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Abstract

Power exhaust is one of the critical issues for future fusion devices, e.g. ITER.

A highly precise heat flux calculation is critical for the divertor design. SOLPS

is the main tool for predictions of the Scrape-off Layer (SOL) and divertor

conditions in the future fusion device ITER, where parallel kinetic effects in the

SOL will play an important role. SOLPS uses the fluid model which does not

take kinetic effects into account. The present work has enabled SOLPS in its

1D version to incorporate electron kinetic effects by coupling it with the Kinetic

Code for Plasma Periphery (KIPP). An iterative algorithm, which is made as

an automatic process, is investigated in this work.

Keywords: SOLPS, KIPP, coupling, fluid model, kinetic effects, Scrape-off

Layer
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1. Introduction

In future fusion devices e.g. ITER, approximately 80% of the heating power

due to the fusion reaction should be exhausted in the divertor region, hence the

divertor should be well designed to have the capability of handling such a large

power exhaust.5
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An accurate prediction of the heat flux deposited on divertor targets is re-

quired for the divertor design. For present tokamak edge plasma simulation

codes such as SOLPS [1], the 2D multi-fluid Braginskii model [2] is imple-

mented. It is based on moments of the Vlasov-Fokker Planck equation [3, 4, 5].

The first three moments with unknown variables: ion and electron densities,10

velocities and temperatures, are commonly used in a fluid model with closure

equations to close the hierarchical structure of moment equations. The closure

equations are the relations of the higher order terms (the undetermined terms:

ion and electron heat flux densities, thermal force coefficient) and the variables

to be solved for. In the Braginskii model, the closure of moment equations is15

achieved by solving Vlasov-Fokker-Planck equation based on the assumption

that the distribution function deviates only slightly from the Maxwellian due

to the presence of gradients of density and temperature. However, with respect

to the electron parallel transport in the SOL, this assumption is easily violated

since the electron distribution function in particular near the target is, in most20

cases, far away from the Maxwellian, being highly asymmetric due to the pres-

ence of super-thermal electrons which are much less collisional and carry the

bulk of the heat flux [6, 7, 8, 9]. Hence they contribute to the extended tails of

down-streaming electrons near the target. The sheath potential drop, acting as

an energy filter, reflects low energy electrons, thus cutting off the upstreaming25

electron distribution function [10]. In addition, parallel electron transport is

non-local due to long mean free paths of super-thermal electrons [9, 11, 12].

Earlier studies attempted to simplify the kinetic equation in the super-

thermal limit [13, 12, 14, 15] by only considering the collisions of super-thermal

electrons which are responsible for the heat transport and then to obtain a par-30

allel heat transport equation with non-local terms which can be easily solved

numerically. For other analytical studies, self-similar solutions [11, 16, 17] for

the kinetic equation with a simplified collision operator are searched in order to

obtain an analytical expression for parallel conductive heat flux density which

converges to Braginskii formula in the collisional limit. These analytical for-35

mulas clarified the dependence of parallel conductive heat flux density on other
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macroscopic parameters despite many limitations posed on their applications

by the prerequisite assumptions.

Another approach of including non-local effects is to close the hierarchical

structure in a higher moment (the 4th moment) [18, 19, 20, 21, 22, 23, 24, 25, 26].40

A higher order of a macroscopic parameter 〈v4〉 is introduced, but it cannot

be determined self-consistently. This parameter 〈v4〉 is then closed by being

related to lower order parameters by assuming a bi-Maxwellian distribution

function [27].

Some other non-local expressions for the heat flux density are also proposed45

in various kinetic simulations [28, 29, 30, 31]. They take into account the non-

local nature of the conductive heat flux density by incorporating heat flux den-

sities at all positions into one i.e. calculating the heat flux density at one certain

location based on the whole parameter profiles, not just local values and their

derivatives.50

The studies mentioned above are all within the framework of a fluid model.

However, from kinetic simulations [32, 33, 34, 35, 36, 37] it was found that

the electron distribution function near the target deviates significantly from the

Maxwellian due to super-thermal electrons coming from upstream. Therefore

kinetic simulations are necessary to elucidate the physics that the fluid model55

is not able to cover. The full kinetic equation is often reduced to a gyro-kinetic

one by averaging the gyro-motion.

Two main approaches are adopted to solve the kinetic equation: particle-in-

cell (PIC) [38] and continuum [39] methods.

Particle in cell (PIC) method. In the PIC approach, the initial distribution60

function in the kinetic equation is recovered by a number of ”macroparticles”

statistically, each of which consists of many real particles. Then the evolution of

the distribution function is represented by evolving the positions and velocities

of the ”macroparticles”. This approach is numerically easier to implement in a

code but it requires a large number of ”macroparticles” to reduce the statistical65

noise. Some codes have been utilizing this method to investigate kinetic effects
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in edge plasmas, e.g. PARASOL [40, 41, 42, 43, 44, 45, 34, 46, 47, 48], BIT [49,

50, 51, 52, 53, 54, 55, 56, 57], W1 and W2 [58, 59, 60].

Continuum method. In the continuum approach utilized in other codes: FPET [35],

ALLA [33], COGENT [61, 62, 63], the kinetic equation is solved in a discretized70

phase space. The macroscopic parameters are easily calculated by taking mo-

ments of the distribution function. However, the simulation accuracy is limited

by the resolution of velocity space grids that should be discretized in such a way

so as to cover the wide range of temperatures along field lines.

Implementation of the simplified BGK collision operator [64] which is nu-75

merically and physically simpler than the Fokker-Planck one [65], allows one to

couple kinetic effects related to the long mean free path particles [66, 67, 68]

and non-local boundary conditions with a fluid model [69]. Nevertheless, the

simplified approximation of a full collision operator is not applicable to arbi-

trary profiles of density and temperature because of its low accuracy and the80

lack of conservativeness [67]. The existing kinetic codes are either imperfect

in including all the physical processes that already exist in a fluid code or ex-

tremely time-consuming. Therefore the Kinetic Code for Plasma Periphery

(KIPP) [70, 71, 72, 73] was developed to investigate kinetic effects of parallel

plasma transport in a systematic way with an aim of coupling it with SOLPS.85

It is supposed to be fast at a cost of sacrificing a few features but without losing

accuracy of collision terms. On the other hand, SOLPS is a highly sophisticated

code with self-consistent recycling and physical and chemical sputtering as well

as atomic physics [74] which are the most sophisticated and time-consuming

parts in the numerical implementation of a kinetic code. In this work, the so-90

phisticated model of SOLPS and kinetic effects of electron parallel transport

offered by KIPP are combined in the KIPP-SOLPS coupling algorithm [75].

2. SOLPS

SOLPS [1], an abbreviation for Scrape-off Layer Plasma Simulator, is a code

package developed for the tokamak plasma edge physics community. It is a95
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Figure 1: Poloidal cross section of a tokamak with

lower single null. x is along the poloidal direction

from the inner target pointing to the outer target, y

is along the radial direction from the core pointing

to the wall and z is along the toroidal direction.

All variables are assumed to be constant along z in

SOLPS.
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Figure 2: The magnetic field ~B in a

tokamak has two components: toroidal

field (TF) Bz along the toroidal direc-

tion z and poloidal field (PF) Bx along

the poloidal direction x. The parallel di-

rection ‖ is along the magnetic field while

the perpendicular direction ⊥ is perpen-

dicular to both the parallel (‖) and radial

(y) directions. Fluxes in the poloidal di-

rection (x) are actually sums of projec-

tions of parallel and perpendicular fluxes

on the poloidal direction (x).

2D fluid code solving Braginskii equations [2], which assumes that a tokamak

device is toroidally symmetric, with poloidal direction from the inner target to

the outer one denoted by x and radial direction from the inner region to the

vessel wall denoted by y, as shown in Fig. 1. The magnetic field has toroidal

(Bz) and poloidal (Bx) components in a tokamak device. The transport in the100

poloidal direction x in SOLPS arises due to the transport in the parallel (‖) and

perpendicular (⊥) directions as shown in Fig. 2 (”⊥” was called diamagnetic

direction in [1]). One should note that ⊥ here is different from the one discussed

before. Here and in later discussions the subscript ⊥ denotes the perpendicu-

lar direction which is perpendicular to both the magnetic field and the radial105

direction y (detailed discussions can be found in section 2.1).

We would like to remind again that, in later discussions, x and y indicate

the poloidal and radial directions, respectively, while ‖ and ⊥ indicate the di-

rection parallel to the magnetic field and the perpendicular direction which is

perpendicular to both the parallel (‖) and radial (y) directions, respectively.110
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And in later discussions, ’perpendicular’ transport means the transport only in

the perpendicular direction (⊥).

2.1. 1D SOLPS adaptation

SOLPS was created as a 2D code, with poloidal and radial directions based

on the assumption that all parameters in the toroidal direction are constant.115

For a number of applications, a 1D version of SOLPS was created [76, 77].

The kinetic code KIPP (described in detail in section 3.2) is mainly aimed at

coupling parallel kinetic transport with SOLPS, therefore it is the 1D SOLPS

version without currents and drifts, with variables only varying in the poloidal

direction, that is used for testing the coupling algorithm (described in section 4)120

since parallel kinetic effects have no direct interaction with the radial transport.

Fig. 3 shows the 1D grid cells generated along the poloidal coordinate (x)

in SOLPS. Only one cell is created in the radial direction. The radial transport

(e.g. ion and electron radial particle flux densities Γiy, Γey or radial heat flux

densities qiy or qey) is disabled by switching off drifts and forcing radial gradients125

to 0 (∇y = 0). Hence radial particle and heat flux densities in this version of

SOLPS through the south and north faces of cell x (see Fig. 3) are

Γy(x) = 0 (1)

qy(x) = 0 (2)

Without the radial transport it becomes essentially a 1D problem in the

poloidal direction, but, as discussed above, the poloidal transport is the sum

of projections of parallel transport along the magnetic field line and the trans-130

port in the perpendicular direction in the magnetic flux surface on the poloidal

direction (see Fig. 4):

Γx(x) = bxΓ‖(x) + bzΓ⊥(x) (3)

qx(x) = bxq‖(x) + bzq⊥(x) (4)
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Figure 3: 1D grid for SOLPS is generated along the poloidal direction (x). Radial particle

and heat flux densities (e.g. heat flux densities through north and south cell faces qy = 0 for

all species) are switched off (details can be found in the text). The number of cells is nx+ 2,

with two guard cells: cell −1 and nx, attached to the west and east boundaries.

where

bx =
Bx√

B2
x +B2

z

(5)

bz =
Bz√

B2
x +B2

z

(6)

We assume that the magnetic field is constant, ~B = const, in this work.

Since the anomalous diffusion coefficient Dn and electron and ion thermal

conductivities χe⊥, χi⊥ are much smaller than the parallel ones, the perpendicu-135

lar terms are not important. They are regarded as source terms (see discussions

in section 4).

Hence the adaptation of the Braginskii equations to the 1D geometry results

in:

∂ni
∂t

+∇xΓix = Sni (7)

ne =
∑
i

Zini (8)

∇xjx = 0 (9)
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Figure 4: 1D grid for SOLPS (the top view of the grid in Fig. 3). 1D transport (e.g. qx) along

the poloidal direction (x) at the left face of a certain cell (e.g. cell 2) is the sum of projections

of the transport in parallel and perpendicular directions.

∂

∂t

(
miniui‖

)
+∇ ·

(
miniui‖~ui

)
= −∇‖ (pi + pe)−∇ · ~Π ‖i + Si‖ (10)

∂

∂t

(
3

2
niTi

)
+∇x

(
FixTi + q cond

ix

)
−Q∆ = SEi − niTi∇‖ui‖ −

(
Π̂i · ∇

)
· ~ui

(11)

∂

∂t

(
3

2
neTe

)
+∇x

(
FexTe + q cond

ex

)
+Q∆ = SEe − neTe∇‖ue‖ +

1

ene
jxRex

(12)

where m,n, u, T, p are mass, density, velocity, temperature, pressure; Γ, q, j are

particle, heat flux densities and current density. The subscripts e or i denote

the variable for electrons or ions. The subscript ‖ denotes the vector variable140

in the parallel direction while the subscript x denotes the sum of projections

of the vector variable both in parallel and perpendicular directions on the x

direction, similar to Eqs. (3) and (4). Sn and SE are particle and energy source

terms while Si‖ is the ion momentum source term. Rex is the projection of the

thermal force on the poloidal direction.145

The poloidal electron (or ion) heat flux density includes the convective piece:
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q conv
ex = FexTe (13)

where Fex is poloidal electron particle flux density multiplied by a coefficient:

Fex = bxFe‖ + bzFe⊥ (14)

Fe‖ =
3

2
Γe‖ (15)

Fe⊥ =
3

2
ΓExB
e⊥ +

5

2
Γdia
e⊥ +

5

2
Γa
e⊥ (16)

and the conductive piece:

q cond
ex = bxq

cond
e‖ + bzq

cond
e⊥ (17)

q cond
e‖ = −ce

neTeτe
me

∇‖Te (18)

q cond
e⊥ = −χe⊥ne∇⊥Te (19)

where ce = 3.16 for Zi = 1 and χe⊥ is the anomalous thermal conductivity,

which is a free parameter specified by the user. τe is the electron collision

time.

3. Electron kinetic effects and KIPP

3.1. Limitations of fluid models and kinetic factors150

This section describes four electron-related ”kinetic factors” (this name was

used in [36, 37]): electron heat conduction coefficient ce, thermal force coefficient

k‖, sheath potential drop ∆φ and electron sheath heat transmission coefficient

γe. Their specifications are necessary for numerical solutions of the fluid model

since they cannot be determined self-consistently within the framework of the155

fluid model.

3.1.1. Heat conduction and thermal force coefficients

The closure equations for the Braginskii equations are:

qcond
e‖ = −cenτe

Te
me
∇‖Te (20)

RT‖ = −k‖n∇‖Te (21)
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where

ce = 3.16 (22)

k‖ = 0.71 (23)

for singly charged ion. The closure equations are only valid under the assump-

tion that the collisionality is high enough so that the electron conductive heat160

flux density and thermal force scale linearly with the local temperature gradient.

However, from previous 1D kinetic simulations [6, 7, 8, 9, 72], the conductive

heat flux was found to be carried mostly by Heat Carrying Electrons (HCE) even

in the collisional limit. According to [72], the maximum energy flux density is

achieved at v‖ = 2.82vth, v⊥ = 1.98vth, corresponding to 5.95Te of the kinetic165

energy. The mean free path of HCE is λHCE = v‖×τHCE ≈ 25λth [72]. HCE are

experiencing much fewer collisions than thermal electrons. The collisional limit

condition is often violated for HCE even when thermal electrons are collisional.

3.1.2. Sheath potential drop and electron sheath heat transmission coefficient

A thin layer called ”Debye sheath” [78] is present in the region where the170

plasma interacts with the target. The sheath is so thin that it is usually col-

lisionless and fully kinetic. Hence it cannot be described by the fluid model,

as a result, the boundary conditions for the fluid equations (section 2) have to

be specified separately. Here only the boundary kinetic factors for equations

related to electrons are discussed: sheath potential drop ∆φ for the charge con-175

servation equation (Eq. (9)) and electron sheath heat transmission coefficient

γe for the electron energy conservation equation (Eq. (12)).

The boundary of the simulation domain at the target in SOLPS is techni-

cally the sheath edge instead of the target. The determination of ∆φ and γe

depends on the local electron distribution function, which is unknown at the

boundary. In the collisional limit, one often assumes that electrons have cut-off

and half Maxwellian distributions at the sheath edge and the target, respectively
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to obtain the values of ∆φ and γe [10]:

∆φ ≈− 3
Tet
e

(24)

γe =2 +
|e∆φ|
Tet

≈ 5 (25)

where Tet is target electron temperature.

Nevertheless, electrons at the sheath edge can hardly be Maxwellian or cut-

off Maxwellian, especially in medium upstream collisionalities [10, 27, 79], since180

the electrons that overcome the sheath potential drop and contribute to the

boundary heat flux may come from far upstream [79], being characterized by

significantly higher temperature than the local one [80, 81, 82, 83, 84, 85, 86, 87,

88, 89] due to the temperature variation along a flux tube in the edge. Hence

the prerequisite for deriving Eqs. (24) and (25) is not always valid in the edge.185

From previous kinetic simulations [36, 37], it was found that the non-local effect

can significantly influence values of γe and ∆φ.

3.2. Introduction to KIPP

The Vlasov-Fokker-Planck equation is being solved in KIPP [70, 71]. At the

present stage, the code is focusing on the electron parallel transport:190

∂f̃e

∂t̃
+ ṽ‖∇‖f̃e − Ẽ‖

∂f̃e
∂ṽ‖

=

(
∂f̃

∂t̃

)
coll.

+ S̃E + S̃p (26)

where the tilde sign ”∼” denotes that all parameters appearing in this code are

dimensionless, normalized by reference parameters: density n0, temperature

T0, velocity v0 and collision logarithm Λ0, with T0 = mev
2
0 , normally taken at

the stagnation point. This sign will be omitted in the following discussions in

this section. fe is a 3D distribution function with two dimensions in velocity195

space: parallel and gyro-averaged perpendicular velocity, and one dimension in

physical space along the magnetic field. SE and Sp are electron energy and

particle sources respectively.

Eq. (26) is solved by using an operator splitting scheme [70], with parallel

free-streaming for 1/2 time step followed by Coulomb collisions and the electric200
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field force over one time step, followed again by the other 1/2 time step of

free-streaming [70, 90, 91].

The numerical implementation of the terms in equation 26 and boundary

conditions will be discussed below.

3.2.1. Collision term205 (
∂f
∂t

)
coll.

is the collision term [71]:(
∂f

∂t

)
coll.

= −
∑
β=e,i

(
∂Γβv‖
∂v‖

+
∂Γβv⊥
v⊥∂v⊥

)
(27)

where

Γβv‖ = −Dβ
v‖
fe −Dβ

v‖v‖

∂fe
∂v‖
−Dβ

v‖v⊥

∂fe
∂v⊥

(28)

Γβv⊥ = −Dβ
v⊥
fe −Dβ

v⊥v‖

∂fe
∂v‖
−Dβ

v⊥v⊥

∂fe
∂v⊥

(29)

Γβv‖ and Γβv⊥ are flux densities in the velocity space. Dβ
v‖

and Dβ
v⊥

are dy-

namic friction coefficients, Dβ
v‖v‖

and Dβ
v⊥v⊥

are diffusion coefficients, Dβ
v‖v⊥

and Dβ
v⊥v‖

are pitch-angle scattering coefficients. The superscript β can be ”e”:210

electron, or ”i”: ion. The coefficients in Eqs. (28) and (29) are functions of

mass, charge and the distribution function of species ”β”. The details of the

form of these coefficients can be found in [71, 92, 93]. The numerical details

of the implementation of the collision term can be found in [93] and references

therein.215

3.2.2. Source terms

Formulas for source terms SE and Sp depend on a specific problem being

studied. In order to be compatible with sources in a fluid model where particle

and energy sources are separately applied to particle and energy conservation

equations (e.g. Eqs. (7) and (12)), the energy and particle sources are nu-220

merically separated in KIPP, meaning that the particle source term only adds

particles into cells without introducing energy and vice versa.

By default, the energy source scheme FE(f) represents the process of uniform

electron power input or subtraction which converts one Maxwellian into another

12



without changing the number of particles and momentum. This is equivalent to225

increasing or decreasing the temperature in a fluid concept.

The electron particle source scheme FS(f) modifies the electron density by

scaling up fe evenly in velocity space with the subsequent power removal with

the uniform energy source scheme FE(f) to compensate for the energy content

change during this process:230

f1(~v) = αf0(~v) (30)

f2(~v) = FE(f1(~v)) (31)

where

α =
n0 + ∆n

n0
(32)

The density is increased by ∆n in Eq. (30), while extra power 3
2∆nTe is intro-

duced. The following energy source scheme FE(f1(~v)) is thus applied to remove

such power in order to make sure that the energy content is conserved.

3.2.3. Free-streaming term

The free-streaming term is the so-called free-streaming advection, imple-

mented numerically based on the Reconstruct-Evolve-Average Algorithm (REA) [70]

in the concept of the Finite Volume Method [39]:

v‖∇‖fe = −
Fn
i− 1

2

− Fn
i+ 1

2

∆si
(33)

where Fn
i− 1

2

and Fn
i+ 1

2

are the discretized numerical fluxes of v‖fe at the left235

and right faces of cell i at a given time tn, respectively. Then the determination

of the free-streaming term is dependent on specifications of the numerical flux

Fn
i− 1

2

at cell faces at any time tn. The specification of Fn
i− 1

2

is based on the

process of reconstructing the distribution function on account of the cell average

distribution function fni [39], which is the average value of the distribution240

function at time tn in cell i. Details can be found in [70, 75].

3.2.4. Electric field term

Plasma neutrality is maintained by adjusting E‖ to compensate for parallel

momentum generation in each spatial cell [70]. This is only a numerical proce-

13



dure without requiring solutions of any equations, which gives the electric field245

contribution due to electron pressure gradient. The electric field contribution

due to the thermal force is calculated separately and related to the momentum

generation in a cell due to Coulomb collisions. It is blended into the implicit

scheme for the collision operator [70]. Ambipolarity of parallel plasma transport

means that the total electric field is the sum of these two contributions.250

3.2.5. Boundary conditions

Boundary for velocity space. KIPP is currently developed as a 3D (1D2V) code.

As described above, all parameters are normalized by the reference parameters:

n0, T0, Λ0, v0. The velocity grids are created based on the reference parameter

v0. The highest velocity resolved in all simulation cases is vmax = 7v0. Distri-255

bution functions outside of this range are treated as zero. The justification for

this choice was given in [70].

Boundary for spatial space: the stagnation point. KIPP is currently designed

for 1D space along the magnetic field line with the stagnation point and the

target at the left and right ends, respectively. There are smax+ 1 cells created

for the 1D space and they are numbered: 0, 1, · · · , smax. The left boundary is

the center of cell 0, assumed as the stagnation point where the reconstruction

is based on the 1st order upwind scheme. The numerical flux entering the

boundary is assumed as:

Fn− 1
2

(
v‖, v⊥

)
= −Fn1

2

(
−v‖, v⊥

)
(34)

making the stagnation point a reflective boundary.

Boundary for spatial space: the target. The right boundary is the right face of

cell smax, assumed to be the target (technically the sheath edge). For numerical260

simplicity, Poisson equation and hence the Debye sheath is not dealt with in

KIPP since solving the Debye sheath requires a very small time step ∆t ∼ τg (the

gyro-motion time) and a small spatial cell size ds ∼ LD (the width of the Debye

sheath). Instead, the logical sheath boundary condition is implemented [94], of

14



which the main idea is to give a reasonable electron distribution function at the265

sheath edge without having to solve the sheath region of inherently small space

and time scales. The results compare reasonably well with those of analytical

analysis and those from simulations with solving the sheath region, since it

captures the main physics of the sheath [94]. The logical sheath boundary

condition is utilized to specify only the numerical flux entering the boundary270

(v‖ < 0) since the downstreaming flux (v‖ > 0) out of the final boundary is

determined self-consistently by the upstream conditions. It is equivalent to

the assumption that the distribution function at the simulation boundary is

prescribed as:

ft(v‖, v⊥) =


fdown
t (v‖, v⊥) if v‖ > 0

fdown
t (−v‖, v⊥) if −vc ≤ v‖ ≤ 0

0 if v‖ < −vc

(35)

where ft is the distribution function at the boundary and fdown
t is the down-275

streaming part.

4. Iterative coupling of KIPP with SOLPS

As discussed in section 3.1, the fluid description of electrons is not always

valid in the SOL, kinetic corrections are necessary for arbitrary collisionali-

ties. Since the fluid model in SOLPS is already highly sophisticated with self-280

consistent recycling, physical and chemical sputtering, as well as atomic physics

models, which are the most time-consuming parts of a kinetic code, KIPP was

developed to account for kinetic effects of electron parallel transport in SOLPS,

leaving the rest of the physical models intact. An algorithm of coupling KIPP

with SOLPS will be investigated in this chapter.285

4.1. Iterative algorithm

One difficulty with coupling a kinetic code to a fluid one is that they have

very different time scales. For a plasma with constant T = 50eV , n = 1.0 ×

1019m−3 along a 25m flux tube, the characteristic time scale of the fluid model
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used in a fluid code is the upstream ion transport time ∼ 10−4s, however, the290

time scale of a kinetic code without resolving the gyro-motion can be character-

ized as the electron collision time at the target ∼ 10−7s. The direct real-time

coupling is obviously not possible [95]. One can think of an iterative coupling

algorithm instead, which may offer a possible way of coupling a kinetic code to

a fluid one. In the following sections, an iterative coupling algorithm will be295

investigated.

One iterative coupling scheme, which avoids the difficulty caused by different

time scales, is proposed here. SOLPS passes converged profiles of macroscopic

plasma parameters to KIPP, while KIPP passes effective kinetic factors back

to SOLPS. This process is repeated until coupling onvergence is reached. The300

flowchart of this process is shown in Fig. 5. It consists of 4 main steps:

1. At the start of a coupled case, run SOLPS with default electron heat

conduction coefficients (ce = 3.16), thermal force coefficients (k‖ = 0.71),

sheath potential drop (Eq. 24) and electron sheath heat transmission co-

efficient (Eq. 25). For a continuation of a coupled case, run SOLPS with305

the modified (effective) electron heat conduction coefficients (ceff ), ther-

mal force coefficients (keff ), sheath potential drop (∆φeff ) and electron

sheath heat transmission coefficient (γeff ). Calculations of the effective

kinetic factors will be given below.

2. Transfer profiles of electron density, velocity and temperature, ion density310

and temperature, particle flux density from SOLPS to KIPP.

3. Maintaining the transferred profiles by automatic energy and particle

sources, run KIPP and obtain new effective electron heat conduction co-

efficients (ceff ), thermal force coefficients (keff ), sheath potential drop

(∆φeff ) and electron sheath heat transmission coefficient (γeff ).315

4. Check if the coupling convergence has been reached: if yes, output all

profiles and coefficients; if not, transfer kinetic factors back to SOLPS

and continue with Step 1.

The iterative coupling is automatically carried out by some user-specified pa-
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run SOLPS

transfer

n,u,Te,Ti

to KIPP

run KIPP

coupling

convergence

test

output

transfer

ce,k‖,

γe,∆φ

yes

no

Figure 5: The schematic of the KIPP-SOLPS coupling algorithm.

rameters. In this section, analytical formulas of the modifications of the kinetic320

factors by KIPP are described. The above mentioned Step 3 is the most chal-

lenging since fluid equations in SOLPS and the kinetic equation in KIPP are

not explicitly related to each other. The correspondence between terms involved

to calculate the effective kinetic factors should be clarified. The following part

of this section first compares equations solved in SOLPS and KIPP separately325

and then derives formulas for calculating effective kinetic factors in KIPP.

4.2. Comparison between electron balance equations in KIPP and SOLPS

The main goal of the iterative scheme is to incorporate kinetic effects of

parallel electron transport calculated by KIPP into SOLPS. Equations solved

in SOLPS and KIPP are compared below.330
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4.2.1. Equations solved for electrons in SOLPS

Since KIPP is only tackling electron parallel transport, while, as discussed

in section 2.1, 1d SOLPS transport is essentially the sum of poloidal projections

of parallel and perpendicular transport, the particle and heat flux densities

calculated based on fe in KIPP here correspond to parallel parts in Eqs. (3)335

and (4). The electron equations (Eqs. (8), (9) and (12)) solved in the SOLPS

1D geometry are shown again here with moving the perpendicular terms to the

right hand side and replacing ∇x terms with ∇‖ and ∇⊥ terms:

∂ne
∂t

+∇‖
(
Γe‖
)

= Sp −∇⊥Γe⊥ (36)

eneE‖ = RT‖ −∇‖pe (37)

∂

∂t

(
3

2
neTe

)
+∇‖

(
3

2
neTeue‖ + qcond

e‖

)
= −neTe∇‖ue‖ −Q∆ + SEe −∇⊥qe⊥ (38)

and the closure equations:

qcond
e‖ = −ceneτe

Te
me
∇‖Te (39)

RT‖ = −k‖ne∇‖Te (40)

where ce = 3.16, k‖ = 0.71 (default values for all species under the choice of340

”Braginskii” model in SOLPS). Sp and SEe are volumetric particle and energy

sources, E‖ is the electric field, and Eq. (37) gives the profile of electric potential.

4.2.2. Equations solved for electrons in KIPP

The main equation to be solved in KIPP is the Vlasov-Fokker-Planck equa-

tion for electron parallel transport shown again here (not dimensionless):345

∂fk
e

∂t
+ v‖∇‖fk

e −
eE‖

me

∂fk
e

∂v‖
=

(
∂fk

∂t

)
coll.

+ Senergy + Sparticle (41)

where fk
e (v‖, v|, s) is the 3D electron distribution function: 2D in velocity space

and 1D in real space along the magnetic field. KIPP can be easily adapted to

evolving fk
e while maintaining fixed density and temperature profiles by speci-

fying automatic energy and particle sources. The first three moment equations
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following from Eq. (41) in KIPP are:

∂nk
e

∂t
+∇‖

(
Γk
e‖

)
= Sk

p (42)

enk
eE

k
‖ = Rk

T‖
−∇‖pk

e (43)

∂

∂t

(
3

2
nk
eT

k
e

)
+∇‖qk

e‖ = −enk
eu

k
e‖E

k
‖ +Qk

c + Sk
Ee (44)

where all variables with the superscript k are calculated based on the distribu-

tion function in KIPP, fk
e . The thermal force and electron parallel heat flux

density are defined as:

Rk
T‖

=

∫
mev

′
(
∂fk

∂t

)
coll.

d~v (45)

qk
e‖ =

1

2
me

∫
fk
e v

2v‖d~v (46)

4.3. Transferring electron profiles from SOLPS to KIPP

As pointed out above in the Step 3 of the coupling scheme, profiles of electron

density, velocity and temperature etc. are transferred from SOLPS to KIPP and

maintained there:

nk
e = ne (47)

uk
e‖ = ue‖ (48)

T k
e = Te (49)

Γk
e‖ = Γe‖ (50)

by adjusting Sk
p and Sk

Ee.

4.4. Modifications of kinetic factors in KIPP

4.4.1. Effective thermal force coefficient keff

Eqs. (42) and (43) are consistent with Eqs. (36) and (37) which are solved350

in SOLPS. The profile of effective thermal force coefficient can be obtained at

the end of each KIPP loop (the quasi-steady state is supposed to be achieved,
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details can be found in section 5.2). This coefficient is defined as:

keff = RkT‖
/
(
−ne∇‖Te

)
=

∫
mev

′
(
∂fk

∂t

)
coll.

d~v/
(
−ne∇‖Te

)
(51)

In a coupling steady state (which means that SOLPS runs, with the modified

kinetic factors that are calculated in KIPP based on the profiles from the previ-

ous SOLPS run, to reach convergence and the profiles out of it are the same as

those from the previous run) where the time-dependent terms can be dropped,

the electron perpendicular particle flux in SOLPS is automatically included in

the particle source in KIPP:

Sk
p = Sp −∇⊥Γe⊥ (52)

4.4.2. Effective heat conduction coefficient ceff

The kinetic factor, heat conduction coefficient ce, exists in the electron

energy conservation equation, however, a difficult point needs to be clarified

when calculating the effective one, since the internal electron energy equation

(Eq. (38)) is solved in SOLPS. In order to be compared with Eq. (38), subtract-

ing Eq. (43) multiplied by uk
e‖ from Eq. (44) leads to:

∂

∂t

(
3

2
nk
eT

k
e

)
+∇‖

(
qk
e‖ − n

k
eT

k
e u

k
e‖

)
= −nk

eT
k
e∇‖uk

e‖+Qk
c−uk

e‖R
k
T‖

+Sk
Ee (53)

By comparing Eq. (38) with Eq. (53), the profile of the effective heat conduction355

coefficient can be obtained in KIPP as:

ceff =

(
qk
e‖ − n

k
eT

k
e u

k
e‖ −

3

2
neTeue‖

)
/

(
−neτe

Te
me
∇‖Te

)
=

(
1

2
me

∫
fk
e v

2v‖d~v −
5

2
neTeue‖

)
/

(
−neτe

Te
me
∇‖Te

)
(54)

In the coupling steady state, the perpendicular heat flux is automatically in-

cluded in the energy source term:

Sk
Ee = SEe −∇⊥qe⊥ (55)
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4.4.3. Effective sheath potential drop ∆φeff

Now we deal with the implementation of kinetic effects into the boundary

conditions. The two boundary coefficients: the sheath potential drop and elec-

tron sheath heat transmission coefficient in SOLPS, are obtained by assuming

a cut-off Maxwellian distribution function at the boundary (sheath edge). As

pointed out in section 3.2, KIPP can give a self-consistent distribution function

(Eq. (35)) at the boundary without solving Poisson’s equation for the Debye

sheath. A critical velocity vc can thus be achieved, which corresponds to a

floating potential drop through the sheath which gives ambipolar flux. Hence

an effective potential drop can be obtained:

∆φeff =
mev

2
c

2e
(56)

The parallel heat flux density through the boundary (or at the target), calcu-

lated in KIPP, is:

qk
t‖ =

1

2
me

∫ ∞
vc

fk
t v

2v‖d~v (57)

In later discussions, ”boundary” and ”target” have the same meaning: the right

end of the simulation boundary. The left end is the stagnation point (more

details about the geometry can be found in section 5.1).360

4.4.4. Effective electron sheath heat transmission coefficient γeff

The default boundary condition for the internal electron energy conserva-

tion equation (Eq. (38)) in SOLPS is applied as an energy sink at the guard cell

nx shown in Fig. 6. It is not straightforward to directly calculate the effective

electron sheath heat transmission coefficient γeff in KIPP. In the following dis-365

cussions of this subsection we first analyse the energy balance at cells adjacent

to the target and then implement the adaptation of the SOLPS boundary condi-

tion. Based on the adapted boundary condition, we then derive the formula for

calculating the effective electron sheath heat transmission coefficient in KIPP.

Energy balance of the guard cell in SOLPS. We first analyse the energy balance

of cell nx (the guard cell) in a SOLPS run. The heat fluxes on the left and right

21



target

nx

qk

q?

x

z

y

k

?

γ
0
e
bxΓtkTet

nx− 1

qt

Figure 6: In the default SOLPS run, the bound-

ary electron heat flux is determined by the user-

specified constant c1 or γ′e (γ′e = c1 + |e∆φ|/Tet).

So qt = γ′ebxΓt‖Tet.

target

x

z

y

k

qk
ek − neTeuek

qk
tk − ntTtutk

qek

qe? qt

nx− 1

smax

Figure 7: Electron heat flux densities

through faces of the cell nx−1 in SOLPS

(in black) and of the corresponding cell

smax in KIPP (in blue). In a coupling

run, qt is supposed to be given based

on the self-consistent boundary heat flux

density qk
t‖.

faces of the guard cell are balanced, implying that the poloidal heat flux density

through the boundary is specified, as shown in Fig. 6, as:

qt = γ′ebxΓt‖Tet

=

(
c1 +

|e∆φ|
Tet

)
bxΓt‖Tet (58)

where Γt‖ and Tet are electron particle flux density and electron temperature at

the boundary, c1 is a user-specified constant. γ′e is a coefficient, defined as:

γ′e ≡ c1 +
|e∆φ|
Tet

(59)

It is not the electron sheath heat transmission coefficient. The relation between370

the coefficient γ′e specified for the SOLPS default boundary condition and the

electron sheath heat transmission coefficient will be discussed below.

Energy balance of the cell adjacent to the target in SOLPS. We then analyse

the energy balance of cell nx − 1 in the steady state of a SOLPS run. One
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should note again that the electron heat flux density in the poloidal direction is

defined according to Eq. (4) at cell faces for internal cells, but defined as qt at

the boundary. Based on Eq. (38), in the steady state, at cell nx− 1, as shown

in Fig. 6, the energy for electrons is balanced by heat flux densities through the

left and right faces of this cell, and the terms on the right hand side of Eq. (6):

1

hx

[
qt −

((
3

2
neTeue‖ + qcond

e‖

)
bx + qe⊥bz

)
l

]
= −neTe∇‖ue‖ −Q∆ + SEe (60)

where hx is the poloidal length of cell nx − 1 and the subscript l denotes the

variable calculated at the left face of cell nx− 1. As it can be clearly seen, the

electron heat flux density at the left face still has the form of Eq. (4), but the375

boundary heat flux density qt, determined by γ′e (Eq. 58), cannot be given self-

consistently within the fluid model, as discussed in section 3.1. So, qt remains

to be replaced with the one calculated in KIPP.

Energy balance of the cell adjacent to the target in KIPP. Similarly, in the

steady state of a KIPP run, the energy balance can be achieved based on Eq. (53)

at the corresponding cell (cell smax), as shown in Fig. 7:

1

h‖

[(
qk
t‖ − Γt‖Tet

)
−
(
qk
e‖ − Γe‖Te

)
l

]
= −nk

eT
k
e∇‖uk

e‖ +Qk
c − uk

e‖R
k
T‖

+ Sk
Ee (61)

The parallel length of the cell in KIPP h‖ = hx/bx. The subscript l denotes the

variable calculated at the left face of this cell. The details of the geometry and

the relation between the grids generated in SOLPS and KIPP can be found in

sections 5.1.1 and 5.1.2. For simplicity, by comparing Eqs. (60) and (61), one

can specify:

qt = bx

(
qk
t‖ − Γt‖Tet

)
(62)

to incorporate the kinetic boundary condition into SOLPS. In the coupling

steady state, the additional heat flux density qe⊥bz in SOLPS at the left face380

will be included in the automatic source term Sk
Ee in KIPP. However, Eq. (62)
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is not used in this work since the term qe⊥bz is present in Eq. (60), but not

explicitly in Eq. (61). Eq. (62) would result in an inconsistent source term for

cell smax in KIPP. An adaptation of the SOLPS boundary condition can avoid

this.385

Before describing the adaptation of SOLPS boundary condition, one point,

which we did not mention above because it would only add difficulty to discus-

sions, has to be clarified for following discussions. The boundary electron heat

flux density mentioned above is defined, in the SOLPS code, in the same form

as for internal cells. It consists of two parts:

qt = bxqt‖ + bzqt⊥ (63)

where qt‖ and qt⊥ are defined in the same forms as those at the internal cell

faces but calculated based on parameters in cell nx − 1 and the guard cell nx.

This will be discussed more in detail below.

target

nx

qtk

qt?

x

z

y

k

?

γ
0
ekbxΓtkTet + bzqt?

Figure 8: In the default boundary condi-

tion illustrated in Fig. 6, the boundary elec-

tron heat flux density is specified as qt =

bxqt‖+ bzqt⊥ = γ′ebxΓt‖Tet. However, in the

adapted boundary condition here, it is spec-

ified as qt = bxqt‖ + bzqt⊥ = γ′
e‖bxΓt‖Tet +

bzqt⊥.

Adaptation of the SOLPS boundary

condition to the coupling scheme. As

mentioned above, the boundary elec-

tron heat flux density in SOLPS still

has the form of Eq. (4): qt = bxqt‖ +

bzqt⊥, as shown in Fig. 8. In order to

be compatible with the internal cells

and have the same form of the source

(Eq. (55)), the SOLPS boundary is

modified as (see Fig. 8):

bxqt‖ + bzqt⊥ = γ′e‖bxΓt‖Tet + bzqt⊥

(64)

−→ qt‖ = γ′e‖Γt‖Tet (65)

Instead of specifying the constant c1 in

Eq. (58), the new boundary condition
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only specifies the parallel part, and then the perpendicular part is determined

automatically since qt⊥/qt‖ ∝ bzχe⊥/bxχe‖. Subtracting ∇⊥qe⊥ from both sides

of Eq. (60) and substituting Eq. ( 64) into it, leads to:

1

h‖

[
γ′e‖Γt‖Tet −

(
3

2
neTeue‖ + qcond

e‖

)
l

]
= −neTe∇‖ue‖ −Q∆ + SEe −∇⊥qe⊥ (66)

The adapted SOLPS boundary condition (specifying γ′e‖) is used in the following

coupling runs.390

By comparing Eqs. (61) and (66), one can derive:

γ′‖,eff =
qk
t‖ − Γt‖Tet

Γt‖Tet

=
qk
t‖

Γt‖Tet
− 1

= γeff − 1 (67)

where the effective electron sheath heat transmission coefficient is defined as:

γeff =
qk
t‖

Γt‖Tet

=
1

2
me

∫ ∞
vc

fk
t v

2v‖d~v/(Γt‖Tet) (68)

In the coupling steady state, Eq. (55) is automatically fulfilled.

The difference of unity between γ′‖,eff and γeff in Eq. (67) is attributed to

the fact that the ”internal” electron energy conservation equation, as a result

of subtracting ∇‖
(
neTeue‖

)
from both sides of the total electron energy con-

servation equation, is used in SOLPS. For simplicity, the following discussions

in this work are based on the total electron energy conservation equation where

the electron sheath heat transmission coefficient is γe‖, and 5
2 is the coefficient

for the convective heat flux (instead of γ′e‖ and 3
2 ):

γe‖ = γ′e‖ + 1 (69)

In a coupling run, γe‖ is replaced by γeff . Since the perpendicular terms have

been regarded as source terms, in later discussions, heat flux density through

the cell faces or the boundary only means the parallel part (qe‖ and qt‖).
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4.5. Replacing kinetic factors with the effective ones in SOLPS395

The effective heat conduction coefficient ceff , effective thermal force coeffi-

cient keff , effective potential drop ∆φeff and effective sheath heat transmission

coefficient γeff mentioned above are obtained when KIPP reaches a quasi-steady

state, since a steady state like the one in a fluid code is not possible in a kinetic

code (this will be discussed in section 5.2), which here means that the heat flux400

through each cell face is not changing much with time, that is, the profile of

ceff and boundary γeff are not changing much with time. Then the effective

coefficients are transferred back into SOLPS, replacing ce, k‖, ∆φ and γe‖ in

Eqs. (39), (40), (24) and (69).

5. Coupling simulation405

5.1. The simulation geometry

Since we are currently mainly focusing on kinetic effects of electron parallel

transport, 1D SOLPS (section 2.1) is used here in order to test the compatibility

of the coupling algorithm with the KIPP code.

In ASDEX-Upgrade, major plasma radius R0 = 1.65m, minor horizontal410

plasma radius a = 0.5 ∼ 0.52m, minor vertical plasma radius is ∼ 0.8m and the

ellipticity is ∼ 1.8. Therefore the perimeter of the plasma in the poloidal plane

is ∼ 4.5m. We assume that the average distance along the poloidal magnetic

field between the two targets is ∼ 5m. Half of the length is taken as the length of

the simulation domain in our case since one target is assumed at one end, while415

the other is the stagnation point, Lpol = 2.5m. The magnetic field B = const,

poloidal Bpol = 1.045285× 10−1T, toroidal Btor = 9.945219× 10−1T.

SOLPS and KIPP generate simulation grids separately, therefore, the grids

in both codes should be generated based on the above mentioned parameters

and made consistent with each other.420

As mentioned in section 3.2, all parameters in KIPP are dimensionless. How-

ever, in later discussions, all parameters in KIPP and SOLPS will be given in

dimensional form unless otherwise stated.
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5.1.1. Grid cells generated in KIPP

In the KIPP code, the 1D grid cells are generated along the magnetic field425

based on parameters EPSS and Lpar:

EPSS =
ds(m)

ds(m+ 1)
(0 ≤ m < smax) (70)

Lpar =

smax∑
m=0

ds(m) (71)

where m is the cell number and smax is the highest cell number, hence there

are smax+ 1 cells. ds(m) is the parallel length of cell m and Lpar is the length

of the simulation domain along the magnetic field line:

Lpar = Lpol ×

√
B2
pol +B2

tor

Bpol
(72)

The simulation domain in KIPP is shown as the red line in Fig. 9. The left

end is the center of cell 0, the stagnation point, therefore only half of cell 0

belongs to the simulation domain, the other half is assumed to have mirror-

reflected parameters. The height of the cells in Fig. 9 doesn’t reflect the real430

grids since the real geometry in KIPP is only 1D with boundaries at the two

ends. Electron temperature, density, velocity, electric field, volumetric power

and particle sources or sinks are defined at cell centers, while all fluxes are

defined at cell faces.

5.1.2. Grid cells generated in SOLPS435

In contrast to KIPP, in SOLPS grid cells are generated along the poloidal

direction. In order to be compatible with the KIPP grid, they are generated in

the following way:

hx(0) =
1

2
ds(0) · bx (73)

hx(m) = ds(m) · bx (0 ≤ m ≤ nx− 1) (74)

where hx(m) is the poloidal length of the cell m and bx =
Bpol√

B2
pol+B

2
tol

. nx is

the number of cells generated in the simulation domain.

nx = smax+ 1 (75)
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3 nx− 1

0
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−1
nx

x
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k

Figure 9: The grids generated in KIPP (red lines) and SOLPS (blue boxes). x and y are

poloidal and radial directions respectively. The KIPP grid cells are generated along the

direction parallel to the magnetic field with the center of cell 0 being the stagnation point and

the right face of cell smax being the target, while the SOLPS grid cells are generated along

the poloidal direction with two guard cells attached to the two ends. nx = smax + 1. The

KIPP simulation domain is from the stagnation point (black solid line at the left end) to the

target (black solid line at the right end).

There are also two small guard cells attached to the two ends, numbered −1

and nx.440

hx(−1) =
1

1000
hx(0) (76)

hx(nx) =
1

1000
hx(nx− 1) (77)

The guard cells are created only for implementing boundary conditions, and

one should note that they are not included in the simulation domain. The

comparison between the generated SOLPS and KIPP grids is shown in Fig. 9.

The west and east boundaries (see Fig. 3) are the left and right ends of the

KIPP grid, respectively.445
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5.2. Coupling setup

The simulation geometry is defined in section 5.1, which physically corre-

sponds to a flux tube from the upstream mid-plane position to the target with

constant magnetic field projected onto the poloidal plane. The external power

source is distributed evenly over cells 0 to 10 (from x = 0m to x ≈ 0.83m).450

In order to systematically study the feasibility and performance of the iterative

coupling algorithm, a series of cases with only deuterium plasma is run.

A pure deuterium plasma is used for the convergence and density scan studies

in sections 5.3 and 5.4 respectively. Carbon is introduced as an impurity to

study the case with large temperature drop but comparatively low upstream455

collisionality in section 6.2. α denotes one kind of species. It can be D0 or D+

for the pure deuterium plasma, while it can be D0, D+, C0, C+, C2+, C3+,

C4+, C5+ or C6+ for the deuterium plasma with the carbon impurity. The

recycling coefficient at the target is set as 0.999 for deuterium, 0 for carbon.

At the stagnation point, a constant deuterium ion density is maintained by an460

automatic particle source, while the deuterium and carbon neutral particle fluxes

are specified as 0, meaning that this is a reflective boundary for neutrals. The

quasi-neutrality condition is fulfilled at each time step, indicating that electron

density is evolving along with ion densities to satisfy Eq. (8). At the target,

the velocity of each ion species satisfies the Bohm condition, but the speed of465

neutrals is assumed to be zero:

vα‖(nx)

 ≥ Cs if α is an ion

= 0 if α is a neutral
(78)

where vα(nx) is the velocity of species α at the boundary and Cs is local acoustic

speed [96]

Cs =

√
βiTit + z2

α
nα
ne
Tet

mα
(79)

where Tit and Tet are ion and electron temperatures at the boundary, βi is a
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free parameter, with 5
3 being the default value. Ambipolar flows are specified:470

j‖ = 0 (80)

j⊥ = 0 (81)

−→ jx = bxj‖ + bzj⊥ = 0 (82)

where j is the current density, resulting in equal ion and electron particle flux

densities. Since only electrons are treated kinetically, the default boundary

condition for the ion energy conservation equation is used by specifying the ion

sheath heat transmission coefficient [96]:

γi = 2.5 (83)

This value is fixed during the entire run. As pointed out above, the adapted475

boundary condition for electron energy conservation equation is used. In the

initial iteration, we specify [96]:

γini
e‖ = 1.9 + |e∆φini|/Tet (84)

Afterwards, this value is replaced by γeff calculated from Eq. (68). The initial

sheath potential drop ∆φini is determined by Eq. (24) and then replaced by

Eq. (56). Likewise, the coefficients for electron heat conduction and thermal480

force are initially specified as:

cini
e = 3.16 (85)

kini
‖ = 0.71 (86)

and later replaced by ceff and keff calculated by Eqs. (54) and (51).

Initial plasma parameter profiles in KIPP are transferred from the steady

state of the initial SOLPS run. Electron distribution functions in each cell are

specified initially as Maxwellian. They evolve during KIPP runs to reach a485

quasi-steady state. However, the concept of the quasi-steady state is not well

defined, so it cannot be regarded as a convergence criteria. In practice, one can

run KIPP for a certain number of steps to reach a state at which the profile of
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an evolving parameter P is changing slowly with time, for example,∣∣∣∣dPndt
∣∣∣∣ ≤ β ∣∣∣∣dP 1

dt

∣∣∣∣ (87)

where dt is the time step, dPn is the change of the parameter P during the time490

step n, and β is a small free parameter. In order to get precise results in KIPP,

the specified time step is chosen to be [70, 71]:

dt ≤ 0.1τ0 (88)

where τ0 is the Trubnikov collision time [65] in any cell. Because the collision

time is typically smallest at the target, the condition (Eq. (88)) becomes

dt ≤ 0.1τt (89)

The evolving parameter P here can be electron heat flux through cell faces or495

kinetic factors, but it cannot be electron density or temperature since these

profiles are maintained in KIPP, not evolving with time. If β = 0, it means that

a complete steady state is reached, however, this is not possible for a kinetic

code. Nevertheless, based on the simulation results shown in section 5.4, the

exact value of β seems not to influence the coupling steady state profiles, it500

rather influences the efficiency of reaching the coupling steady state. The study

of the sensitivity of the efficiency of achieving a coupling steady state to β is

beyond the current work.

5.3. Convergence study

5.3.1. Sensitivity to coupling schemes505

In SOLPS the electron heat conduction coefficient ce is defined at cell centers

while the conductive heat flux density is defined at cell faces and then calculated

with a hybrid regime based on interpolations of ce on cell faces. Since the numer-

ical scheme implemented in SOLPS has been extensively studied and optimized,

one should keep it intact. In KIPP the distribution function fe is defined at cell510

centers while the flux term is defined at cell faces (see section 3.2). One must

therefore make changes to the numerical schemes of either SOLPS or KIPP.

Three coupling schemes with increasing changes in SOLPS are investigated:
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Scheme A ’center’ : replace ce in cell centers in the SOLPS part with the

effective ceff calculated in cell centers in the KIPP part.515

Scheme B ’face’ : replace the interpolated ce on cell faces in the SOLPS part

with the effective ceff calculated at cell faces in the KIPP part.

Scheme C ’decouple’ : replace the electron heat flux formula in the SOLPS

part with decoupled convective and conductive pieces, making sure that

the electron heat flux at each cell face is the same as the one calculated520

in KIPP in the coupling steady state.

The pure deuterium plasma with the stagnation point density nu = 1.5 ×

1019m−3 is used to test the coupling schemes. The steady state profiles from

the three coupling schemes are compared in Fig. 10. As expected, they coincide

with each other. In the following test simulations, the Scheme C is used to force525

the parallel electron heat flux densities in SOLPS and KIPP to have the same

form in order to make the testing as simple as possible. However, in future ap-

plications, the Scheme B is proposed because it attempts to keep the numerical

form of the heat flux density in SOLPS intact.

5.3.2. Sensitivity to initial conditions530
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Figure 10: Three coupling schemes are com-

pared. ’center’, ’face’, ’decouple’ denote the

coupling Schemes A, B, and C respectively.

In a coupling run, the KIPP part

depends on profiles provided by the

SOLPS part. If the iterative coupling

scheme works, different initial con-

ditions with different specifications535

in the SOLPS part are supposed to

give the same profiles in the coupling

steady state. There are two main

free parameters in SOLPS determin-

ing electron profiles:540

Electron heat flux limiter αe modifying

the electron parallel heat flux
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density according to:

qe‖ =
5

2
Γe‖Te −

1

1 + ceλe
αeLTe

ce
neTeτe
me

∇‖Te (90)

where λe is electron mean free path and LTe is electron temperature scale

length.

Electron sheath heat transmission coefficient γe‖

determining the boundary elec-

tron heat flux density as discussed545

above.

Four cases with different combinations of initial values of αe and γe‖ are run to

investigate coupling properties:

Case A Initial run with γe‖ = 1.9 + |e∆φini|/Tet, αe =∞.

Case B Initial run with γe‖ = 4.1 + |e∆φini|/Tet, αe =∞.550

Case C Initial run with γe‖ = 1.9 + |e∆φini|/Tet, αe = 0.3.

Case D Initial run with γe‖ = 4.1 + |e∆φini|/Tet, αe = 0.3.

The heat flux limiter is removed after the initial run of SOLPS. The coupling

iterations converge to the same steady state profiles as expected, as shown in

Fig. 11. This means that results of the iterative coupling scheme doesn’t depend555

on initial conditions. However, the convergence efficiency is better when initial

profiles are closer to the steady state profiles (see Fig. 12). In the following

simulations, the initial specifications of Case A are used.

5.4. Deuterium density scan study

As pointed out in references [32, 27], the upstream collisionality ν∗ is the560

critical parameter that determines the role of kinetic effects of parallel electron

propagation. Since ν∗ ∝ T 2
u/nu, the easiest way of scanning upstream collision-

ality is to vary upstream plasma density while keeping the same power input

(keeping the upstream temperature approximately constant). In this section,
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Figure 11: Four cases: A, B, C, D (see text

for details) with different initial specifications

finally converge to the same steady state pro-

files. However the coupling efficiency varies

(see Fig. 12).
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Figure 12: Evolution of γe‖ and ∆φ with

the coupling iterations for the four cases.

Iteration = 0 means the values used in the

initial run of SOLPS; iteration=1 means the

values obtained after the initial run of SOLPS

and then KIPP, and the same for iteration =

2, 3, · · · . They converge to the same values

(7.2 and 3.0 respectively).

a pure deuterium plasma is assumed. A series of runs scanning the stagnation565

point ion density from nu = 0.5 × 1019m−3 to nu = 2.5 × 1019m−3 is carried

out. The recycling coefficient and boundary conditions are the same as those

described in section 5.2.

5.4.1. Low stagnation point density nu = 0.5× 1019m−3

The case with the stagnation point density nu = 0.5 × 1019m−3 is run.570

The upstream collisionality (ν∗) of this case is ≈ 5.6, which is very low. The

evolution of electron density and temperature profiles with coupling iterations

is shown in Fig. 13. One complete coupling iteration means that SOLPS runs

until the steady state is achieved and then KIPP runs to the quasi-steady state

based on density and temperature profiles transferred from the steady state575

SOLPS solutions. The evolution details are not clearly seen in this figure. Four

locations: 1, 2, 3, 4 at poloidal coordinates: x ≈ 0.890m, x ≈ 1.514m, x ≈
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Figure 13: Evolution of electron density and temperature profiles for the case with the stag-

nation point density nu = 0.5 × 1019m−3. All parameters are normalized by the reference

parameters (density n0 = 0.5 × 1019m−3, the temperature T0 = 47eV, Coulomb logarithm

Λ0 = 15). The horizontal axis s is the parallel distance from the stagnation point (normalized

by the electron mean free path λ0 calculated based on the reference parameters). The colorful

dashed (solid) lines are the profiles of electron temperature (density) evolving with coupling

iterations. Profiles denoted by ’0’ means the convergent profiles after the initial SOLPS run

based on default inputs. ’1’ means the convergent profiles achieved in SOLPS with the ef-

fective ceff , γeff , keff , ∆φeff which are calculated in KIPP based on the profiles with ’0’.

The four vertical black dashed lines from left to right denote locations 1, 2, 3, 4 respectively.

2.485m, x ≈ 2.499m, denoted by the four black vertical dashed lines are chosen

to show evolution trends of some parameters.

Te at the four locations, the electron sheath heat transmission coefficient

(γe‖) and the sheath potential drop (∆φ) achieve the coupling steady state at

iteration = 4, as shown in Figs. 14 and 15a. ∆φ is insensitive to electron kinetic

effects at this collisionality. γe‖ in the coupling steady state is not far away from

value 5. This is due to the fact that the electron temperature profile is rather

flat (T0/Tt < 2). The electron distribution function has a slightly extended high

energy tail, as shown in Fig. 16, where the 1D distribution function is defined
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by integrating fe(v‖, v⊥) over perpendicular velocity space as:

F (v‖) =

∫
fe(v‖, v⊥)d ~v⊥ (91)

0 5 10 15 20 25
iterations

2.5

3.0

3.5

4.0

4.5

5.0

5.5

γe

∆φ

(a) Evolution of γe‖ and ∆φ with coupling

iterations.
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Figure 15: Evolution of γe‖ and ∆φ for the case with the stagnation point density nu =

0.5× 1019m−3.
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The small deviation from the local Maxwellian at the high positive parallel580

velocity is responsible for the small increase (above 5) of the electron sheath

heat transmission coefficient.
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)
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Figure 16: 1D electron distribution function at

the cell adjacent to the target. The blue curve

is the distribution function from KIPP while

the red one is the local Maxwellian distribution

function.

As mentioned in section 5.2, the

quasi steady state is expected for each

KIPP run. However, γe‖ doesn’t fully585

reach the steady state in the sec-

ond and third KIPP runs shown in

Fig. 15b. The vertical dashed lines

denote steps at which SOLPS is run

and thus the maintained density and590

temperature profiles in KIPP are up-

dated. The values at the first dashed

line are corresponding to the values

at iteration = 1 in Fig. 17a, etc. It is

not practical to set the quasi-steady595

state as the exit condition for KIPP since one has no prior knowledge about the

evolution trend and the time required to reach the quasi-steady state. At least

one should assign more time steps at the initial iteration where the most signif-

icant changes are expected. The influence of the size and number of the time

steps specified in each KIPP run on the optimization of the coupling regime600

might require further study. It is inferred however that the coupling steady

state does not depend on these details.

Although profiles of Te and ne, γe‖ and ∆φ achieve the coupling steady state

at iteration = 4, as discussed above, ce at locations 3 and 4 (close to the target

in Fig. 13) are increasing exponentially (numerical instability) with coupling605

iterations (see Fig. 17).

5.4.2. The numerical instability in the low upstream density case

An exponential increase in ce reveals the limitation of the coupling scheme.

Here we investigate the reason for this phenomenon, and a new coupling scheme
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at the 4 locations.
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Figure 17: Evolution of ce within KIPP at the 4 locations for the case with the stagnation

point density nu = 0.5× 1019m−3.

is discussed later in section 5.5.610

The vertical dashed lines in Fig. 17b have the same meaning as those in

Fig. 15b. The exponential increases of ce are seen at locations 3 and 4 (see

Fig. 17a) after iteration = 4, although profiles of Te and ne, γe‖ and ∆φ already

achieve the coupling steady state. Changes in ce only occur at the initial step,

afterwards they stay unchanged for the following steps in each KIPP run. This615

results in a flatter electron temperature profile, which, in turn, leads to larger

coefficients for the next KIPP run. With coupling iterations, ce in this region

keep increasing while electron temperature profile becomes increasingly flatter,

creating a positive feedback loop, however, ce∇‖Te ≈ const. Since the electron

temperature profile is very flat in the region near the target, a flatter profile has620

no impact on any other parameters. This explains why the coupling steady state

profiles of Te, ne and γe‖, ∆φ can be achieved, while the numerical instability

still exists.

The instability might be explained by the fact that the prerequisite for a fluid

model is violated in the region near the target for such a low collisionality case625

since the distribution function in this region deviates far from a Maxwellian

one due to non-local transport [32]. The Braginskii formula for the electron
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conductive heat flux density completely fails. A new coupling scheme is proposed

and discussed in section 5.5 in order to avoid such numerical instability in the

low collisionality case.630

5.4.3. Medium stagnation point density nu = 1.0− 2.0× 1019m−3

Here we analyse the case with the stagnation point density nu = 1.5 ×

1019m−3 which is representative in showing trends for cases with nu = 1.0 −

2.0× 1019m−3. Profiles of electron density and temperature reach the coupling

steady state already at iteration = 1 although ce near the target, γe‖ and ∆φ635

require more iterations.

5.4.4. Challenge posed by the steep temperature drop

When the stagnation point density increases up to 2.0×1019m−3 and higher,

ce in the near target region converges quickly, however, the upstream parameters

(heat conduction coefficient, electron temperature) evolve slowly because of the640

time step limitation posed by Eq. (89). The large difference between electron

collision times upstream and downstream presents a challenge for the kinetic

code by requiring large computation times. This provides a motivation for
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Figure 18: Evolution of the ratio of the specified time step to the Trubnikov collision time [65]

calculated based on parameters at cell 0: the stagnation point, cell 20: upstream, cell 80:

downstream, cell 126: the cell adjacent to the target for the (a) ”original” and (b) ”test”

cases.
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(a) Evolution of ce at the 4 locations

within KIPP in the ”original” case.
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(b) Evolution of ce at the 4 locations

within KIPP in the ”test” case.

Figure 19: Comparison of the evolution of heat conduction coefficients between two cases (the

”original” and ”test” cases), with the stagnation point density nu = 2.0× 1019m−3.

alternative ways of specifying the time step.

Since the initial KIPP run always requires more steps, we increase the time645

step in the initial KIPP run and then decrease it gradually to satisfy the con-

dition given by Eq. (89) during last iterations. Such a case will be referred to
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(a) Evolution of Te at the four locations in

the ”original” case.
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Figure 20: Comparison of the evolution of electron temperature profiles between the two cases

(the ”original” and the ”test” cases) with nu = 2.0× 1019m−3.
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Figure 21: Comparison of the evolution of the electron heat transmission coefficients and

sheath potential drops between the two cases (the ”original” and the ”test” cases) with nu =

2.0× 1019m−3.

.

as the ”test” case below, with the standard case, with constant time step dt,

referred to as the ”original” case.

Two cases with nu = 2.0 × 1019m−3: ”original” and ”test” cases, are run650

and compared below. The only difference between them is the size of time steps

specified for the initial, second and third runs of KIPP (see Fig. 18 where the

ratio of the specified time step to electron collision times calculated at cell 0:

the stagnation point, cell 20: upstream, cell 80: downstream, cell 126: the cell

adjacent to the target, is shown for the (a) ”original” and (b) ”test” cases). The655

two cases both reach the same coupling steady state, however, it can be clearly

seen that in the ”test” case, upstream ce (at locations 1 and 2, corresponding

to x ≈ 0.890m, x ≈ 1.514m) reaches the coupling steady state faster, despite

downstream ce (at locations 3 and 4, corresponding to x ≈ 2.485m, x ≈ 2.499m)

requires more iterations (compare Figs. 19a and 19b) than the ”original” case660

due to larger time steps specified at the first three KIPP runs. The larger

time steps in the ”test” case speed up the evolution of upstream temperatures

(locations 1 and 2) without impacting the downstream temperatures evolution

41



(locations 3 and 4, see Figs. 20a and 20b). It is surprising that γe‖ in the ”test”

case also converges faster (Figs. 21a and 21b) which is probably attributed665

to the fact that the electron heat flux transport through the boundary is only

determined by the high energy electrons with v‖ > vc, coming from the upstream

region. The method adopted in the ”test” case can be used for cases with

substantial temperature drops.

5.4.5. High stagnation point density nu = 2.5× 1019m−3
670

The ”test” case method is used here for the case with the stagnation point

density nu = 2.5 × 1019m−3. The upstream collisionality of this case is ∼ 40,

which is quite collisional even for Heat Carrying Electrons (HCE):

ν∗HCE ≈
40

25
= 1.6 > 1 (92)

The profiles of ne, Te and γe‖, ∆φ only require 2 iterations to achieve the

coupling convergence. Although this case still shows heat flux limiting upstream675

and heat flux enhancement downstream (up to factor 1.5 near the target) as

shown in Fig. 22, the Te profile in the coupling steady state is quite close to the

fluid model result, with only a slight decrease in target electron temperature (∼
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Figure 22: The coupling steady state profile of ce for the case with nu = 2.5× 1019m−3.
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25%, from 1.6eV to 1.15eV) and an increase in γe‖ (from 5 to 5.8). The electron

distribution function fe at the target shows a high energy tail, which however680

is not so pronounced to significantly impact the value of γe‖ (see section 6.1).

Coupling steady state profiles of ne and Te with higher stagnation point

density are expected to converge to the fluid ones. However, cases with the

electron temperature at the final cell smax smaller than ∼ 1eV will cause new

numerical instability with coupling iterations. The profile of ce will start to685

oscillate after several coupling iterations for reasons that are not yet clearly

understood.

5.5. Limitations of the iterative coupling algorithm and a possible solution

The numerical instability of evolving ce in the region near the target reveals

the failure of the effort of describing conductive heat flux densities based on local690

temperature gradients. As shown in section 2.1, the electron parallel heat flux

density in SOLPS consists of two contributions: the conductive heat flux density

proportional to the local electron temperature gradient and the convective heat

flux density 5
2Γe‖Te. Up to now, only the conductive piece was manipulated to

incorporate the contribution of kinetic effects in a coupling run, which failed in695

the low upstream collisionality case. Hence a new numerical coupling scheme is

proposed and investigated below.

5.5.1. New scheme

Since the numerical instability occurs in the region where it shows flux en-

hancement (ceff > 3.16) near the target, the main idea of the new scheme is to

transfer the enhanced electron heat flux density, captured by KIPP, not only to

the conductive heat flux density (by increasing ce, causing the numerical insta-

bility in low density cases) but also to the convective piece (by increasing the

coefficient, which was 2.5, in the convective heat flux formula). So the electron

heat flux density in SOLPS is modified as:

γveTeΓe‖ − ceffneτe
Te
me
∇‖Te (93)
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The conductive piece (the second term) is still retained because of numerical

stability issue discussed later. Initially

γve = 2.5 (94)

ceff = 3.16 (95)

are adopted as a default input. In a coupling run, the enhanced heat flux density

calculated in KIPP is split into two parts by determining γve and ceff in SOLPS:

γveTeΓe‖ − ceffneτe
Te
me
∇‖Te =

1

2
me

∫
fkipp
e v2v‖d~v (96)

with

γve ≥
5

2
(97)

ceff ≤ clim (98)

where clim is the user-specified limiting constant determining the splitting ratio

of the two parts (i.e. the values of γve and ceff ). In later discussions, we will

show that the coupling steady state does not depend on the choice of clim. We

define a coefficient c′e, which is the effective heat conduction coefficient when

transferring all the enhanced part to the conductive piece, as:

c′e =

(
1

2
me

∫
fkipp
e v2v‖d~v −

5

2
TeΓe‖

)
/

(
−neτe

Te
me
∇‖Te

)
(99)

Then c′e is compared to the limiting coefficient clim. If c′e exceeds the limiting

coefficient clim, we limit the effective heat conduction coefficient to clim instead

of c′e (ceff = clim), then transfer the further enhanced part to the convective

piece (i.e. γve is increased above 2.5). Otherwise, we transfer all the enhanced

flux density to the conductive piece by specifying ceff = c′e and γve = 5
2 .

The analytical expression for determining γve and ceff can be found from the

following equations:

if c′e ≤ clim

 γve = 5
2

ceff = c′e

(100)

if c′e > clim

 γve = 5
2 + (c′e − clim)

τe∇‖Te
meue‖

ceff = clim
(101)
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Figure 23: Coupling steady state profiles of qe‖, Te and ne are compared among various

limiting coefficients: clim = ∞, clim = 3.16, clim = 6, clim = 10, for the case with the

stagnation point density 0.5× 1019m−3.

The conditions γve = 2.5, ceff = 3.16 must be satisfied in the collisional limit.

In the case of flux limiting (normally in the upstream region), ceff is reduced,700

γve = 2.5. On the other hand, ceff is increased in the case of flux enhancement

(downstream near the target), however, its increase is limited to the threshold

clim, with any further enhancement moved to the convective piece.

The conductive term in Eq. (96) is still retained since it helps to avoid the

numerical instability, although it is pointed out in section 5.4.1 that the formula705

of conductive heat flux density completely fails in the target region with low

upstream collisionality. Completely removing the conductive term was found to

cause numerical instabilities in SOLPS. The other kinetic factors: k‖, γe‖ and

∆φ are still calculated by Eqs. (51), (68) and (56). This coupling scheme will

be investigated in the next part of this section.710

5.5.2. Testing the new scheme

Three limiting coefficients: clim = 3.16, clim = 6, clim = 10 are tested for

the case with nu = 0.5× 1019m−3 and then compared to the one in section 5.4

without the limiting coefficient (clim = ∞). They all achieve the same steady

state profiles as shown in Fig. 23. The coupling steady state profiles of ceff715

45



2.20 2.25 2.30 2.35 2.40 2.45 2.50
Poloidal length x(m)

0

2

4

6

8

10

12

14
c e
ff

clim=Inf

clim=3.16

clim=6

clim=10

3.16

(a)

2.20 2.25 2.30 2.35 2.40 2.45 2.50
Poloidal length x(m)

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

γ
v e

clim=Inf

clim=3.16

clim=6

clim=10

2.5

(b)

Figure 24: Coupling steady state profiles of ceff (a) and γve (b) for various clim with the

stagnation point density nu = 0.5× 1019m−3.

and γve are compared among these three cases with various limiting coefficients

in Fig. 24, where it can be clearly seen that ceff is limited to clim near the

target and γve in the corresponding region is increased above 2.5. In order

to further test the performance of this numerical scheme, clim = 3.16 is also

tested for the cases with the stagnation point densities nu = 1.5× 1019m−3 and720

nu = 2.0×1019m−3. As expected, the steady state profiles of ne, Te and qe‖ are

the same despite a slight increase (5%) of γe‖ for the case with nu = 2.0×1019m

and with clim = 3.16, resulting in slightly steeper electron temperature profile

near the target, which is even unobservable.

Since the new scheme gives the same simulation results as the iterative cou-725

pling scheme even for the low collisionality case, later discussions in this work

are based on the iterative coupling scheme (corresponding to the new scheme

with clim =∞).

6. Discussions

6.1. Pure D cases730

6.1.1. Effects of collisionality
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In this section, γe‖ and ∆φ

in the coupling steady states are

compared with the classical values

γe‖ ≈ 5.0 and −e∆φ/Te ≈ 3.0, cal-735

culated based on the Maxwellian

distribution, for all scanned cases

with various collisionalities, as

shown in Fig. 25. The sheath po-

tential drop is rather insensitive to740

the collisionality variation. The

electron heat transmission coeffi-

cient is first increasing and then de-

creasing with collisionality [36, 37,

34, 79], being close to the classical value for cases with low and high stagnation745

point densities. However, it can be ∼ 50% higher than the classical value for

cases with medium collisionalities. Accordingly, the extended high energy tail

of the distribution function downstream is pronounced at medium upstream

collisionalities [32, 35, 37, 33, 59] (see Figs. 26f and 26g), but it is not obvious

at low and high collisionalities (see Figs. 26e and 26h) due either to a small750

temperature drop, so that upstream electrons have similar energies to those

downstream, or to the plasma being too collisional causing fast maxwellization

of the high energy tail appearing due to electron free-streaming [27].

6.1.2. Effects of the extended tail on the target temperature

The coupling steady state 1D distribution functions (defined by Eq. 91) for

low (nu = 0.5 × 1019m−3), medium (nu = 1.0 ∼ 1.5 × 1019m−3) and high

(nu = 2.5 × 1019m−3) stagnation point density cases are shown, for the cell

adjacent to the target in Fig. 26: (e), (f), (g), (h), and for cell 10 in Fig. 26: (i),

(j), (k), (l). We introduce a 1D heat flux distribution q1D, defined as a surface
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integral along a certain surface in the velocity space:

q1D (ε) =
1

2
me

∮
v′2‖ +v2⊥=2ε

fev
′v′‖dSv (102)

where

v′‖ = v‖ − ue (103)

v′ =
√
v′2‖ + v2

⊥ (104)

ue is electron fluid velocity. Sv is the surface satisfying v′2‖ + v2
⊥ = 2ε in the

velocity space with ε being arbitrary kinetic energy. A dimensionless 1D heat

flux distribution q̃1D is thus defined as:

q̃1D (ε) =
q1D (ε)

qmax
1D

(105)

where qmax
1D is the largest value of q1D (ε) with varying ε in the velocity space.755

Dimensionless 1D heat flux distributions against kinetic energy ε (normalized

by local electron temperature) are shown in Fig. 26 (red lines denote the ones

calculated by the distribution functions at cell 10 and blue lines denote those

at the cell adjacent to the target): (a), (b), (c), (d). By relating the extended

high energy tails in Fig. 26: (a), (b), (c), (d), with the corresponding γe‖ for the760

four cases: 5.3, 7.3, 7.2, 5.8, it can be concluded that the extended high energy

tails are mainly responsible for the increases of the electron heat transmission

coefficient compared to the classical value (5.0).

Fig. 27 shows the difference between the target electron temperature (Tet) in

the coupling steady state case and that from the initial coupling iteration (which765

is the steady state in the SOLPS only case without any kinetic effects) for the

scanned cases. For the cases with stagnation point densities 1.0× 1019m−3 and

1.5× 1019m−3, the coupling steady state Tet drops by ∼ 45% and ∼ 43% while

the sheath heat transmission coefficient increases to 7.30 (by ∼ 45%) and 7.21

(by ∼ 40%), respectively, compared to the values without kinetic effects (see770

Fig. 28). The decrease of Tet due to kinetic effects seems to be related mostly

to the deviation of the electron heat transmission coefficients from the classical

values. This is discussed further in [75, 97].
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Figure 26: Dimensionless 1D heat flux distribution at the cell (cell smax) next to the target (in

blue) and at cell 10 corresponding to the position at ∼ 1
3

of the simulation domain upstream

(in red) are shown for a) nu = 0.5×1019m−3, b) nu = 1.0×1019m−3, c) nu = 1.5×1019m−3,

d) nu = 2.5×1019m−3. The corresponding 1D distribution functions against v‖ are shown at

cell max (in blue) in e,f,g,h and those at cell 10 are shown (in blue) in i,j,k,l, the red curves

in e,f,g,h,i,j,k,l are local Maxwellian distribution functions.

6.2. D+C case

From the above discussions, it can be concluded that kinetic effects of elec-775

tron parallel transport are primarily attributed to two factors [32]:

1. Non-local effects of high energy downstreaming electrons featured by the

extended high energy fe tail towards the target in medium or even highly

collisional cases.

2. Asymmetric target sink characterized by a cut-off fe in the region near780

the target in weakly collisional cases.
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Figure 28: The degree of the decrease in the

target Te and the increase in γe‖ compared

to the SOLPS results (without coupling with

KIPP) for various coupling cases with differ-

ent nu.

There are two key conditions that determine the importance of the non-local

effects of high energy downstreaming electrons:

• Upstream collisionality ν∗ =
Lpar
λu

.

• Electron temperature drop Teu/Tet785

Medium upstream collisionality cases with pure deuterium plasmas already show

observable kinetic effects. In order to achieve stronger electron temperature

drops but with unchanged upstream collisionalities, carbon, used as a radiator,

is introduced in the coupling simulation as an impurity.

6.2.1. Simulation setup790

The upstream deuterium ion density is set at 2.2 × 1019m−3, and power

input is set to match the power flux through the separatrix with constant flux

density 0.132MW/m2 from the stagnation point to ∼ 1
4 of the simulation domain

(corresponding to the first 7 cells, from x = 0m to x ≈ 0.68m). The cells with

power input are hence separated from the region where the radiation power is795

concentrated (downstream). Chemical and physical impurity sputtering models

in SOLPS are activated to produce carbon impurities. The constant sputtering
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yield with deuterium sputtering coefficient 0.095 is prescribed for the chemical

sputtering model. TRIM database is used for the physical sputtering model.

The recycling coefficient of carbon particles (including all charged states and800

neutrals) is set to zero while the deuterium recycling coefficient is set to 0.999.

One problem for the 1D geometry with carbon impurity was that carbon ions,

especially highly charged ions (particularly C4+), tend to concentrate upstream

due to thermal force since there are no sinks for them. This concentration would

make the evolution unstable and cause the cases to crash even if the chemical805

sputtering coefficient is prescribed at a very small value. To avoid this problem,

an artificial carbon ion particle sink is introduced along the simulation domain,

mimicking the radial loss out of a 2D geometry. The sink loss rate is specified

as:

SCi+ = −rinCi+
√
Ti
mi

i = 0, 6 (106)

where nCi+ is particle density of species Ci+. Carbon neutrals have i = 0, and

SCi+ is particle loss rate of species Ci+. ri is the loss rate coefficient, a free

dimensionless parameter to be prescribed by the user. In this case, in order to

efficiently remove highly charged ions upstream, the loss rate coefficient ri is

prescribed to be proportional to the local pressure of Ci+, as:

ri =
nCi+(x)Ti(x)Lpol∫
nCi+(x)Ti(x)dx

i = 3, 6 (107)

ri = 0 i = 0, 2 (108)

where Lpol is poloidal length of the simulation domain and x is poloidal coor-810

dinate.

6.2.2. Coupling test with carbon impurity

The upstream collisionality is ∼ 18, comparable to the case with nu =

1.0 × 1019m−3 of pure deuterium plasmas (section 5.4), however, the electron

temperature drop Teu/Tet ≈ 12.20 here is larger by about factor 2. Such a815

medium upstream collisionality, but with the substantial electron temperature

drop, results in an extended high energy tail of the 1D distribution function
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Figure 29: 1D distribution functions (Eq. (91)) at the cell adjacent to the target (a) and the

cell 10 (b). Blue curves denote the distribution function calculated by KIPP while red curves

denote local Maxwellian.

at the cell adjacent to the target, as shown in Fig. 29a. The contour plot

of the electron conductive heat flux density and dimensionless 1D heat flux

distribution at the same cell are shown in Fig. 30. It can be clearly seen that820

the contribution of high energy electrons is increased dramatically because of

their non-local transport since they experience significantly fewer collisions when

moving from upstream to downstream.

The extended high energy tail leads to a rather high electron sheath heat

transmission coefficient γe‖ ≈ 11.20, more than 100% increase from the clas-825

sical value, while it does not contribute much to the sheath potential drop,

∆φ ∼ 3.15Tee . Accordingly, the target electron temperature is decreased by

∼ 60%, while the stagnation electron temperature is not much affected (see

Fig. ??), indicating that the kinetic boundary conditions are important in the

modification of the profile of electron temperature. More discussions can be830

found in [75, 97].
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Figure 30: 2D and 1D electron conductive heat flux contribution from different velocity.

7. Summary

SOLPS is the main tool for the prediction of SOL and divertor conditions

in the future fusion device ITER, where parallel kinetic effects in the SOL will

play an important role. The present work has enabled SOLPS in its 1D version835

to incorporate kinetic effects of parallel electron transport by coupling it with

KIPP.

The coupling algorithm takes advantage of the strong points of SOLPS which

uses a highly sophisticated fluid model, with self-consistent recycling and phys-

ical and chemical sputtering models, as well as atomic physics, while treating840

electrons kinetically in order to consider the most important kinetic effects of

parallel electron transport. It has been demonstrated that typically only 2 or 3

iterations between SOLPS and KIPP are necessary to achieve a coupling steady

state (see section 5.4).

The three coupling schemes: ’center’ (Scheme A), ’face’(Scheme B), ’decou-845

ple’(Scheme C) give the same steady state profiles (see section 5.3) and Scheme
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B is suggested for future simulations.

The coupling steady state does not depend on initial conditions, however,

the convergence efficiency is quite sensitive to the initial profile (see section 5.3).

The initial setup with the default coefficients: ce = 3.16, k‖ = 0.71 and γe‖ = 5850

is suggested.

For cases with the large electron temperature drop (Tu/Tt > 10), the nec-

essary condition (Eq. (89)) limits the time step to a significantly smaller value

compared to the upstream collision time τu:

dt < 0.1τt < 6× 10−4τu (109)

which leads to slow evolution of upstream parameters. Instead of specifying

dt < 0.1τt for the entire coupling run, we tested the scheme with varying time

step dt from ∼ τt to 0.1τt at the first one or two KIPP runs, which signif-

icantly accelerated the evolution of upstream parameters without influencing855

the downstream parameters evolution (see section 5.4).

One may be suspicious of the idea that the information about non-local

transport modelled by KIPP can be wrapped up into a local effective heat

conduction coefficient ceff in the coupling scheme. However, based on the anal-

ysis in section 4.1, achieving the coupling steady state of the iterative coupling860

scheme already means treating electrons fully kinetically. The coupling steady

state profiles can always be achieved, and they seem to be unique despite the

numerical instability of the evolution of heat conduction coefficients (however

the heat flux density is already in the steady state since ceff∇‖Te ≈ const with

coupling iterations) in the region near the target in cases with low upstream865

collisionality.

The numerical instability appearing in low collisionality cases can be avoided

by applying a limiting coefficient clim to conductive heat flux density (see sec-

tion 5.5). The achieved clim-independent coupling steady states for various

collisionalities imply that the coupling scheme allows one to obtain the unique870

solution with the kinetic treatment of electrons by simply maintaining profiles

of electron density, temperature and particle flux density in KIPP and then
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transferring kinetic coefficients from KIPP back to SOLPS.

Similar to fully kinetic simulations, the iterative coupling algorithm self-

consistently achieves the profiles of electron temperature and heat flux density875

determined by sources, but with the help of the fluid model to provide informa-

tion that cannot be obtained with only electron kinetic equation. The effective

kinetic factors ceff , keff , γeff , ∆φeff connect the kinetic electron equation

and the fluid equations in the coupling scheme. For example, ceff acts as a free

parameter, matching the relation between electron temperature and heat flux880

density that is used in the fluid model. It indicates that the specific form of the

equation for the relation between electron temperature and heat flux density

(the closure equation 39) doesn’t influence the simulation results with the iter-

ative coupling scheme, which only acts as a bridge to transfer information from

KIPP to SOLPS (as has been elucidated in section 5.5). The achievement of885

the coupling steady state is the key. However, the choice of the closure equation

should not introduce numerical instabilities, e.g. removing the conductive piece

from the closure equation can introduce numerical instability to SOLPS, and

hence the coupling steady state will never be reached (see section 5.5).

As was expected (see e.g. [27]), density scan cases with pure deuterium plas-890

mas showed strong kinetic effects in cases with medium upstream collisionalities.

However, in real situations, radiation sinks due to impurities are always present

in the divertor region. Hence the upstream collisionality ν∗ is not the only free

parameter to determine the role of kinetic effects. The Te drop is also impor-

tant. In order to simulate the case with low upstream collisionality but a strong895

temperature drop which is expected in ITER, we switched on carbon impurity

sputtering. Carbon was introduced as a radiator in the coupling simulation.

One problem for 1D geometry with the carbon impurity is that highly charged

ions tend to concentrate near the stagnation point, which causes cases to crash.

The artificial carbon ion particle sink (see section 6.2) was applied to avoid this900

problem. The case with the carbon impurity clearly showed stronger kinetic

effects. This can be concluded by comparing the case with the carbon impurity

and the case with nu = 1.0× 1019m−3 with pure deuterium, which have similar
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upstream collisionalities ν∗ ≈ 16− 18 but different electron temperature drops.
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