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Abstract 
Two ion cyclotron resonance heating (ICRH) antenna systems are planned for ITER, each 

having two by four poloidal triplets. The poloidal phase difference is fixed to Δθ𝑝𝑜𝑙 = ±90°, 
which is a consequence of the use of hybrids to implement the load resilience. Since current 

tokamak experiments using ICRH normally operate at Δθ𝑝𝑜𝑙 = 0°, experience from ICRH 

schemes with Δθ𝑝𝑜𝑙 ≠ 0° is lacking. In this study, the effect of poloidal phasing on ICRH 

power absorption is studied using the novel code FEMIC, which enables detailed resolution of 

the plasma domain, scrape-off layer and ICRH antennas. 

   Simulations of the ITER antenna and the JET ITER-like antenna show that the coupled 

power decreases with increasing Δθ𝑝𝑜𝑙 as a result of increasing destructive interference. The 

simulations also show that the coupling is asymmetric around Δθ𝑝𝑜𝑙 = 0° and that the 

coupling for Δθ𝑝𝑜𝑙 = −90° is either higher or lower than Δθ𝑝𝑜𝑙 = 90°, depending on the 

direction of the toroidal magnetic field. This behavior is explained by the plasma gyrotropy. 

Poloidal phasing also has an effect on the flux surface averaged absorbed power. For low 

Δθ𝑝𝑜𝑙 the profiles are peaked near the magnetic axis, while for high Δθ𝑝𝑜𝑙 the profiles are 

hollow. This is caused by destructive interference at the magnetic axis and is localized to 

𝜌𝑝𝑜𝑙 < 0.2 for ITER and 𝜌𝑝𝑜𝑙 < 0.25 for JET-ILA. 

 

Keywords: Poloidal phasing, ICRH, ITER, finite element method, FEMIC, destructive 

interference, coupling. 

  

1. Introduction 
Ion cyclotron resonance heating (ICRH) is a versatile method for heating and control of 

magnetically confined fusion plasmas [1-3]. The method has been successfully tested on both 

tokamaks and stellarators and is expected to have an important role on ITER. The main role of 

ICRH is to heat bulk ions in the plasma using the fast magnetosonic wave (here referred to as 

the fast wave). Other important applications include heating of electrons, non-inductive 

current drive, generation of fast ions, wall conditioning, sawtooth stabilization, and control of 

impurities, current and rotational profiles [1-4]. 

   The ICRH antennas are commonly placed at the low magnetic field side of the plasma. The 

antennas excite radio frequency (RF) waves that in general are evanescent in the scrape-off 

layer (SOL) and have to tunnel through this region before coupling to fast waves at the 

plasma edge. The fast waves can then propagate towards the plasma core and be absorbed 

through various collisionless damping mechanisms, which occur when the resonance 

condition 𝜔 = 𝑛𝜔𝑐 + 𝑘||𝑣|| is fulfilled. Here 𝜔 is the antenna angular frequency, 𝜔𝑐 denotes 

the cyclotron angular frequency, 𝑘|| the parallel wave number, 𝑣|| the parallel velocity of the 

resonant particles, and 𝑛 the harmonic number. Damping on the ions occurs when the fast 

wave crosses an ion cyclotron resonance or a harmonic of it, while electron damping occurs 

through transit time magnetic pumping (TTMP) and electron Landau damping (ELD). It is 



envisaged that fundamental minority heating (𝑛 = 1) of 
3
He and second harmonic heating 

(𝑛 = 2) of tritium ions will be one of the main auxiliary heating schemes on ITER [1,2,5]. 

   Two identical ICRH systems are planned to be installed on ITER, where each is designed to 

deliver a maximum of 20 MW of RF power operating in a frequency range between 40 and 55 

MHz [3,4,6-9]. Each system consists of six poloidal by four toroidal radiating straps with a 

Faraday screen placed in front to minimize the parallel electric field and to decrease the heat 

loads. The straps are combined into two by four poloidal triplets, which make the current 

more uniform in each strap while reducing the total number of feeding lines (see Fig. 1). The 

triplets can operate at a preset phase relation. Depending on the phase relation, the radiated 

RF waves from the triplets are superposed in the plasma, causing constructive and destructive 

interference patterns.  

 

       
Fig 1. Left: ITER ICRH antenna. Right: Diagram of the triplet and strap configuration. Triplets are represented 

in blue and straps in red. The Faraday screen is not shown for clarity. 

 

 
Fig 2. JET ITER like antenna (four poloidal by two toroidal antenna straps). The Faraday screen is not shown 

for clarity. 

 

   The phase relation in the toroidal direction (i.e. toroidal phasing) can be preset by imposing 

a phase difference in the sources [7,8]. This makes it possible to control the launched toroidal 

mode spectrum. For instance, a symmetric mode spectrum is beneficial for pure plasma 

heating[10], while co- and counter current drive require an asymmetric mode spectrum [11-

13]. 

   The choice of phase relation in the poloidal direction (i.e. poloidal phasing) will be 

restricted on ITER. This is a consequence of the use of hybrids to implement load resilience 

that sets the poloidal phase difference to Δθ𝑝𝑜𝑙 = ±90° between the lower and upper triplets 

[7-9]. Present tokamak experiment using ICRH normally operate at Δθ𝑝𝑜𝑙 = 0°, hence 

experience with Δθ𝑝𝑜𝑙 ≠ 0° is lacking. Simulations using the ANTITER [8] and TOPICA 

[14] codes of the ITER ICRH system have been performed for Δθ𝑝𝑜𝑙 = [0°, ±90°, 180°] [8]. 

They found that the highest and lowest power coupling was obtained for Δθ𝑝𝑜𝑙 = 0° and 



Δθ𝑝𝑜𝑙 = 180°, respectively. Their results also showed that the coupling for Δθ𝑝𝑜𝑙 = −90° 

was higher than for Δθ𝑝𝑜𝑙 = 90°. This is explained by the fact that the coupling was 

asymmetric around Δθ𝑝𝑜𝑙 = 0°. A scan in the poloidal phase difference for several toroidal 

phasing schemes using both TOPICA and ANTITER show that the optimal coupling occurs 

near Δθ𝑝𝑜𝑙 = −30°. Among present tokamak experiments, the JET ITER like antenna (ILA) 

could be a suitable candidate for studying the effect of poloidal phasing. The ILA has two 

toroidal by four poloidal straps (see Fig. 2) and can operate at a poloidal phase difference 

between -90
o
 and 90

o 
[15]. 

   In this paper, the effect of poloidal phasing on the coupling and ICRH power absorption 

profiles has been studied theoretically using the FEMIC (Finite Element Model for ICRH) 

code. In particular, the poloidal schemes Δθ𝑝𝑜𝑙 = ±90° on ITER have been evaluated with 

respect to performance and compared with Δθ𝑝𝑜𝑙 = 0°, which is expected to have the best 

performance. A similar study was conducted on JET-ILA. Modeling these effects put some 

requirement on the model. More precisely, to model the effect of poloidal phasing each 

poloidal antenna strap must be represented as a separate geometric entity in order to apply 

individual boundary conditions (e.g. current amplitude and phase). In addition, to calculate 

the coupling and ICRH power deposition the hot dielectric tensor is required in order to have 

absorption by individual ion species and electrons. We focused on schemes with strong single 

pass damping and avoided the mode conversion regime. On ITER and JET we used a DT 

plasma with a small concentration of 
3
He and a D plasma with a small concentration of H, 

respectively.  

   This paper is organized as follows. The physics and dielectric tensor is described in section 

2. The FEMIC code is described in section 3. Simulation results for ITER and JET are 

presented in sections 4 and 5, respectively. The results are discussed in section 6 and section 7 

contains the conclusions. 

  

2. The wave equation and dielectric tensor 
In this section we describe the wave equation and the dielectric tensor model. We will 

separate the geometry into a plasma and a SOL domain (including the antenna region). The 

hot dielectric tensor is applied to the plasma domain, while a simplified dielectric tensor is 

applied to the SOL domain. 

 

2.1 The wave equation 

In this study we use a quasi-homogeneous approximation of the dielectric tensor requiring 

that the parallel and perpendicular wave numbers are known in advance. We assume the 

geometry and the dielectric tensor to be invariant in the toroidal direction. Hence, we Fourier 

decompose in the toroidal direction and calculate the wave field for a single toroidal mode 

number, while the perpendicular wave number is given from the local fast wave dispersion 

relation. Under these assumptions, the wave equation reduces to 2D axisymmetry and is given 

by [16,17] 

 

              ∇ × ∇ × 𝐄 −
𝜔2

𝑐2
𝐊(𝐫, 𝐤⊥, 𝑘||)𝐄 = 𝑖𝜔𝜇0𝐉𝑒𝑥𝑡,          (1) 

 

where 𝐊 is the hot dielectric tensor for a Maxwellian plasma, 𝐤⊥ is the perpendicular wave 

number, 𝑘|| is the parallel wave number and 𝐉𝑒𝑥𝑡 is an external current density. Using a 

cylindrical coordinate system with (𝑅, 𝜙, 𝑍), the solution has the form 

 

            𝐄(𝑅, 𝜙, 𝑍) = �̂�(𝑅, 𝑍)𝑒𝑖𝑛𝜙𝜙,             (2) 



 

where �̂� is a complex amplitude and 𝑛𝜙 is the azimuthal toroidal mode number. 

 

2.2 The plasma dielectric tensor 

In a Cartesian coordinate system (𝑥, 𝑦, 𝑧) where the magnetic field is aligned along the 

positive 𝑧 direction and the wave vector is in the 𝑥𝑧 plane, the dielectric tensor for a hot bi-

Maxwellian plasma is given by [16,17] 

 

         𝐊𝑆𝑡𝑖𝑥 = [
𝐾1 𝐾2 𝐾4
−𝐾2 𝐾1 + 𝐾0 −𝐾5
𝐾4 𝐾5 𝐾3

],        (3) 

 

where 

 

𝐾0 = 2∑
𝜔𝑝,𝑗
2 𝑒

−𝜆𝑗

𝜔𝑘||𝑣||,𝑗
𝑗 ∑ 𝜆𝑗(𝐼𝑛 − 𝐼𝑛

′ )𝐴𝑛,𝑗
∞
−∞ , 

𝐾1 = 1 + ∑
𝜔𝑝,𝑗
2 𝑒

−𝜆𝑗

𝜔𝑘||𝑣||,𝑗
𝑗 ∑

𝑛2𝐼𝑛

𝜆𝑗
𝐴𝑛,𝑗

∞
−∞ , 

𝐾2 = 𝑖 ∑
𝜖𝑗𝜔𝑝,𝑗

2 𝑒
−𝜆𝑗

𝜔𝑘||𝑣||,𝑗
𝑗 ∑ 𝑛(𝐼𝑛 − 𝐼𝑛

′ )𝐴𝑛,𝑗
∞
−∞ , 

𝐾3 = 1 − ∑
𝜔𝑝,𝑗
2 𝑒

−𝜆𝑗

𝜔𝑘||𝑣||,𝑗
𝑗 ∑ 𝐼𝑛 (

𝜔−𝑛𝜔𝑐,𝑗

𝑘||𝑣||,𝑗
)𝐵𝑛,𝑗

∞
−∞ , 

𝐾4 = ∑
𝑘⊥𝜔𝑝,𝑗

2 𝑒
−𝜆𝑗

𝑘||𝜔𝜔𝑐,𝑗
𝑗 ∑

𝑛𝐼𝑛

𝜆𝑗
𝐶𝑛,𝑗

∞
−∞ , 

𝐾5 = 𝑖 ∑
𝑘⊥𝜖𝑗𝜔𝑝,𝑗

2 𝑒
−𝜆𝑗

𝑘||𝜔𝜔𝑐,𝑗
𝑗 ∑ (𝐼𝑛 − 𝐼𝑛′)

∞
−∞ 𝐶𝑛,𝑗, 

𝐴𝑛,𝑗 = [(1 −
𝑘||𝑣0,𝑗

𝜔
) 𝑍(𝜁𝑛,𝑗) +

𝑘||𝑣||,𝑗 

𝜔
(1 −

𝑇⊥,𝑗

𝑇||,𝑗
)
𝑍′(𝜁𝑛,𝑗)

2
], 

𝐵𝑛,𝑗 = [(1 +
𝑛𝜔𝑐,𝑗

𝜔
(1 −

𝑇||,𝑗

𝑇⊥,𝑗
))𝑍′(𝜁𝑛,𝑗) +

2𝑛𝜔𝑐,𝑗𝑇||,𝑗𝑣0,𝑗

𝜔𝑇⊥,𝑗𝑣||,𝑗
(𝑍(𝜁𝑛,𝑗) +

𝑘||𝑣||,𝑗

𝜔+𝑛𝜔𝑐,𝑗
)], 

𝐶𝑛,𝑗 = [
𝑛𝜔𝑐,𝑗𝑣0,𝑗

𝜔𝑣||,𝑗
𝑍(𝜁𝑛,𝑗) + (

𝑇⊥,𝑗

𝑇||,𝑗
−
𝑛𝜔𝑐,𝑗

𝜔
(1 −

𝑇⊥,𝑗

𝑇||,𝑗
))

𝑍′(𝜁𝑛,𝑗)

2
]. 

 

Here 𝑛 refers to the harmonic and 𝑗 to the species numbers, 𝜔𝑝,𝑗 is the plasma angular 

frequency, 𝜔𝑐,𝑗 the cyclotron angular frequency, 𝜆𝑗 = 0.5𝑘⊥
2𝜌𝐿,𝑗

2  the FLR parameter, 𝜌𝐿,𝑗 =

𝑣⊥,𝑗/𝜔𝑐,𝑗 the Larmor radius, 𝑣⊥,𝑗 the perpendicular thermal velocity, 𝑣||,𝑗 the parallel thermal 

velocity, 𝑣0,𝑗 the net parallel flow velocity, 𝐼𝑛 = 𝐼𝑛(𝜆𝑗) the modified Bessel functions of order 

n, 𝑇⊥,𝑗 and 𝑇||,𝑗 the perpendicular and parallel temperatures, respectively, 𝑍(𝜁𝑛,𝑗) the plasma 

dispersion function evaluated at 𝜁𝑛,𝑗 = (𝜔 + 𝑛𝜔𝑐,𝑗 − 𝑘||𝑣0,𝑗)/(𝑘||𝑣||,𝑗), 𝜖𝑗 = 𝑞𝑗/|𝑞𝑗| the 

charge sign and 𝑞𝑗 the species charge. 

   The derivation of Eq. (3) uses a coordinate system based on the direction of the magnetic 

field and the wave vector. To use this tensor in a cylindrical coordinate system the dielectric 

tensor has to be transformed, 

 

                   𝐊 = 𝐑 ⋅ 𝐊𝑆𝑡𝑖𝑥 ⋅ 𝐑−𝟏,                   (4) 

 

where the three column vectors of the orthogonal rotation matrix 𝐑 are given by 𝛋, 𝐛 × 𝛋 and 

𝐛, for 𝐛 = 𝐁/|𝐁| and 𝛋 = 𝐤⊥/|𝐤⊥|. In this work the toroidal magnetic field is in the negative 



𝜙 direction (poloidal field neglected) and the perpendicular wave vector in the positive 𝑅 

direction, resulting in a transformation matrix 

 

                  𝐑 = [
1 0 0
0 0 −1
0 1 0

].                     (5) 

 

By using the assumptions above, the parallel and perpendicular wave numbers are given by  

   

           𝑘|| =
𝑛𝜙

𝑅
 ,                                           (6) 

           𝑘⊥
2 ≈

𝜔2

𝑐2
[𝐾1 − 𝑛||

2 −
𝐾2
2

𝐾1−𝑛||
2]
𝜆=0

,        (7) 

 

where 𝑛|| = 𝑐𝑘||/𝜔 is the parallel component of the refractive index. Since the poloidal field 

is neglected, the up- and downshift in 𝑘|| is absent. Here, 𝑘⊥
2  is given by the fast wave 

dispersion relation (ignoring the parallel electric field and FLR effects). 

   The local absorption from the individual species is given by 

 

            𝑄𝑗 = −𝑖𝜔𝜖0𝐄
∗𝛘𝑗
𝐴𝐄,                          (8) 

 

where 𝛘𝑗
𝐴 is the anti-Hermitian part of the susceptibility tensor 𝝌𝑗 for species j. 

 

2.3 The SOL dielectric tensor 

In principle, one could use the full hot dielectric tensor in the SOL and antenna regions. 

However, at low temperatures the resonances become spatially thin and are challenging to 

resolve numerically. In contrast, a vacuum approximation is not adequate to fully describe the 

wave properties of the SOL. A non-zero plasma density can cause anisotropic effects, wave 

propagation and power losses in the SOL [18]. In addition, a non-zero plasma density in front 

of the antenna can improve the coupling [19], since it weakens the evanescence region and 

moves the fast wave cutoff density closer to the antenna (e.g. when plasma refueling is 

located close to the antenna). To model wave phenomena in the SOL and perform coupling 

studies, we propose the following generic user defined dielectric response in the SOL, 

 

   𝐊𝑆𝑂𝐿 = [

𝜖𝑥𝑥 𝜖𝑥𝑦 0

𝜖𝑦𝑥 𝜖𝑦𝑦 0

0 0 𝜖𝑧𝑧

].                      (9) 

 

This formulation supports a spectrum of SOL response models, ranging from vacuum to a 

cold plasma response with collisions. 

 

3. The FEMIC code 
The finite element method (FEM) is a robust numerical tool for solving partial differential 

equations that can be applied on complex geometries. The disadvantage of FEM is the 

difficulty of correctly accounting for spatial dispersion effects. Fourier spectral methods can 

handle spatial dispersion effects but have the disadvantage of producing dense matrices that 

are time consuming to invert. Handling complex geometries using this method is difficult and 

is therefore not suitable for calculations outside the plasma domain.  

   Several codes have been developed to model the wave fields generated by ICRH antennas 

that are based on FEM, Fourier spectral methods or a combination of both [20-26]. Current 



modeling codes normally have a sophisticated representation of the plasma, but use a simple 

geometric representation of the SOL and ICRH antennas. On the other hand, codes such as 

TOPICA [14] and ANTITER [8] use an advanced geometric model of the ICRH antennas, but 

use a simplified model of the plasma core. Currently, a new method is being developed, HIS-

TORIC, that use a FEM representation in the SOL and antenna regions and TORIC for the 

core plasma domain [27]. Thus, the code allows using a complex geometry in the SOL while 

having an accurate plasma model. 

   In this paper, we propose an alternative approach to model the wave fields based on FEM. 

Since FEM has difficulties implementing spatial dispersion effects, we use an algebraic quasi-

homogeneous approximation of the dielectric tensor and evaluate finite Larmor radius (FLR) 

effects using the fast wave dispersion relation. This recipe is useful for cases where mode 

conversion to other waves is insignificant. Since the coupling is dependent on the SOL plasma 

density, the location of the fast wave cutoff and on the gradient of the plasma density at the 

cutoff [9], we propose to calculate the dielectric response beyond the separatrix (and include 

the plasma density gradient outside the separatrix). For these purposes, the code FEMIC 

(Finite Element Model for ICRH) has been developed. 

 

3.1 Overview of FEMIC 

The FEMIC code is based on two scientific programs: MATLAB
® 

[28] and COMSOL 

Multiphysics
® 

[29], including the RF Module and  LiveLink
TM

 for MATLAB
®
. A flow chart 

of the code is shown in Fig. 3.  

 

 
Fig 3. Flow chart of the FEMIC code. Green boxes represent input files, red boxed are MATLAB

®
 processes and 

blue boxes are processes in the LiveLink
TM

 for MATLAB
®

. 

 

   The FEMIC code requires three types of input files. The equilibrium input file contains the 

magnetic flux function 𝜓, the separatrix geometry and magnetic axis coordinate. The second 

file is the “Input file”. Here, the user can specify the antenna parameters, the temperature and 

density profiles, the plasma species, and the numerical parameters. The third input contains 

the CAD geometry, which is commonly a COMSOL
®

 file. 

   When executing the FEMIC code, the dielectric tensor (Eq. (3)) is calculated in MATLAB
®

 

and saved to file. MATLAB
®
 then creates a COMSOL

®
 model using the LiveLink

TM
 for 

MATLAB
®
, where the following steps are performed 

 

 Import of the 2D axisymmetric CAD geometry in the poloidal plane (see Fig. 4). 



 Import of the dielectric tensor components. The dielectric tensor can then be defined 

in the RF Module and the wave equation is configured for one toroidal mode number. 

Boundary conditions are applied to the walls and the antenna boundaries. 

 An unstructured triangular mesh using second order vector elements is applied on all 

domains (linear and cubic elements are available). The advantage of applying an 

unstructured mesh is that local refinement is possible, e.g. around ion cyclotron 

resonances and mode conversion layers. A boundary layer mesh is applied adjacent to 

the separatrix in order to resolve gradients in the temperature and density (see Fig. 5). 

 The COMSOL
®
 built-in direct solver MUMPS is used to solve the system of 

equations. The solver supports and benefits from multi-core capabilities. 

 

Once the solution has converged, the FEM model is returned to the MATLAB
®

 environment 

for post-processing, where various output results are calculated. The COMSOL
®
 model and 

calculated data are saved to file. 

 

            
Fig. 4: Left: 2D geometry of ITER. The computational domain is shown in gray, ICRH antennas in green and 

magnetic flux surfaces in red. Right: Zoomed in figure showing the poloidal antennas and Faraday screen. 

 

3.2 The geometry and boundary conditions 

The geometry of ITER in the poloidal plane is shown in Fig. 4. This geometry includes an 

accurate representation of the first wall, divertor and antenna regions, including all six 

poloidal antenna straps and the Faraday screen. The first wall and Faraday screen are assumed 

to be perfect conductors with no losses. Thus, the boundary condition �̂� × 𝐄 = 𝟎 is applied, 

where �̂� is a unit normal vector. The antenna straps are represented as internal boundaries. If 

we denote the antenna from top to bottom using the subscript 𝑘 = 1,2,3,4,5,6, the current 

density condition is given by 

 

                  𝐉𝑘 = 𝐭𝑎𝑛𝑡𝐽𝑘𝑒
𝑖𝜃𝑘,                   (10) 

 

where 𝐭𝑎𝑛𝑡 is the unit tangential vector in the poloidal plane of the antenna boundary, 𝐽𝑘 the 

current density amplitude and 𝜃𝑘 the phase. To operate at a poloidal phase difference of 

Δθ𝑝𝑜𝑙 = 0° means that all six poloidal antennas are operating at the same phase, i.e. 𝜃𝑘 = 𝜃 

for all 𝑘 where 𝜃 is a constant. To operate at Δθ𝑝𝑜𝑙 = ±90°, we apply 𝜃1,2,3 = 𝜃 on the upper 

triplet and 𝜃4,5,6 = 𝜃 ± 90° on the lower triplet. This works similar for JET-ILA, but using 

four poloidal antennas. 

 



 
Fig 5: Left: Example of a mesh on the ITER geometry near the antenna region. Right: Zoomed in figure showing 

the boundary layer mesh on the plasma domain boundary. The red line is the separatrix. 

 

3.3 Magnetic flux surfaces 

The magnetic equilibrium used in this study for ITER is illustrated in Fig. 4 using red solid 

lines, where the outermost red line corresponds to the separatrix. The flux surfaces in the 

FEMIC code are used to define the temperature and density profiles as well as the internal 

boundary that separates the plasma and SOL domains. These are defined by using the 

magnetic flux function 𝜓 = 𝜓(𝑅, 𝑍) that can be defined either by analytical expressions or 

from file. Here, we use the flux label 𝜌𝑝𝑜𝑙 to identify a specific flux surface, which is given by 

 

        𝜌𝑝𝑜𝑙 =

{
 

 (
𝜓−𝜓𝑎𝑥𝑖𝑠

𝜓𝑠𝑒𝑝−𝜓𝑎𝑥𝑖𝑠
)
1/2

, {𝑅, 𝑍}   𝑖𝑛𝑠𝑖𝑑𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑟𝑖𝑥

(1 + |
𝜓−𝜓𝑎𝑥𝑖𝑠

𝜓𝑠𝑒𝑝−𝜓𝑎𝑥𝑖𝑠
|)
1/2

,    {𝑅, 𝑍}  𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑟𝑖𝑥

                (11) 

 

where 𝜓𝑎𝑥𝑖𝑠 and 𝜓𝑠𝑒𝑝  are the flux function values on the magnetic axis and separatrix, 

respectively. 

 

3.4 Magnetic field, density and temperature profiles 

The toroidal magnetic field strength in this study is given by a vacuum approximation 

 

                𝐵 =
𝐵0𝑅0

𝑅
 ,                          (12) 

 

where 𝐵0 is the on-axis magnetic field and 𝑅0 the corresponding R-coordinate. The 

temperature and density profiles are described by analytical expressions, given by 

 

         𝑔(𝜌𝑝𝑜𝑙) = {
𝑔𝑎𝑥𝑖𝑠 + (𝑔𝑠𝑒𝑝 − 𝑔𝑎𝑥𝑖𝑠)𝜌𝑝𝑜𝑙

2 ,                  0 ≤ 𝜌𝑝𝑜𝑙 ≤ 1       

𝑔𝑚𝑖𝑛 + (𝑔𝑠𝑒𝑝 − 𝑔𝑚𝑖𝑛)𝑒
−(𝜌𝑝𝑜𝑙−1)/𝐷 ,     1 ≤ 𝜌𝑝𝑜𝑙 ≤ 𝜌𝑚𝑎𝑥

         (13) 

 

where 𝑔𝑎𝑥𝑖𝑠 is the on axis value, 𝑔𝑠𝑒𝑝 is the value at the separatrix, 𝑔𝑚𝑖𝑛 is the minimum 

allowed value and D is the decay length parameter.  

   To include the gradients in the temperature and density adjacent to the separatrix in the 

dielectric tensor, we extend the plasma domain up to 𝜌𝑚𝑎𝑥 (i.e. beyond the separatrix). 

Outside the plasma domain boundary, we apply the SOL dielectric tensor given by Eq. (8). 



The gradients in the temperature and density adjacent to the flux surface 𝜌𝑝𝑜𝑙 = 1 occur in a 

narrow region that is only a couple of centimeters thick. To resolve this region and obtain a 

converged solution, a fine mesh is required. Instead of just increasing the mesh density 

isotropically using unstructured triangular elements (which would be computationally 

expensive), we propose using a boundary layer mesh instead. This technique uses high aspect 

ratio rectangular elements that mainly increases spatial resolution in the 𝜌𝑝𝑜𝑙 direction (see 

Fig. 5). 

 

4. FEMIC simulation results for ITER 
The effects of poloidal phasing of the ITER antennas were studied for a plasma with 46% 

deuterium, 46% tritium and 4% 
3
He. In this scenario power is absorbed by fundamental 

3
He 

and second harmonic tritium; deuterium absorption on the high field side is negligible. The 

main parameters are summarized in Table 1. No Neutral Beam Injection (NBI) was 

considered, impurities were neglected and only the dominant toroidal mode was considered. 

A vacuum model was employed in the SOL.  

   The numerical equilibrium used here originates from an ITER simulation, which is 

described in [30]. The shape of the equilibrium is important for the coupling between the 

antenna and the plasma. To ensure that all poloidal antenna straps have similar coupling to the 

plasma, the equilibrium was shifted 15 cm vertically and -2 cm horizontally and rescaled 2% 

vertically and -4% horizontally. To compensate for the shifting and rescaling, the position of 

the magnetic axis was moved -18 cm vertically.  

 
Table 1. Parameters for ITER simulation. Here 𝑇and 𝑛 refers to temperature and density respectively, and D is 

the decay length parameter. 

Plasma species DT with He-3 minority 

Minority concentration 4% 

𝐵0 5.3 T 

Frequency 53 MHz 

𝜌𝑚𝑎𝑥 1.02 

nΦ 61 

Ti,axis 24 keV 

Ti,sep 2 keV 

Ti,min 1 keV 

Te,axis 18 keV 

Te,sep 1.5 keV 

Te,min 0.75 keV 

ne,axis 8.0e19 

ne,sep 4.8e19 

ne,min 1.6e18 

D 0.017 

Triangular elements 378,132 

Quadrilateral elements 106,120 

 

   The effect of poloidal phasing on the total coupled power is shown in Fig. 6. Here, the black 

solid line is the total coupled power using 𝐵0 = 5.3 𝑇, which shows that low Δθ𝑝𝑜𝑙 provides 

more power to the plasma per unit current density squared compared with high Δθ𝑝𝑜𝑙. As a 

result of the asymmetry, the maximum and minimum coupling occurs at Δθ𝑝𝑜𝑙 = −28° and 

Δθ𝑝𝑜𝑙 = 152°, respectively. The decrease in coupled power from maximum to minimum is 

20%. The results also show that the coupling for Δθ𝑝𝑜𝑙 = −90° is slightly better than 

Δθ𝑝𝑜𝑙 = 90°, where the decrease in coupled power from maximum is 5% and 15%, 

respectively. The absorbed power for the individual species follow a similar trend, i.e. the 

power partition is not sensitive to the poloidal phasing. 



   The coupling for the reversed magnetic field (i.e. 𝐵0 = −5.3 𝑇) is illustrated by the black 

dashed line in Fig. 6. The results are similar to the one shown by the black solid line, but are 

mirrored around Δθ𝑝𝑜𝑙 = 0°, an effect caused by the plasma gyrotropy.  

 

 
Fig 6: Coupled power per unit current density squared as a function of poloidal phase difference. The black 

solid and black dashed lines correspond to B0 = 5.3T and B0 =-5.3 T, respectively. The coupling to the 

individual species is illustrated by the colored curves and correspond to the case with B0 = 5.3 T. 

 

 
Fig 7. Norm of the right handed polarized wave component E-. Left: Δθ𝑝𝑜𝑙 = 0°, Right: Δθ𝑝𝑜𝑙 = 180°. Color 

range is saturated at the antenna. Unit of the colorbars is [V/m] and axes in [m]. 

 

   In Fig. 7, we compare the right handed polarized wave component 𝐄− for Δθ𝑝𝑜𝑙 = 0° and 

Δθ𝑝𝑜𝑙 = 180°. For Δθ𝑝𝑜𝑙 = 0° the effect of destructive interference is close to its minimum; 

the launched wave forms one radiation lobe that is focused towards the magnetic axis. In 

contrast, for Δθ𝑝𝑜𝑙 = 180° two radiation lobes have formed with a destructive interference 

path in between that intersects the magnetic axis. The total power absorption for these two 

cases are shown in Fig. 8. For Δθ𝑝𝑜𝑙 = 0° the power is absorbed mainly by ions near the 

magnetic axis. For Δθ𝑝𝑜𝑙 = 180° two regions of ion absorption are formed, one above and 

one below the magnetic axis, which is a consequence of destructive interference of the wave 

occurring at the magnetic axis.  

   In Fig. 9, the 𝐄− components for Δθ𝑝𝑜𝑙 = ±90° are presented. In both cases the destructive 

interference is clearly visible, where the strength of the interference is stronger for Δθ𝑝𝑜𝑙 =



90°. The interference path is different for the two cases. Here, the interference path intersects 

the magnetic axis for Δθ𝑝𝑜𝑙 = 90°, while for Δθ𝑝𝑜𝑙 = −90° the interference path passes just 

above the magnetic axis.  

 

 
Fig. 8. Total power absorption [𝑊/𝑚3] in log scale. Left: Δθ𝑝𝑜𝑙 = 0

o
, Right: Δθ𝑝𝑜𝑙 = 180°

o
. Unit of the axes is 

in [m]. 

 

 
Fig 9: Norm of the right handed polarized wave component E-. Left: Δθ𝑝𝑜𝑙 = 90°, Right: Δθ𝑝𝑜𝑙 = −90°. Color 

range is saturated at the antenna. Unit of the colorbars is [V/m] and axes in [m]. 

 

   The poloidal mode spectrum at the flux surface 𝜌𝑝𝑜𝑙 = 0.5 is shown in Fig. 10. Here, the 

poloidal modes are defined as 𝐶𝑚𝑒
−𝑖𝑚𝜃, where 𝜃 = 2𝜋∫ 𝑑𝑙/ ∮ 𝑑𝑙 is oriented clockwise 

around the 𝜙 axis and 𝑙 is a poloidal line segment. These results show that the spectrum is 

slightly shifted towards the negative end. The dominant poloidal mode for  Δθ𝑝𝑜𝑙 = 0° is 

𝑚 = −1. The dominant modes for Δθ𝑝𝑜𝑙 = 90° and Δθ𝑝𝑜𝑙 = −90° are 𝑚 = −3 and 𝑚 = 1, 

respectively. Note that both these two cases have a secondary peak located at 𝑚 = 5 and 

𝑚 = 7, respectively. Finally, the case with Δθ𝑝𝑜𝑙 = 180° have two dominant poloidal modes 

at 𝑚 = −5 and 𝑚 = 3 and the mode at 𝑚 = −1 has almost vanished. 

 



 
Fig 10. Poloidal mode spectra for different poloidal phasings of the ITER antenna at 𝜌𝑝𝑜𝑙 = 0.5. Here, m is the 

poloidal mode number. 

 

 
Fig 11: Flux surface averaged absorbed power for different poloidal phasings. Total launched ICRH power is 1 

W. Left: ions, Right: electrons. 

 

   Fig. 11 shows the normalized absorbed power by ions (
3
He and tritium) and electrons (total 

absorbed power is normalized to 1 W). In both cases, the effect of the poloidal phasing is 

localized to within 𝜌𝑝𝑜𝑙 < 0.2, were the strongest variations occur within 𝜌𝑝𝑜𝑙 < 0.1. The 

case with Δθ𝑝𝑜𝑙 = 0° provides the best on-axis absorption. In contrast, the case with Δθ𝑝𝑜𝑙 =

180° has the lowest on axis absorption and the power is instead deposited within 0.1 <
𝜌𝑝𝑜𝑙 < 0.2.  

 

5. FEMIC simulation results for JET-ILA 
The study of the JET-ILA was performed for a deuterium plasma with 4% hydrogen using 

fundamental hydrogen minority and second harmonic deuterium heating near the magnetic 

axis. The main parameters are summarized in Table 2. No NBI was considered and impurities 

were neglected. We assumed that Ti = Te and considered the dominant toroidal mode number 

only. A vacuum was assumed in the SOL. 

   The magnetic equilibrium used in these simulations resemble a baseline scenario, where the 

last closed flux surface has been aligned with the ILA. A few flux surfaces are indicated in 

Fig. 13. The position of the magnetic axis was chosen so that the destructive interference path 

intersects it for Δθ𝑝𝑜𝑙 = 180°. 
   The effect of poloidal phasing on the coupled power is shown in Fig. 12 (note that the ILA 

cannot operate at a higher poloidal phase than 90
o
, higher poloidal phases are hypothetical 

only). High coupling is achieved for low poloidal phase difference. As in the ITER case, the 



coupling is not symmetric around Δθ𝑝𝑜𝑙 = 0°. The maximum and minimum coupled powers 

occur for Δθ𝑝𝑜𝑙 = −15° and Δθ𝑝𝑜𝑙 = 165°, respectively, where the decrease in total power is 

32%. I.e. the asymmetry is weaker but the total power drop is higher in the JET-ILA 

compared with ITER. Furthermore, the coupling for Δθ𝑝𝑜𝑙 = −90° is higher than Δθ𝑝𝑜𝑙 =

90°, where the drop from maximum is 12% and 20%, respectively. Since the coupled power 

for the individual species follows a similar trend, the power partition is not sensitive to the 

poloidal phasing. 

 
Table 2: Input parameters for JET simulation. Here 𝑇and 𝑛 refers to temperature and density respectively. 

D is the decay length. 

Plasma species D with 4% H 

𝐵0 3.2 T 

𝑅0 3 m 

Frequency 49 MHz 

𝜌𝑚𝑎𝑥 1.05 

𝑛𝜙 27 

Taxis 10 keV 

Tsep 3 keV 

Tmin 0.5 keV 

ne,axis 8.0e19 

ne,sep 4.8e19 

ne,min 1.6e18 

D 0.008 

Triangular elements 141371 

Quadrilateral elements 69600 

 

 
Fig 12: Coupled power per unit current density squared as a function of poloidal phase difference. 

 

   Fig. 13 shows the 𝐄− component for Δθ𝑝𝑜𝑙 = 0° and Δθ𝑝𝑜𝑙 = 180°. For Δθ𝑝𝑜𝑙 = 0°, no 

destructive interference is observed and the ILA forms one radiation lobe focused towards the 

magnetic axis. For Δθ𝑝𝑜𝑙 = 180°, two radiation lobes are formed. The destructive 

interference path in between intersects the magnetic axis, affecting the power deposition 

profile of both ions and electrons. 

 



 
Fig 13. Norm of the right handed polarized wave component E-. Left: Δθ𝑝𝑜𝑙 = 0o

, Right: Δθ𝑝𝑜𝑙 = 180°. Color is 

saturated at the antenna. Unit of the colorbars is [V/m] and axes in [m]. 

 

   
Fig 14: Flux surface averaged absorbed power for different poloidal phasings. Total launched ICRH power is 1 

W. Left: ions, Right: electrons. 

 

   Fig. 14 shows the normalized absorbed power for ions and electrons. For both ions and 

electrons the effect of poloidal phasing occurs mainly within 𝜌𝑝𝑜𝑙 < 0.25, were the strongest 

variations occurs within 𝜌𝑝𝑜𝑙 < 0.15. The strongest and weakest on-axis absorption are 

obtained for Δθ𝑝𝑜𝑙 = 0° and Δθ𝑝𝑜𝑙 = 180°, respectively. The absorption for the cases with 

Δθ𝑝𝑜𝑙 = ± 90° is between the two extreme cases, where the poloidal phase Δθ𝑝𝑜𝑙 = − 90° 
has slightly better on-axis absorption. 

 

6. Discussion 
The coupled power from the ICRH antennas to the plasma for both ITER and JET-ILA 

depends on the poloidal phase difference Δθ𝑝𝑜𝑙. In general, the coupled power decreases with 

increasing poloidal phase difference. This is a result of increasing destructive interference 

with increasing Δθ𝑝𝑜𝑙. The destructive interference is most clearly seen for scenarios with 

strong single pass damping. This is illustrated in Fig. 7 for ITER and Fig. 13 for JET-ILA. 

The cases with Δθ𝑝𝑜𝑙 = 0° have no degradation in performance due to destructive 

interference. However, tuning the ICRH antennas to Δθ𝑝𝑜𝑙 = 180°, a destructive interference 

path is created near the equatorial plane, which reduces the coupled power. Fig. 8 shows the 

power absorption for Δθ𝑝𝑜𝑙 = 0° and Δθ𝑝𝑜𝑙 = 180° on ITER. Good on-axis absorption is 

obtained for Δθ𝑝𝑜𝑙 = 0°, while for Δθ𝑝𝑜𝑙 = 180° the destructive interference forms two 

regions of power absorption, one above and one below the magnetic axis. 



   The coupled power is asymmetric around Δθ𝑝𝑜𝑙 = 0°, as illustrated by Fig. 6 and Fig. 12. 

On ITER for 𝐵0 = 5.3 𝑇, the maximum coupled power is obtained at Δθ𝑝𝑜𝑙 = −28°, which is 

consistent with the results in [8]. A consequence of this result is that the performance in 

coupling for  Δθ𝑝𝑜𝑙 = −90° is comparable with Δθ𝑝𝑜𝑙 = 0°. Another interesting remark is 

that coupling is approximately 10% higher for Δθ𝑝𝑜𝑙 = −90° compared with Δθ𝑝𝑜𝑙 = 90°.  In 

fact, the performance of Δθ𝑝𝑜𝑙 = 90° is comparable with Δθ𝑝𝑜𝑙 = 180°. At JET the coupling 

is more sensitive to the poloidal phasing, while the asymmetry is weaker (maximum coupling 

occurs at Δθ𝑝𝑜𝑙 = −15°). Hence, the coupling for Δθ𝑝𝑜𝑙 = −90° is comparable to Δθ𝑝𝑜𝑙 =

90°. 
   The asymmetry observed in the coupling on both ITER and JET is caused by the plasma 

gyrotropy [8,31,32]. This can be confirmed by reversing the sign of the magnetic field (i.e. 

𝐵0 = −5.3 𝑇), which mirrors the asymmetry in the coupled power (see Fig. 6). As a result, for 

𝐵0 = 5.3 𝑇 poloidal modes with negative mode number 𝑚 (or modes with positive 𝑘𝑧) has 

better coupling to the plasma. This is illustrated in Fig. 10 where the poloidal mode spectrum 

is shifted towards negative poloidal mode numbers. Analysis using FEMIC reveals that the 

asymmetry in the coupling is not sensitive to the electron density or the temperature. Instead, 

we found that the asymmetry correlates with the cyclotron frequencies of the majority species 

and the wave frequency, i.e. 𝐾𝑥𝑦/𝐾𝑥𝑥~ω𝑐/𝜔. On ITER, which will only be able to operate at 

Δθ𝑝𝑜𝑙 = ±90°, one of these poloidal phasings will have higher coupling, which will 

ultimately depend on the orientation of the magnetic field. 

   Fig. 6 and Fig. 12 also show that the power absorbed by the individual species follow the 

same trend as the total coupled power. Hence, the power partition does not depend on Δθ𝑝𝑜𝑙. 

This also implies that the current drive per MW of ICRH power is also independent of Δθ𝑝𝑜𝑙. 
This was verified with FEMIC using an analytical model for the current drive based on [33]. 

   Poloidal phasing does have an effect on the flux surface averaged power absorption. This is 

most clearly seen for on-axis heating, when the wake in the field strength due to destructive 

interference passes through the magnetic axis. On ITER, the normalized absorption on both 

ions and electrons inside 𝜌𝑝𝑜𝑙 < 0.1 decreases with increasing Δθ𝑝𝑜𝑙, as illustrated by Fig. 11. 

For Δθ𝑝𝑜𝑙 = 0°, the absorption is peaked near the magnetic axis, while for Δθ𝑝𝑜𝑙 = 180° 

deposition profile is hollow. The power is instead deposited between 0.1 < 𝜌𝑝𝑜𝑙 < 0.2. The 

absorption for the cases with Δ𝜃 =  ±90° falls in between the two extreme cases.   

   On JET, the effect of poloidal phasing on the normalized absorbed power is similar to ITER 

(shown in Fig. 14). The case with Δ𝜃 = 0° has the highest on-axis absorption. By increasing 

Δθ𝑝𝑜𝑙, the hollowness in the normalized absorption profiles increases. This effect is localized 

to within 𝜌𝑝𝑜𝑙 < 0.25. 

   In this study, the FEMIC code was used to simulate the effect of poloidal phasing on ITER 

and JET. In comparison with other global wave solvers, one of the main advantages of the 

FEMIC code is the ability to have a detailed geometric representation in the poloidal plane of 

the plasma shape, SOL and antenna. The code can include arbitrary numbers of poloidal 

antenna straps with different current boundary conditions (which enables studies of poloidal 

phasing). Since FEMIC is based on FEM only, calculation times are typically fast. The ITER 

simulations in this study had approximately 4 million degrees of freedom. To solve the 

problem required around 25 GB of RAM and took approximately 8 minutes to calculate using 

a workstation equipped with two Intel Xeon E5-2687W processors (including the dielectric 

tensor calculations and basic post-processing). Another useful feature is the ability to control 

and apply advanced meshes to the geometry (through the LiveLink
TM

 for MATLAB
®
). The 

boundary layer mesh feature is particularly useful in order to resolve gradients adjacent to the 

separatrix (i.e. pedestal region). This feature applies structured high aspect ratio rectangle 



elements, allowing high resolution in a particular direction to a reasonable computational cost. 

This will enable detail calculations and studies of coupling and wave propagation in the SOL 

and pedestal regions. 

   In the present version of the FEMIC code, poloidal magnetic field is not considered. The 

poloidal field tends to cause a bending of the wave front inside the plasma, an effect that is 

not considered here. Another important effect of the poloidal field is that it causes a spatial 

dispersion effect in the parallel direction, i.e. the up- and downshift in the parallel wave 

vector. For the chosen scenarios, this effect is expected to be a small correction to the solution 

because of the high toroidal mode number chosen in the simulation and the strong single pass 

damping. However, the up- and downshift is more important for lower toroidal mode numbers 

of the coupled wave spectrum. The poloidal phasing may therefore affect the power 

deposition, partition and current drive efficiency for low toroidal mode numbers. 

   Finally, another remark that deserves attention is the FLR effect. For the fast wave the FLR 

effects is usually small. The quasi-homogeneous approximation to the dielectric tensor using 

the fast wave dispersion relation allows the inclusion of FLR effects and ion and electron 

damping for the fast wave only. If other waves are excited (e.g. slow wave), the dielectric 

response will not be treated correctly since FLR effects depends on the perpendicular wave 

number which differ for different waves. 

 

7. Conclusions 
Poloidal phasing of ICRH antennas creates an interference pattern in the regions where the 

radiation lobes of individual straps overlap. For the ITER antennas and JET-ILA a destructive 

interference pattern is formed near the equatorial plane that affects the coupling, the 

deposition profiles and the poloidal mode spectrum. 

   The coupled power is dependent on poloidal phase difference, Δθ𝑝𝑜𝑙, where the coupled 

power decreases with increasing Δθ𝑝𝑜𝑙. This is caused by destructive interference of the wave 

fields, which increases with Δθ𝑝𝑜𝑙. On both ITER and JET-ILA, the coupling is asymmetric 

around Δθ𝑝𝑜𝑙 = 0°, due to the plasma gyrotropy. For a DT plasma on ITER and a D plasma 

on JET, the maximum coupled power to the plasma occurs at Δθ𝑝𝑜𝑙 = −28° and Δθ𝑝𝑜𝑙 =

−15°, respectively. For ITER, which will only be able to operate at Δθ𝑝𝑜𝑙 = ±90°, the 

asymmetry for positive 𝐵0 will favor Δθ𝑝𝑜𝑙 = −90° due to higher coupled power compared 

with Δθ𝑝𝑜𝑙 = 90°. However, reversing the toroidal magnetic field will favor the other 

poloidal phasing scheme of Δθ𝑝𝑜𝑙 = 90°.  
   The poloidal phasing did not have any significant effect on the power partition and current 

drive efficiency. However, it did affect the normalized flux surface averaged absorption 

profiles. For Δθ𝑝𝑜𝑙 = 0°, the deposition profiles are peaked near the magnetic axis. With 

increasing poloidal phase difference, the on-axis absorption decrease and the profile becomes 

hollow at the plasma core. The effect of poloidal phasing on the absorption profiles is 

localized to the plasma core, which occurs within 𝜌𝑝𝑜𝑙 < 0.2 for ITER and  𝜌𝑝𝑜𝑙 < 0.25 for 

JET. 
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