is the poloidal wave number. Perturbations
are then expressed in the form

Q = Qm eimθ +Qm+1e
i(m+1)θ (D4)

Assuming ∂rgm = ∂rgm+1 = 0 and separating the main os-
cillating component from the side band, the Vlasov equation
is rewritten as

M
(
gm
gm+1

)
= S

(
φm − v‖A‖m

φm+1 − v‖A‖m+1

)
(D5)

where the matrixM is the square matrix

M =

(
ω − k‖mv‖ i(m+1)

2r vD
im
2r vD ω − k‖m+1v‖

)
(D6)

S = −(ω − ω?n)eFeq/Te and vD = (v2
‖ + µB)/eB0R0, B0 is

the equilibrium magnetic field. The parallel wave vector k‖
takes a different form depending on the considered poloidal
mode such that k‖m = (m/qm + n)/R is evaluated at the
resonant surface rm and k‖m+1 = ((m + 1)/qm+1 + n)/R at
the resonant surface rm+1. The solution of Eq. (D6) can be
obtained by inverting the matrixM,

M−1 =
1

|M|

(
ω − k‖m+1v‖ − i(m+1)

2r vD
− im2r vD ω − k‖mv‖

)
(D7)

where |M| = det(M) = (ω−k‖mv‖)(ω−k‖m+1v‖)+v2
Dm(m+

1)/4r2 is the determinant of matrixM. The dispersion rela-
tion of the tearing mode is obtained by integrating Ampère’s
law for each mode. In the constant-ψ approximation, this
reads in normalized units

δ2
e ∆′mA‖m =

4√
π

∫
R

dx

∫
dv‖v⊥dv⊥v‖ gm (D8)

δ2
e ∆′m+1A‖m+1 =

4√
π

∫
R

dx

∫
dv‖v⊥ dv⊥v‖ gm+1 (D9)

In matrix form this system of equations can be written as(
∆′m 0
0 ∆′m+1

)(
A‖m
A‖m+1

)
= I

(
A‖m
A‖m+1

)
(D10)

where I is a matrix that will be calculated in the following.
The perturbed distribution functions associated to modes m
and m+1, respectively at the resonant surfaces rm and rm+1

are expressed as

gm = −
(ω − k‖m+1v‖)(φm − v‖A‖m)− im+1

2r vD(φm+1 − v‖A‖m+1)

(ω − k‖mv‖)(ω − k‖m+1v‖) + m(m+1)
4r2 v2

D

(ω − ω?n)e−v
2
‖−v

2
⊥ (D11)

gm+1 = −
−im2rvD(φm − v‖A‖m) + (ω − k‖mv‖)(φm+1 − v‖A‖m+1)

(ω − k‖mv‖)(ω − k‖m+1v‖) + m(m+1)
4r2 v2

D

(ω − ω?n)e−v
2
‖−v

2
⊥ (D12)

Therefore, the response of mode m is given by the combi-
nation of the modes m and m+ 1 of the potential. The same

can be said about the mode m + 1. The integrals in Eqs.
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(D8) (first line of matrix I) and (D9) (second line of matrix
I) are respectively calculated around the resonant surfaces
rm and rm+1.

The resonant condition ω − k‖v‖ at one of the resonant
surfaces can be simplified when evaluated at the other sur-

face. In fact, away from the resonant surface rm, the parallel
streaming motion is much faster that the frequency of the
mode, however close to that surface, the resonance is satis-
fied and one can write ω − k‖mv‖ ≈ 0. This allows to write

(ω − k‖m+1v‖)
∣∣
rm

= ω − 1

R0

(
m+ 1

qm+1
+ n

)∣∣∣∣
rm

v‖ = ω − k‖mv‖ −
v‖

qm+1R0
≈ −

v‖

qm+1R0
(D13)

(ω − k‖mv‖)
∣∣
rm+1

= ω − 1

R0

(
m

qm
+ n

)∣∣∣∣
rm+1

v‖ = ω − k‖m+1v‖ −
v‖

qmR0
≈

v‖

qmR0
(D14)

We assume that the magnetic drift is constant on each of
the resonant surfaces (the local approximation). Inside the
resonant layer, we consider that the corresponding electro-
static potential is equal to zero. And outside of it, the ideal
MHD condition applies i.e. the parallel electric field van-

ishes at that position. Therefore, on the resonance surface
rm, E‖m+1 = 0, i.e φm+1 = ωA‖m+1k‖m+1 and on rm + 1;
E‖m = 0, i.e. φm = ωA‖mk‖m. On these grounds, we calcu-
late each term of matrix I of Eq. (D10)

Im,m ≈ −
ω2
pe

c2
4√
π

∫
dv‖v⊥ dv⊥

v3
‖

Rqm+1
(ω − ω?n)e−v

2
‖−v

2
⊥
Rqm+1

v‖

∫
dx

1

k′‖mxv‖ − ω +
m(m+1)v2DRqm+1

4r2mv‖

(D15)

Im,m+1 = − 4√
π
i

∫
dv‖v⊥ dv⊥(ω − ω?n)e−v

2
‖−v

2
⊥Rqm+1

m+ 1

2rm
vD

∫
dx

ω

k′‖m+1k
′
‖mv‖x

2 − ωk′‖m+1x+
m(m+1)v2DRqm+1

4r2mv‖
k′‖m+1 x

+ v‖

∫
dx

1

k′‖mxv‖ − ω +
m(m+1)v2DRqm+1

4r2m

 (D16)

After integration over x and v⊥ and using the defini-
tion of the complex logarithm, the matrix elements Im,m

and Im,m+1 become Im,m = −i 2
√
π

|k′‖m|
[
ω − ω̂?e(1 + 1

2ηe)
]
and

Im,m = 0.
We perform the same calculation for Im+1,m and

Im+1,m+1. The matrix I becomes,

I = −
ω2
pe

c2

i 2
√
π

|k′‖m|
(
ω − ω̂?e

(
1 + 1

2ηe
))

0

0 i 2
√
π

|k′‖m+1
|
(
ω − ω̂?e

(
1 + 1

2ηe
))
 (D17)

The non-diagonal terms are found to be equal to zero. This
means that coupling of the modes is not achieved and the

dispersion relation reduces to the one found in the previous
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sections. From this equation(
∆′m +

Γ

|k′‖m|

)(
∆′m+1 +

Γ

|k′‖m+1|

)
= 0 (D18)

where Γ reads

Γ = i2
√
π

[
ω − ω̂?e

(
1 +

1

2
ηe

)]
(D19)

The solution is unchanged compared to the classical solution
presented in the previous section. This further indicates no
effect for curvature of the field on the stability of the tearing
mode in the absence of particle trapping.

Appendix E: Magnetic Hamiltonian for deeply trapped particles

Without any loss of generality, the Hamiltonian can be de-
composed into an equilibrium component and one leading to
the magnetically trapped particles, characterized by banana
orbits when projected onto the poloidal cross section, namely

H = Heq + δHA‖ (E1)

where

Heq =
1

2
mv2
‖ + µB0ε cos θ (E2)

δHA‖ = −ev‖δA‖ (E3)

The parallel component of the perturbed vector potential is
written as a helical perturbation in real space

δA‖ = A‖ cos (mθ − nϕ− ωt) (E4)

where A‖ is the amplitude of the perturbation. However,
the perturbations introduced here exist in real space and un-
fortunately do not have the same expression in the space of
canonically conjugated variables that are suitable for the de-
scription of particle trajectories. Therefore, the hamiltonian
needs to be written in terms of the action-angle variables of
the deeply trapped particles. For this purpose we use the
relations (derive these relations in appendix)

θ = θ0 cosα2 (E5)

ϕ = α3 + qθ0 cosα2 (E6)

Note that the previous expressions, although strictly speaking
valid for deeply trapped particles, can be applied for poloidal
angles up to θ0 ≈ π/2 and therefore apply also for trapped
particles (not barely particles though). Moreover, the parallel
velocity can be expressed in terms of the angle α2,

v‖ = −θ0ω2

J
sinα2 (E7)

or equivalently

v‖ = −θ0ω2

i2J

(
eiα2 − e−iα2

)
(E8)

where J =
Beq·∇θ
Beq

is the projection of the unit vector along
the magnetic field line onto the poloidal direction. The par-
allel component of the vector potential is re-written as

δA‖ =
A‖

2

(
ei(mθ−nϕ−ωt) + e−i(mθ−nϕ−ωt)

)
(E9)

Introducing the expressions E5 and E6 that provide θ and ϕ
as functions of α2 and α3 we obtain

δA‖ =
A‖

2

(
ei(mθ−nϕ−ωt) + e−i(mθ−nϕ−ωt)

)
(E10)

where Jp (x) is the Bessel function of the first kind of order p.
We have used the following properties of the Bessel functions

eix cosα2 =

+∞∑
p=−∞

ipJp (x) eipα2 (E11)

and

Jp (−x) = (−1)
p
Jp (x) (E12)

Now we have to multiply this expression by the parallel ve-
locity expressed in terms of α2 to obtain

HA‖ =
eθ0ω2A‖

i4J

+∞∑
p=−∞

(−1)
p
J2p ((m− nq) θ0)

×
(

ei(2p+1)α2 − ei(2p−1)α2

)(
ei(n3α3+ωt) + e−i(n3α3+ωt)

)
(E13)

The shift in p can be transferred from the complex exponen-
tial to the Bessel function to give

HA‖ =
eθ0ω2A‖

i4J

∑
n2 odd

(−1)
n2−1

2 [Jn2−1 ((m+ nq) θ0)

+ Jn2+1 ((m+ nq) θ0)] ein2α2

(
ei(n3α3+ωt) + e−i(n3α3+ωt)

)
(E14)

Now we can use the property

Jp+1 (x) + Jp−1 (x) =
2p

x
Jp (x) (E15)

which results in the expression

HA‖ =
eθ0ω2A‖

i2J

∑
n2 odd

(−1)
n2−1

2 n2
Jn2 ((m+ nq) θ0)

(m+ nq) θ0

× ein2α2

(
ei(n3α3+ωt) + e−i(n3α3+ωt)

)
(E16)

Finally, the n2, n3, ω component of the perturbed hamiltonian
is found to be
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δHA‖,n2,n3,ω =

{
eθ0ω2

i2J (−1)
n2−1

2 n2
Jn2 ( (m+nq)θ0)

(m+nq)θ0
A‖ if n2 is odd

0 if n2 is even
(E17)

which reduces to δHA‖,n2=0,n3,ω = 0.
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