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Abstract. A linear perturbation theory is used to model the MHD stability of

tokamak equilibria under the application of external 3D magnetic perturbations

[C.C. Hegna, Physics of Plasmas 21:072502, 2014]. The symmetry breaking produces

the coupling of toroidal n modes. We use ELITE [H.R. Wilson et al., Physics

of Plasmas 9:1277, 2002] to produce both a linearly perturbed non-axisymmetric

equilibrium state as well as the linear axisymmetric modes, that are coupled for the

stability analysis. The symmetry breaking produces coupling of modes with different

toroidal mode number n and poloidal localisation of the non-axisymmetric peeling-

ballooning mode is observed in comparison to the axisymmetric case.

1. Introduction

The efficient production of fusion power requires large pressure at the plasma core while

retaining low pressure at the plasma edge, such that plasma facing components (PFCs)

operate in an acceptable environment. Such pressure profiles are observed in high

confinement mode (H-mode) plasmas. However, the establishment of a steep pressure

gradient at the edge, so called pedestal region, together with large bootstrap driven

edge current density is potentially destabilising for peeling-ballooning (PB) instabilities

[1]. Those instabilities are manifested as edge localised modes (ELMs) and correspond

to rapid bursts of particles and heat to PFCs, especially to the divertor of the reactor.

For large tokamaks like ITER, those transients will result in heat fluxes that exceed the

melting point of tungsten [2], the main material of the divertor tiles. Therefore, active

ELM control methods are required to minimise potential damage of the reactor [3].

One method of ELM control that is widely applied to devices around the world

and will be installed in ITER, uses external non-axisymmetric resonant magnetic

perturbations (RMPs) produced from magnetic coils placed inside the tokamak vessel.
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Experimental observations indicate two main operational states, one with ELM

mitigation and the other with complete ELM suppression. In mitigation, a decreased

energy loss per ELM ∆WELM leads to an increase of ELM frequency fELM . For ITER-

like shape low density n/nGW ∼ 0.3, where nGW = Ip/πa
2 is the Greenwald density limit,

and low collisionality ν∗ = νei
√
me/kBTeε

−3/2qR ∼ 0.01, complete suppression has only

been observed at DIII-D [4] and recently in AUG [5], while for higher collisionality

ν∗ ∼ 1 KSTAR [6] has also achieved ELM suppression. The exact physics mechanism

that allows this ELM free regime is still to be understood. In addition, ITER will

operate in a high density n/nGW ∼ 0.7 low collisionality ν∗ ∼ 0.01 regime such that

extrapolation from current machines could be challenging in the absence of a rigorous

physics basis.

In general, external 3D fields affect transport and MHD properties of the plasma.

The resonant component of the field drives current structures at rational surfaces that

can in turn lead to magnetic islands that greatly increase perpendicular transport

[7],[8],[9]. As a result, the pressure gradient in the pedestal is relaxed and global stability

boundaries are not exceeded. However, plasma flow that exists in the pedestal region can

be strong enough that island structures could heal [10],[11]. In addition, the geometrical

change of the equilibrium can affect MHD instabilities leading to potential modification

of stability boundaries that can directly affect the onset of ELMs. Ideal infinite-n

ballooning analysis reveals that the dominant effect of the applied 3D is to alter the local

shear, which has significant consequences for local MHD stability [12],[13],[14]. However,

for intermediate-n modes responsible for the occurrence of ELMs, a global 3D analysis

is needed. However, global 3D stability codes that already exist [15],[16] have not yet

been applied to an RMP ELM control scenario. To some extent, such an investigation

has been performed by non-linear fluid codes and mode coupling was observed to be

one of the key mechanisms to achieve a suppressed operational regime [17].

This work focuses on the impact of toroidal symmetry breaking on the ideal MHD

stability of the plasma. In a toroidally axisymmetric system the toroidal variation of the

response is described by linearly decoupled discrete toroidal modes, i.e. toroidal mode

number n, is a good quantum number and only poloidal coupling occurs. Considering

an additional non-axisymmetric part of the equilibrium that is much smaller than

the axisymmetric part, typically δB/B ∼ 10−4, together with approximately retained

nested flux surfaces, linear perturbation theory can be employed to provide the required

geometrical coupling of the axisymmetric modes. This coupling will result in energy

transfer between neighbouring toroidal Fourier modes that can directly affect the

evolution of instabilities. In this paper, we will explore this coupling mechanism.

2. Perturbative Ideal MHD Stability

A perturbative stability analysis was performed to first order in Ref.[18] and then to

second order in Ref.[19]; this is required to capture perturbative non-axisymmetric
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effects. Considering the force-balance equation,

−ω2
n
~ξn = (F + δF)~ξn (1)

where ω2
n is the real eigenvalue of the system, the force operator can be separated into

an axisymmetric part F and non-axisymmetric part δF part; provided F � δF, the

non-axisymmetric force can be treated as a perturbation. The axisymmetric operator F

is Hermitian and provides the equation for the unperturbed system which corresponds

to the 0th order equation,

−ω2
n0
~ξn0 = F~ξn0 (2)

and a spectrum of real eigenvalues ω2
n0 arises, provided that (~ξn0, ~ξm0) = δnm, where

(a, b) =
∫
a∗bdV . The solution ~ξn of the perturbed system can be approximated

by a superposition of orthogonal eigenfunctions {~ξn0, ~ξn1, ~ξn2, ...} and eigenvalues

{ω2
n0, ω

2
n1, ω

2
n2, ...} that correspond to solutions of the relevant ordered equation projected

on the unperturbed sate ~ξn0. The 1st order equation,

−ω2
n0
~ξn1 − ω2

n1
~ξn0 = F~ξn1 + δF~ξn0 (3)

gives a correction −ω2
n1 = (~ξn0, δF~ξn0) = δVnn due to axisymmetric changes of the

plasma equilibrium. The 2nd order equation,

−ω2
n0
~ξn2 − ω2

n1
~ξn1 − ω2

n2
~ξn0 = F~ξn2 + δF~ξn1 (4)

is required for the case of non-axisymmetric RMP fields and results in a correction

−ω2
n2 = (~ξn0, δF~ξn1). The structure of the perturbation ~ξn1 is required and can be

obtained considering Eqn.3. The orthogonal nature of a perturbation (~ξn0, ~ξn1) = 0

implies that it can be expressed as a series, summing over a basis of the unperturbed

functions ~ξn1 =
∑

m6=n cnm
~ξm0. Projecting Eqn.3 with respect to ~ξm0 results in an

expression for cnm = −δVmn/(ω2
n0 − ω2

m0), where δVmn = (~ξm0, δF~ξn0), such that the 1st

order correction in the displacement of a given mode is given by,

~ξn1 = −
∑
m6=n

δVmn
ω2
n0 − ω2

m0

~ξm0 (5)

Substituting Eqn.5 into Eqn.4 and taking the inner product with ~ξn0, provides a

quantitative expression for the 2nd order correction of the eigenvalue ω2
n2,

ω2
n2 =

∑
m 6=n

‖δVnm‖2

ω2
n0 − ω2

m0

(6)

It is interesting to note that for ω2
n0 − ω2

m0 < 0 the contribution is stabilising, while for

ω2
n0 − ω2

m0 > 0 the contribution is destabilising. Therefore, for a spectrum ω2
n0 > ω2

m0

for n > m, coupling to higher modes has a stabilising contribution, while coupling to

lower modes has a destabilising influence. Moreover, if the spectrum has a peak then

this peak will always get more unstable.

Low-n ELITE [20],[21] is an axisymmetric MHD stability code that can very

efficiently simulate the linear ideal plasma response from low to high n toroidal modes.

ELITE solves the equation of motion for the normal plasma displacement functional
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(a) (b)

Figure 1: Radial equilibrium plasma profiles for a) the pressure and current density

as well as b) the normalised PB growth rate illustrating a stable equilibrium for low-n

perturbations.

that minimises the axisymmetric energy principle for an ideal incompressible plasma.

In such a way, PB instabilities are captured and the ideal nature of the plasma

retains nested flux surfaces, which is required for the perturbative stability analysis

we adopt. Consequently, ELITE can be used to provide the radial axisymmetric basis

eigenfunctions and (neglecting inertia) the 3D part of the plasma equilibrium, assuming

the RMP mode is stable. We aim to use ELITE for both the equilibrium (plasma

response) calculation and for the stability calculation since the code is optimised for

the intermediate-to-high toroidal mode numbers that interest us. This is the first stage

of a project to develop a tool which can optimise plasma response and ELM stability

together.

3. Application to RMPs

The calculation of the non-axisymmetric part of the equilibrium requires an initial

axisymmetric equilibrium that is stable to low-n toroidal modes, to be driven by RMP

fields. We examine such an equilibrium here for a large aspect ratio circular cross-

section plasma. The axisymmetric equilibrium plasma profiles and PB stability analysis

are illustrated in Fig.1. The coordinate system used is orthogonal and based on the

original axisymmetric equilibrium state (ψ0, χ0, φ), where ψ0 is the normalised poloidal

flux, χ0 is the poloidal-like angle and φ is the toroidal angle. The perturbation is inserted

into ELITE as a fixed boundary condition at the plasma-vacuum interface. Magnetic

induction is used to link the normal field δBψ at the plasma boundary to the normal

displacement ξψ as given by,

B.C. ξψm = −i J
gψψ

q

ν

δBψm

(m− nq)
(7)

where J is the Jacobean, gψψ is the covariant metric of the normal coordinate, q is the

q-profile, ν is the local pitch and m, n are the poloidal and toroidal mode numbers. In
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order to calculate the 3D equilibrium components the total perpendicular component is

required. ELITE provides the poloidal harmonics of the normal displacement and the

binormal displacement can be obtained considering energy minimisation [22].

Finally, screening currents that arise due to electron flow at rational surfaces, block

the corresponding resonant harmonics of the applied magnetic perturbation and in the

absence of resistivity lead to δ-like current layers. The calculation of those layers is

subtle within a single fluid MHD model but can be analytically approximated from the

jump of the first derivative of the normal magnetic field ∆mn = [[∂ψ(δBψg
ψψ/Bφg

φφ)]]

according to Ref.[23] and given by,

µ0
~j|| = i

m∆mn

n2
∮
B2/|∇ψ|2dS

δ(ψ − ψr)ei(mθ−nφ) ~B (8)
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Figure 2: Normal displacement ξn and poloidal mode structure of normal magnetic field

δBn for the (a) resonant and (b) non-resonant N=3 RMP configuration. The solid blue

line represents the resonant location qaN of the plasma surface.
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3.1. Plasma Responce to RMPs

Two cases are examined for a resonant and non-resonant field at the plasma-vacuum

interface for a N=3 RMP. Fig.2 illustrates the normal displacement ξn that represents

the boundary condition and the poloidal mode structure of the corresponding normal

magnetic field δBn.
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Figure 3: a) Mode structure and b) poloidal cross-section reconstruction of the normal

displacement ~ξ · n̂ as reconstructed from ELITE output data for an even N = 3 RMP

case.

In the resonant case the plasma response is characterised by a strong peeling-like

normal displacement, while in the non-resonant case a weaker kink-ballooning response

is observed. The normal displacement is strongly peaked around rational surfaces in both

cases due to resonance with the corresponding poloidal harmonics leading to large local

response. Away from the rational surfaces ~ξ · n̂ ∼ δBn/B. The mode structure and the

poloidal cross-section reconstruction of the normal displacement are depicted in Fig.3.

The normal component of the field is imperfectly screened due to poloidal coupling in

toroidal geometry, but individual modes are still screened at the corresponding rational

surfaces so that island formation is prohibited in this ideal MHD model. In the non-

resonant case, this screening effect is minimised since the poloidal harmonics of the

magnetic field are small at the rational surfaces. However, in the resonant case the

harmonics are maximised in rational surfaces and strong screening is observed leading

to strong modification on the vacuum field. The normal field and its poloidal mode
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structure are illustrated in Fig.4.
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Figure 4: Normal component of magnetic field and poloidal mode structure in a straight

field-line angle as reconstructed from ELITE output data for a) an resonant and b) an

non-resonant n=3 RMP configuration. The straight white lines indicate the position of

the magnetic coils.

Fig.5 illustrates the parallel current density created around rational surfaces, which

has two contributions [24]. One contribution corresponds to the existence of Pfirsch-

Schluter current density due to incompressibility and non-vanishing pressure gradient.

The second contribution arises due to screening currents at rational surfaces. The

ideal plasma response results in large Pfirsch-Schluter current density for both RMP

configurations, which is the dominant contribution to the current density. The final

perturbed equilibrium quantity needed for the coupling is the pressure gradient ∇δP ,

calculated using the linearised pressure δP = ~ξ · ∇P0. The non-axisymmetric pressure

profile is shown in Fig.6.

3.2. Perturbative MHD Stability

The coupling coefficients Vnk can be calculated using the above 3D equilibrium quantities

( ~δB, ~δJ, ~δP ) and axisymmetric toroidal modes {~ξn0}. Fig.7a shows the calculation
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Figure 5: Non-axisymmetric equilibrium parallel current density as reconstructed from

ELITE for a) an resonant and b) an non-resonant n=3 RMP configuration.
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Figure 6: Non-axisymmetric equilibrium plasma pressure δP as reconstructed from

ELITE for a) an resonant and b) an non-resonant n=3 RMP configuration.

of the normalised growth rate of the system for the resonant and non-resonant case.

Stronger coupling between the axisymmetric toroidal modes is observed at the resonant

case due to larger plasma response. For this particular axisymmetric equilibrium

and RMP configurations the coupling is stronger from the higher n toroidal modes

such that stabilisation of the 3D growth rate is observed. Similar observations have

been made qualitatively from the non-linear code JOREK [17],[25],[26]. According to

those simulations, the application of RMPs lead to decreased linear growth rates and

saturation of unstable modes was observed provided the applied magnetic field was

strong enough to allow efficient mode coupling.

Finally, the reconstruction of the 3D normal displacement of the instability results

in a localised mode structure with respect to the poloidal location, due to the interplay

of different harmonics, provided that the coupling is strong enough. The 3D mode is

maximised at locations where the displacement of the non-axisymmetric equilibrium
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vanishes ξn ∼ 0. This 3D feature has been observed experimentally and reproduced

successfully be infinite-n ballooning analysis [27]. A comparison between the resonant

and non-resonant case is illustrated in Fig.7b.
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Figure 7: a) Perturbative 3D Peeling-Ballooning stability as a function of external

δB/B as reconstructed from ELITE output data. Normal plasma displacement ~ξ · n̂ for

a n = 16 3D PB mode.

4. Conclusion

To summarise, applied RMP fields that break the axisymmetric nature of tokamak

plasmas, are widely used to actively control ELMs. The 3D plasma stability can be

studied in a perturbative way, as long as the full 3D equilibrium and the axisymmetric

toroidal modes are known. The stability code ELITE was used to obtain both the

axisymmetric toroidal eigenmodes required for the toroidal coupling and also the 3D part

of the equilibrium. The 3D equilibrium was calculated by inserting a fixed boundary
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condition to represent an external field. Screening current density is captured, but

has not been observed to have a strong impact on MHD stability. Nevertheless, the

3D equilibrium profiles and the geometrical mode coupling had a significant impact

to MHD modes above a certain phenomenological threshold for the amplitude of the

applied field. Decrease of the linear growth rate was observed due to stronger coupling

with the higher n sideband of the axisymmetric system, which is more unstable for

ballooning modes. For cases where extrema exist in the growth rate spectrum different

trends can exist. Our results share similarities with non-linear fluid simulations showing

the importance of toroidal mode coupling and could provide further insight regarding

the dominant physics mechanism that allows an ELM free operational state necessary

for the advanced operation of ITER.
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