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STABLE EVALUATION OF GAUSSIAN RADIAL BASIS
FUNCTIONS USING HERMITE POLYNOMIALS∗

ANNA YUROVA† AND KATHARINA KORMANN†

Abstract. Gaussian radial basis functions can be an accurate basis for multivariate interpola-
tion. In practise, high accuracies are often achieved in the flat limit where the interpolation matrix
becomes increasingly ill-conditioned. Stable evaluation algorithms have been proposed by Fornberg,
Larsson & Flyer based on a Chebyshev expansion of the Gaussian basis and by Fasshauer & Mc-
Court based on a Mercer expansion with Hermite polynomials. In this paper, we propose another
stabilization algorithm based on Hermite polynomials but derived from the generating functions of
Hermite polynomials. The new expansion does not require a complicated choice of parameters and
offers a simple extension to high-dimensional tensor grids as well as a generalization for anisotropic
multivariate basis functions using Hagedorn generating functions.

Key words. radial basis functions, stable evaluation, ill-conditioning, Hermite polynomials,
generating functions

AMS subject classifications. 65D05, 65D15, 65F35, 41A63, 33C45

1. Introduction. Multivariate interpolation is a topic of recent interest, for in-
stance appearing in the semi-Lagrangian solution of high-dimensional advection prob-
lems. Gaussian radial basis function interpolation generalizes to higher dimensions in
a simple way and can yield spectral accuracy [4]. However, it is known that rather
small values of the shape parameter (width of the Gaussian) are often required for
optimal accuracy. In this case the basis functions become increasingly flat and the in-
terpolation matrix becomes ill-conditioned. Tarwater has described this phenomenon
in 1985 [19] and the problem has been extensively studied in the literature (see [6] for
a review). The eigenvalues of the interpolation matrix are proportional to increasing
powers of the shape parameter as has been quantified by Fornberg and Zuev [11].

A direct collocation solution of the interpolation problem, referred to as RBF-
Direct in the literature, computes the expansion coefficients of the Gaussian in-
terpolant by inverting the collocation matrix and then evaluating the expansion.
This procedure suffers from inaccuracies in floating point arithmetics due to the ill-
conditioning of the matrices. In recent years, several algorithms have been proposed
to stabilize the computations of the radial basis functions interpolation problems.
These stabilization algorithms directly evaluate the interpolant in a sequence of well-
conditioned steps by a transformation to a different basis. The first method was
the Contour-Padé approximation proposed by Fornberg and Wright for multiquadrics
[10]. Later Fornberg and Piret [9] proposed the so-called RBF-QR method for sta-
ble interpolation with Gaussians on the sphere. The Gaussian basis is expanded in
spherical harmonics. The expansion allows to isolate the ill-conditioning in a diagonal
matrix that can be inverted in a well-conditioned procedure.

The method has been extended to more general domains in one to three dimen-
sions by Fornberg, Larsson & Flyer [7]. This expansion is based on a combination
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of Chebyshev polynomials and spherical harmonics. This method will be referred to
as Chebyshev-QR in this paper. The technique has also been used for the stable
computation of difference matrices by Larsson et al. [14] and by Fornberg et al. [8]
for RBF-FD stencils. In order to treat complex domains, the Chebyshev-QR method
has been combined with a partition of unity approach by Larsson, Shcherbakov &
Heryudono [15].

Fasshauer and McCourt [5] have developed another RBF-QR method, called
Gauss-QR, that relies on a Mercer expansion of the Gaussian kernel. The basis
transformation involves exponentially scaled Hermite polynomials. Compared to the
Chebyshev-QR method by Fornberg, Larsson & Flyer [7], the Gauss-QR algorithm
extends to higher dimensions in a simpler way and does not require transformation
of the computational domain into the unit squere. On the other hand, the method
introduces an additional parameter that needs to be hand-tuned. In this paper, we
propose an expansion built on Hermite generating functions. Our new basis is similar
to the one in [5] with the difference that only one parameter is introduced that can
easily be chosen. Our focus is on enabling high-dimensional interpolation where we
propose a tensor product approach that yields a memory-sparse representation of the
interpolation matrices. Moreover, we propose a stabilization algorithm for anisotropic
multivariate Gaussians: We consider an expansion of so-called Hagedorn wave packets,
combination of multivariate versions of Hermite polynomials and anisotropic Gaus-
sians that have been discussed in semi-classical quantum dynamics [16, 12]. As for
Hermite polynomials, Hagedorn generating functions have been derived in [3, 13] that
enable a generalization of our Hermite expansion to the anisotropic case.

The paper is organized as follows: In the next section we introduce our HermiteGF
expansion of the radial basis functions and discuss its convergence. In section 3, we
discuss two main ideas of truncating the expansion: one based on a direct transform
to the HermiteGF basis and another following the RBF-QR idea. Extentions to
multivariate interpolation are discussed in section 4. Numerical results show the
accuracy of our method in section 5 and computational complexity and performance
are discussed in section 6. Finally, section 7 concludes the paper.

2. HermiteGF expansion. In this section, similarly to [9, 7, 5], we propose an
expansion of the radial basis functions in a “better” basis, that spans the same space,
but avoids instabilities related to the flat limit.

2.1. Interpolation problem. Before introducing our expansion of the Gaussian
basis, let us briefly define the interpolation problem in one dimension. Given a set
{φk(x)}Nk=1 of basis functions and the values {fi} of the function f at points {xcol

i }Ni=1

we seek to find an interpolant of the following form,

(1) s(x) =

N∑
k=1

αkφk(x),

such that it satisfies the N collocation conditions,

(2) s(xcol
i ) = fi for i = 1 . . . N.

The straightforward approach is to find the coefficients {αi} as a solution of the linear
system,

(3) Φcolα = f, with Φcol
ij = φj(x

col
i ).
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The matrix Φcol is called collocation matrix. Then, the interpolant (1) can be evalu-
ated at any point of the domain.

Here we focus on Gaussian radial basis functions,

(4) φk(x) = exp(−ε2‖x− xcen
k ‖2),

with shape parameter ε > 0.

2.2. Definition. Let {hn}n≥0 be the Hermite polynomials in the physicists’
version, that satisfy the following recurrence relation,

(5) hn+1(x) = 2xhn(x)− 2nhn−1(x).

The following upper bound holds for the magnitude of Hermite polynomials [1, Ex-
pression 22.14.17],

(6) |hn(x)| ≤ e x
2

2 c2
n
2

√
n!, c ≈ 1.086435.

The factors
√
n!, 2n/2 grow very fast with n. Therefore, in order to avoid overflow for

large n, it is advantageous for numerical computations to scale the Hermite polyno-
mials with the factor

√
2nn!. Let us therefore define the following basis functions,

(7) Hγ,ε
n (x) =

1√
2nn!

hn(γx)e−ε
2x2

, ε > 0, γ > 0,

that we refer to as HermiteGF functions. Based on the generating function theory
we derive an infinite expansion of the one dimensional Gaussian RBFs in the new
HermiteGF basis {Hγ,ε

n }.
Theorem 2.1. HermiteGF expansion

For all ε > 0, γ > 0, y ∈ R, we have a pointwise expansion

(8) φy(x) = e−ε
2(x−y)2 = exp

(
ε2y2

(
ε2

γ2
− 1

))∑
n≥0

ε2n
√

2n

γn
√
n!
ynHγ,ε

n (x).

The RBF interpolant s(x) can then be pointwise computed as,

(9) s(x) =

N∑
k=1

αk exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))∑
n≥0

ε2n
√

2n

γn
√
n!

(xcen
k )nHγ,ε

n (x),

where {xcen
k }Nk=1 are the centers of the RBFs.

Proof. The Hermite polynomial’s generating function is given by (see e.g. [1,
Expression 22.9.17],

(10) e2st−t2 =
∑
n≥0

tn

n!
hn(s)

Choosing t = ε2y
γ and s = γx, we obtain

(11)
∑
n≥0

ε2n

γnn!
ynhn(γx) = exp

(
2ε2yx− ε4y2

γ2

)
.
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Hence, we get

exp

(
ε2y2

(
ε2

γ2
− 1

))∑
n≥0

ε2n
√

2n

γn
√
n!
ynHγ,ε

n (x)(12)

= exp

(
ε2y2

(
ε2

γ2
− 1

))∑
n≥0

ε2n

γnn!
ynhn(γx)e−ε

2x2

(13)

= exp

(
ε2y2

(
ε2

γ2
− 1

)
+ 2ε2yx− ε4y2

γ2
− ε2x2

)
= e−ε

2(x−y)2 ,(14)

which proves expansion (8). Using the expansion (8) in the interpolant (1), we get
the representation (9).

2.3. Basis centering. The Hermite polynomials are symmetric with respect to
the axis x = 0. Due to the growth in the basis it is advantageous to center the
interpolation interval [A,B] at 0. For this reason, we symmetrize the basis around
x0 := A+B

2 . The RBF φk(x) can be expanded as:

φk(x) = e−ε
2(x−xcen

k )2 = e−ε
2(x−x0−(xcen

k −x0))2(15)

= e

(
ε2(xcen

k −x0)2
(
ε2

γ2
−1

))∑
n≥0

ε2n
√

2n

γn
√
n!

(xcen
k − x0)nHγ,ε

n (x− x0).(16)

Then, we have,

(17) x− x0 ∈
[
−B −A

2
,
B −A

2

]
,

i.e. the HermiteGF functions Hγ,ε
n are evaluated on an interval centered around 0. For

the sake of simplicity, we further consider symmetric intervals [−L,L]. However, the
procedure can be applied to functions on arbitrary intervals by adding this translation
by x0.

2.4. The parameter γ. The parameter γ in the basis {Hγ,ε
n } allows a control

over the evaluation domain of the Hermite polynomials. When choosing γ, one has
to consider two counteracting effects. For small values of γ, the collocation points
are close which can yield ill-conditioning since the values of the basis functions at the
collocation points are too similar. On the other hand, Hermite polynomials take very
large values on large domains which can lead to an overflow. An optimal balance
depends on the particular function and the number of basis functions. However, from
our numerical experience, choosing γL between 3 and 5 yields good approximation
quality in most cases.

2.5. Connection to Fasshauer and McCourt. An expansion of similar type
was used by Fasshauer and McCourt [5] also for the stabilization of the RBF interpo-
lation. Instead of the HermiteGF-expansion, an eigenfunction expansion of Gaussian
RBF was used. The corresponding eigenfunctions look as follows,

(18) φn(x) =

√
β√

2nn!
exp(−δ2x2)hn−1(αβx),

The parameters α and ε need to be chosen by the user. Then, the parameters β and
δ are deduced from α and ε according to the formula:

(19) β =

(
1 +

4ε2

α2

)1/4

, δ2 =
α2

2
(β2 − 1).
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We now try to match that basis with the basis functions arising from the HermiteGF-
expansion. To match the width of the exponential in the two expansions we need,

(20) δ = ε

and to match the argument of the Hermite polynomials it is necessary to have,

(21) αβ = γ.

We now compute the values of the parameters α, β from the relations (19),

(22) ε2 =
γ2 − α2

2
=⇒ α =

√
γ2 − 2ε2.

The parameter β can then be calculated as

(23) β =

(
1 +

4ε2

α2

)1/4

=

(
1 +

4ε2

γ2 − 2ε2

)1/4

However, from the relation (21) β must be,

(24) β =
γ

α
=

γ√
γ2 − 2ε2

One can see that if ε→ 0, both expressions converge to 1. However in a general case
the values of expressions (23) and (24) for the parameter β differ. Hence, we cannot
match both (20) and (21) at the same time. This means that there is no direct
correspondence between the basis functions arising from the HermiteGF expansion
and the ones used by Fasshauer and McCourt [5].

2.6. Convergence of the truncated HermiteGF expansion. In this sec-
tion, we check the convergence of the expansion (9), if we cut the expansion (9) after
M terms,
(25)

s(x) ≈ sγM (x) :=

N∑
k=1

αk exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))M−1∑
n=0

ε2n
√

2n

γn
√
n!

(xcen
k )nHγ,ε

n (x).

We later refer to sγM (x) as HermiteGF interpolant. Let us now prove that for a large
enough M the approximation sγM (x) converges to s(x).

Theorem 2.2. Let s be the RBF interpolant,

(26) s(x) =
N∑
k=1

αkφk(x) =

N∑
k=1

αke−ε
2(x−xcen

k )2

with {xcen
k }Nk=1 ⊂ [−L,L].

For all x ∈ [−L,L], the HermiteGF interpolant sγM (x) given by (25) converges
pointwise to s(x), i.e.

(27) |s(x)− sγM (x)| → 0 for M →∞

For γ >
√

2ε2L, we also have the estimate

(28) |s(x)− sγM (x)| < C
qM

(1− q)
√
M !

,

where q =
√

2ε2L
γ and C = C(γ, ε, L, {αk}) ∈ R is a constant.
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Proof. We build up the proof analogously to [18, § 3.1]. Combining (9) and (25),
for each x we have,
(29)

|s(x)− sM (x)| =

∣∣∣∣∣
N∑
k=1

αk

∞∑
n=M

exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))
ε2n

γnn!
.(xcen

k )nhn(γx)e−ε
2x2

∣∣∣∣∣ ,
Denoting A = max{|αj |, j = 1, ..., N} and using the upper bound for the n-th Hermite
polynomial (6) we obtain,

(30) |s(x)− sγM (x)| ≤ A
N∑
k=1

∞∑
n=M

(
exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))
ε2n

γnn!
|xcen
k |n·

· e
(
γ2

2 −ε
2
)
x2

c2
n
2

√
n!

)
.

To further estimate this expression, we use that |xcen
k | ≤ L, k = 1, . . . , N , and |x| ≤ L

and introduce the constants,
(31)

P1 = max

{
exp

((
γ2

2
− ε2

)
L2

)
, 1

}
, P2 = max

{
exp

(
ε2L2

(
ε2

γ2
− 1

))
, 1

}
.

Then, we obtain the bound

|s(x)− sγM (x)| ≤ cANP1P2︸ ︷︷ ︸
C

∞∑
n=M

(
√

2ε2L)n

γn
√
n!︸ ︷︷ ︸

TM

(32)

Consider the following series of positive terms,

(33)

∞∑
n=1

(
√

2ε2L)n

γn
√
n!︸ ︷︷ ︸

tn

.

Then TM is the tail of the series. Therefore it is enough to prove that the series
(33) converges in order to prove that TM → 0 [2, 6.11]. It can be shown that
limn→∞ tn+1/tn = 0 and hence, the series {tn} converges by the ratio criterion [2,
6.17]. Therefore,

(34) |s(x)− sγM (x)| ≤ CTM → 0 for M →∞,

where C depends only on the size of the interpolation interval L, the coefficients {αk}
of the RBF interpolant, the number of RBFs N , and the parameters ε, γ.

For γ >
√

2ε2L, TM can be estimated by

TM <
1√
M !

∞∑
n=M

qn

with q =
√

2ε2L
γ < 1. Using the geometric series we obtain (28).

Remark 2.1. Analogously, it can be proven that the HermiteGF interpolant sγM (x)
converges to s(x) in L2([−L,L]). Moreover, the geometric bound (28) holds with a
different constant for the L2([−L,L]) norm.
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3. Stabilization of the RBF interpolation. In this section, we derive a nu-
merical stabilization algorithm of the RBF interpolation based on the HermiteGF
expansion. The main idea is to perform a basis transformation to a more stable basis
{Hγ,ε

n }. For appropriately chosen parameter γ we expect the basis {Hγ,ε
n } to be better

conditioned. We can write the expansion (8) as an infinite matrix-vector product,

(35)
(
φ1(x), . . . , φN (x)

)︸ ︷︷ ︸
Φ

=
(
Hγ,ε

1 (x), . . . , Hγ,ε
M (x), . . .

)︸ ︷︷ ︸
Hγ,ε

B(ε, γ,Xcen)

with

(36) B(ε, γ,Xcen)nk = exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))
ε2n
√

2n√
n!

(xcen
k )n.

The major part of the ill-conditioning is now confined in the matrix B. Since B is
independent of the point x where the basis function is evaluated, both the evaluation
and interpolation matrix can be expressed in the form (35) with the same matrix B.
For this reason, a strategy of dealing with the ill-conditioning in B analytically can
be developed.

To make the representation (35) usable for numerical computations, one has to
cut the expansion (8) at some point M . This point has to be chosen such that the
order of magnitude of the interpolation error is the same order as the error of the
RBF interpolant.

We now consider two ways of dealing with the matrix B. One way is to eliminate
the matrix B from the computation completely by choosing M = N . This case
corresponds to an interpolation in the HermiteGF basis. Even though this method
provides good results, it lacks the flexibility of choosing M . To allow M > N , an
RBF-QR algorithm can be designed for the HermiteGF expansion analogously to the
Chebyshev RBF-QR algorithm by Fornberg et al. [7].

3.1. HermiteGF interpolant. Let us write the RBF interpolant s(x) in the
matrix-vector form,

(37) s(x) =

N∑
k=1

αkφk(x) = Φ(x,Xcen)α,

where Φ(x,Xcen) =
(
φ1(x), . . . , φN (x)

)
, Xcen are the centering points of the basis

functions and α is the coefficients vector. We now use the expansion (8):

(38) s(x) = Φ(x,Xcen)α ≈ Hγ,ε(x)B(ε, γ,Xcen)α,

where the ill-conditioning related to varying powers of ε is confined in a matrix B.
The system (3) then takes the form,

(39) f0(Xcol) = Hγ,ε(Xcol)B(ε, γ,Xcen)α,

where Xcol are the collocation points. Considering M = N we arrive to the following
expression for the coefficients α,

(40) α = B(ε, γ,Xcen)−1Hγ,ε(Xcol)−1f0(Xcol).

If we now insert the expression (40) into (38), we get,

s(x) ≈ sγM = Hγ,ε(x)B(ε, γ,Xcen)B(ε, γ,Xcen)−1Hγ,ε(Xcol)−1f0(Xcol)(41)

= Hγ,ε(x)Hγ,ε(Xcol)−1f0(Xcol).(42)
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The only restriction that we put on the collocation points is that their number
should be equal to the number of center points. Note that the obtained expression for
the interpolant s does not depend on the grid of centers Xcen. This way of computing
s is very easy to implement and allows to avoid ill-conditioning arising in B. However,
it restricts us to M = N .

3.2. RBF-QR. In case we want to cut the expansion (8) at M > N , the inter-
polation algorithm gets more complicated. Since the matrix B is now rectangular,
B−1 is not well defined. Therefore, it is necessary to come up with another way of
dealing with the ill-conditioning contained in B. We follow the RBF-QR approach
and further split B into a well-conditioned full matrix C and a diagonal matrix D,
where all harmful effects are confined in D. In the case of expansion (8), the following
setup follows naturally from the Chebyshev-QR theory [7, § 4.1.3],

Ckn = exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))
(xcen
k )n, Dnn =

ε2n
√

2n

γn
√
n!
.

A problem is arising when we take center points with an absolute value greater
than 1. That can lead to an ill-conditioning in C. One of the ways to treat this effect
is to divide each coefficient by the width of the domain L containing the centering
points. That might be dangerous when the domain is too large, however, it still
extends the range of available domains. The coefficients then look as follows,

Ckn = exp

(
ε2(xcen

k )2

(
ε2

γ2
− 1

))
(xcen
k )n

Ln
, Dnn =

ε2n
√

2n

γn
√
n!
Ln.

Another possible source of ill-conditioning in C is the exponential if γ < ε, however,
this is usually not the case.

The goal is to find a basis {ψj} spanning the same space as {φk} but yielding
a better conditioned collocation matrix. In particular, we need an invertible matrix
X such that X−1ΦT is better conditioned. Let us perform a QR-decomposition on
C = QR. Then, we get,

(43) Φ(x)T = CDHγ,ε(x)T = Q
(
R1 R2

)(D1 0
0 D2

)
Hγ,ε(x)T .

Consider X = QR1D1. The new basis Ψ := X−1Φ(x)T can be formed as,

Ψ(x)T = D−1
1 R−1

1 QHΦ(x)T = D−1
1 R−1

1 QHQ
(
R1D1 R2D2

)
Hγ,ε(x)T(44)

=
(
Id D−1

1 R−1
1 R2D2

)
Hγ,ε(x)T .(45)

To avoid under/overflow in the computation of D−1
1 R−1

1 R2D2, we form the two ma-
trices R̃ = R−1

1 R2 and D̃ ∈ RN×M−N with elements

(46) d̃i,j = γj1−j2ε2(j2−j1)Lj2−j1

√
j1!

j2!

√
2j2−j1 .

and compute their Hadamard product. That is why despite the harmful effects con-
tained in D, the term D−1

1 R−1
1 R2D2 does not lead to ill-conditioning.
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3.3. Truncation value M . The major question arising for RBF-QR methods
is the truncation value M . For M = N we have a cheap and straightforward way of
stably computing the interpolant without doing a costly QR-decomposition. More-
over, this ansatz allows for a tensor approach (cf. subsection 4.1) where forming full
matricies for high dimensions can be avoided which is of great computational advan-
tage.

Using M ≤ N , the relation (43) becomes rank-deficient, since rank(CD) <
min(M,N) = M . Such a low-rank approximation was tested by Fasshauer and
McCourt [5, § 6.1] and showed rather good results. However, it still requires the
assembly of a global matrix, which could be rather expensive in higher dimensions.
Adding more expansion functions to reach M = N significantly simplifies the struc-
ture of the method and does not harm the quality of the solution. That is why we
will not be focusing on the rank-deficient case.

As for the case M ≥ N the values of coefficients D decay so rapidly that for a
large enough value N the additional terms of the expansion (8) are negligible. The
error is dominated by the error coming from the underlying RBF interpolation. This
has also been confirmed numerically for various examples. In Table 1, we provide the
results obtained with ε = 0.1 for one of the test functions from [18],

(47) f2(x) = sin
(x

2

)
− 2 cos(x) + 4 sin(πx), x ∈ [−4, 4].

Table 1: The L2 interpolation error on the Chebyshev grid for the function f2 with
N basis functions, M = N + jadd expansion functions, and 100 equidistant evaluation
points.

jadd

Nbf 10 20 25 30

0 8.6629010 0.0029523 0.1937075 ×10−4 0.1827378 ×10−8

1 8.6629010 0.0029523 0.1944307 ×10−4 0.1827378 ×10−8

2 8.6648555 0.0029609 0.1944307 ×10−4 0.1836897 ×10−8

3 8.6648555 0.0029609 0.1944291 ×10−4 0.1836897 ×10−8

4 8.6648569 0.0029609 0.1944291 ×10−4 0.1836864 ×10−8

5 8.6648569 0.0029609 0.1944291 ×10−4 0.1836864 ×10−8

30 8.6648569 0.0029609 0.1944291 ×10−4 0.1836865 ×10−8

4. Multivariate interpolation. In this section, we address the question of how
to apply our stabilization algorithm to multivariate interpolation problems. First of
all, we notice that the Gaussian basis is separable, i.e. the multivariate Gaussian basis
ψk(x) (with x ∈ Rd) can be written as a product of one dimensional Gaussians,

(48) ψk(x) = exp
(
−ε2‖x− xcen

k ‖2
)

=

d∏
i=1

φk(xi).

One possibility is to derive an RBF-QR algorithm that truncates the multivariate
expansion on a hyperbolic cross. If we use a tensor product grid of centering and
collocation points, on the other hand, a very simple generalization of the stabilization
algorithm can be designed by applying the HermiteGF expansion separately in each
dimension. This ansatz yields a memory-sparse algorithm since it relies on Kronecker
products of one dimensional matrices as we will derive in Section 4.1. Therefore,
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it is particularly suitable for high-dimensional problems, even though it comes with
the drawback that we loose the uniformity in all directions. Hagedorn generating
functions [3, 13] provide a truly multi-dimensional generalization of the HermiteGF
expansion that additionally allows for anisotropic RBFs. This will be discussed in
Section 4.2.

4.1. Tensor product approach. For dimension d, let Xcen
` , ` = 1, . . . , d, be

the centering points along each coordinate direction. Then, we can index the d variate
basis by a multi-index k = (k1, . . . , kd) and write the multivariate interpolant s(x) as

(49)
s(x) =

N1∑
k1=1

. . .

Nd∑
kd=1

αkφk(x) =

N1∑
k1=1

. . .

Nd∑
kd=1

αk

d∏
`=1

φk`(x`)

= (Φ(xd, X
cen
d )⊗ . . .⊗ Φ(x1, X

cen
1 )) vec(α),

where we denote by vec(α) the vectorization of the coefficient tensor α. Now, we can
replace Φ(x`, X

cen
` ) byHγ,ε(x`)B(ε,Xcen

` ) transforming the individual one-dimensional
Gaussian bases to the HermiteGF basis with M` = N` expansion coefficients. This
yields the following expression for the interpolant,

(50) sγM (x) = (Hγ,ε(xd)B(ε,Xcen
d )⊗ . . .⊗Hγ,ε(x1)B(ε,Xcen

1 )) vec(α).

Introducing a second tensor product grid for the collocation points Xcol
` , ` = 1, . . . , d,

we analogously get a Kronecker product representation of the collocation matrix yield-
ing the following expression for the expansion coefficients α,
(51)

vec(α) =
(
Hγ,ε(Xcol

d )B(ε,Xcen
d )⊗ . . .⊗Hγ,ε(Xcol

1 )B(ε,Xcen
1 )

)−1
vec(f0(Xcol

1 , . . . , Xcol
d )).

Putting everything together, we get

sγM (x) = (Hγ,ε(xd)B(ε,Xcen
d )⊗ . . .⊗Hγ,ε(x1)B(ε,Xcen

1 ))(52) (
Hγ,ε(Xcol

d )B(ε,Xcen
d )⊗ . . .⊗Hγ,ε(Xcol

1 )B(ε,Xcen
1 )

)−1
vec(f0(Xcol

1 , . . . , Xcol
d )(53)

=
(
Hγ,ε(xd)H

γ,ε(Xcol
d )−1 ⊗ . . .⊗Hγ,ε(x1)Hγ,ε(Xcol

1 )−1
)

vec(f0(Xcol
1 , . . . , Xcol

d )).(54)

Hence, we can compute the matrices Hγ,ε(x`)H
γ,ε(Xcol

` )−1 separately for each dimen-
sion ` = 1, . . . , d, and then apply them mode-wise to the tensor f0(Xcol

1 , . . . , Xcol
d ) of

function values. The memory requirements for the interpolation matrices is hence
limited to dN2 which is much smaller than the memory requirement for the full d
dimensional interpolation matrix of N2d.

4.2. Anisotropic approximation. Until now we considered only interpolations
with the same shape parameter ε in both directions. Given the HermiteGF-tensor
structure one could also easily use different values of ε in different directions. Finding a
stable interpolant for anisotropic multidimensional RBFs of type exp(−(x−xk)TE(x−
xk)) is a more challenging task. A similar question was raised in [5, § 8.5], however,
without further investigation. It turns out that generating function theory provides a
convenient toolbox for deriving a stable basis that spans the same space, but doesn’t
lead to ill-conditioning related to small elements in E. Adapting the result of [3,
Lemma 5] we derive the HagedornGF expansion that is very similar to the HermiteGF
expansion.
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Lemma 4.1. HagedornGF expansion
For all positive definite E ∈ Rd×d, xk ∈ Rd the following relation holds,

(55)

exp(−(x−xk)TE(x−xk)) = exp(−xTkExk+xTkE
TExk)

∑
`∈Nd

(Exk)`

`!
h`(x) exp(−xTEx),

where xk is the center of the function φk, E is a shape matrix and h`(x) are tensor
product of physicists’ Hermite polynomials,

(56) h`(x) = h`1(x1) · . . . · h`d(xd).

Proof. The general Hagedorn polynomial’s generating function is given by [3,
Lemma 5], [13, Theorem 3.1],

(57)
∑
`∈Nd

t`

`!
q`(x) = exp(2xT t− tTMt),

where qM` (x) are generalized Hagedorn polynomials [3, § 3] that are given for any
symmetric unitary matrix M ∈ Cd×d by the following three-term recurrence,

(58) (qM`+ej (x))dj=1 = 2xqM` (x)− 2M · (`jqM`−ej (x))dj=1,

with boundary conditions qM0 = 1, qM` = 0 for all ` /∈ Nd.
Consider M = Id, t = Exk, then

(59)
∑
`∈Nd

(Exk)`

`!
q`(x) = exp(2xTExk − xTkE

TExk).

Note that for the case of M = Id, Hagedorn polynomials turn into a tensor product
of Hermite polynomials,

(60) qId
` (x) = h`1(x1) · . . . · h`d(xd) = h`(x).

Hence, we get,

exp(−(x− xk)TE(x− xk)) = exp(−xTEx + 2xTExk − xTkExk)(61)

= exp(−xTkExk) · exp(xTkE
TExk) · exp(2xTExk − xTkE

TExk) · exp(−xTEx)(62)

= exp(−xTkExk + xTkE
TExk)

∑
`∈Nd

(Exk)`

`!
h`(x) exp(−xTEx).(63)

An RBF-QR method can then be naturally derived based on the HagedornGF ex-
pansion. This expansion provides a new powerful tool of dealing with anisotropic
approximation. However, the computational costs of that method are way higher
than for the HermiteGF-tensor approach.

Note that HermiteGF-tensor interpolation considered before corresponds to the
following matrix E,

(64) Etensor =

(
ε2 0
0 ε2

)
.
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5. Numerical results. In this section, we first discuss the implementation of
the new method. Then, we compare the HermiteGF-based algorithm with the ex-
isting stabilization methods. We also look closer into the role of the parameter γ
in conditioning and discuss the scaling of the method with dimensions. For all 1D
tests we look at the L2 error of the interpolant evaluated at 100 uniformly distributed
points. For the multidimensional case less evaluation points have been used and will
be specified separately below.

5.1. Stable implementation. We have implemented the HermiteGF inter-
polation both in MATLAB and Julia. The code can be downloaded from https:
//gitlab.mpcdf.mpg.de/clapp/hermiteGF. The MATLAB implementation has shown
more stable results in some cases, on the other hand, Julia yields better performance
(cf. section 6), especially in high dimensions where Julia enables easy and efficient
parallelization.

Even though the described approach allows to reduce the ill-conditioning of the
collocation and evaluation matrices, the HermiteGF-based matrices still become in-
creasingly ill-conditioned for growing number of basis functions. On the other hand,
the product of the evaluation matrix Hγ,ε(Xeval) and the inverse of the collocation
matrix Hγ,ε(Xcol) is still well-conditioned. For this reason, it is crucial to take special
care when building these matrices and inverting the collocation matrix. The following
configurations have proven to be preferable:

• For all the dimensions ` = 1, . . . , d compute Hγ,ε(Xeval
` )Hγ,ε(Xcol

` )−1 first,
which allows to cancel out the ill-conditioning.
Using the built-in operator / for the inversion yields good results both in
MATLAB and Julia. However, MATLAB proved superior in the severely ill-
conditioned case.

• The HermiteGF basis functions can be stabely evaluated by formulating them
in terms of the Hermite functions ψn,

(65) Hγ,ε
n (x) = π1/4ψn(γx) exp(−ε2x2 + (γx)2/2).

Hermite functions can be stabely evaluated based on their three-term recur-
rence.
MATLAB offers the built-in function hermiteH for the evaluation of Hermite
polynomials. An evaluation based on this function yields somewhat better
results, however, the evaluation is also considerably more costly.

All experiments were performed with MATLAB if not stated otherwise.

5.2. Comparison with existing RBF-QR methods. In this section, we com-
pare the performance of the above described method with the Chebyshev-QR method1

and the Gauss-QR method2. We use the two test functions that were studied in [18],
namely

f1(x) = ex sin(2πx) +
1

x2 + 1
, x ∈ [−1, 1],(66)

f2(x) = sin
(x

2

)
− 2 cos(x) + 4 sin(πx), x ∈ [−4, 4].(67)

Note that for the Chebyshev-QR method we must always scale the interpolated func-

1Code downloaded from http://www.it.uu.se/research/scientific computing/software/rbf qr on
November 28, 2016.

2Code downloaded from http://math.iit.edu/∼mccomic/gaussqr/ on May 29, 2017.

https://gitlab.mpcdf.mpg.de/clapp/hermiteGF
https://gitlab.mpcdf.mpg.de/clapp/hermiteGF
http://www.it.uu.se/research/scientific_computing/software/rbf_qr
http://math.iit.edu/~mccomic/gaussqr/
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(b) γ = 2, ε = 0.01:0.001:1.99

Fig. 1: For the function f1 HermiteGF-tensor algorithm (HGF) tends to be unstable
for γ = 1 the for larger number of Chebyshev nodes unlike the Chebyshev-QR (CQR).
However the error magnitude is still reasonable. Increasing the value of γ to 2 stabilizes
the method and brings the interpolation quality in agreement with other methods.

tion to the unit disk. This also implies a scaling of the value of the shape parameter
which we account for in Figure 2. We use Chebyshev collocation points here but
discuss the case of uniform points in subsection 5.4

We look at the performance of the methods for different values of ε. The Chebyshev-
QR error curves turned out to lay exactly on top of the Gauss-QR ones with the op-
timal values of α from [18, § 5.1], that is why we only present one of them at a time.
For all setups in the flat limit our HermiteGF-tensor method performs in a stable way
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(b) ε = 0.01:0.001:0.8, N = 20. For
HGF-QR M = 30.

Fig. 2: Dependence of the L2 error for the function f2 on the value of ε with different
number of Chebyshev nodes shown for the HermiteGF-tensor (HGF), the Chebyshev-
QR (CQR), and the Gauss-QR (GQR) method. With the natural choice of γ = 1 the
HermiteGF-tensor method is in a good agreement with the RBF-QR methods.

.



14 A. YUROVA AND K. KORMANN

unlike RBF-Direct. However, function f1 is more sensitive to the parameter γ. For
a natural choice of γ = 1 the algorithm gets unstable for increasing number of basis
functions. However, the magnitude of the error still stays around 10−8 (see Figure 1a).
If we increase the value of γ to 2, we get a full resemblance to the Chebyshev-QR
results (see Figure 1b).

For the function f2 with γ = 1, i.e. γL = 4, HermiteGF-tensor and Gauss-QR
show comparable results (see Figure 2): For small values of ε the results are identical
but they start to differ slightly for the optimal ε range before clearly diverging when
the error starts to grow. The curve for N = 20 where this effect is most pronounced
is further investigated in Figure 2a. For larger ε the RBF-Direct method produces
stable results that are in agreement with the Chebyshev-QR method. In the figure,
we also show the results of the HermiteGF-QR method with an expansion of M = 30
points and γ = 1.3, again agreeing with Chebyshev-QR. From these experiments,
we conclude that M > N can be necessary in the optimal ε range (especially for
small N) to exactly reproduce the Gaussian RBF interpolant. On the other hand,
the HermiteGF method with M = N gives results of the same quality while being
cheaper. For larger values of ε, the method seems to be more sensitive to the parameter
choice. However, in this range the RBF-Direct algorithm would anyway be preferable.
Further information regarding the choice of γ can be found in subsection 5.3.

5.3. Scaling and conditioning. Let us take a look at the behavior of the
condition number of the interpolation matrix for different values of γ. We consider
an interpolation matrix on an interval [−1, 1] as a function of the number Ncol of
Chebyshev points. Note that the interpolation matrix that has to be inverted is
independent of the interpolated function.

5 10 15 20 25 30 35
10

0

10
5

10
10

10
15

10
20

Fig. 3: Conditioning of the interpolation matrix on the interval [−1, 1] for varying
number of Chebyshev points. The condition number grows slower for larger values of
the parameter γ.

As we can see in Figure 3 the condition number gets smaller for larger values of
γ. There are two counteracting effects influencing conditioning. On the one hand, the
larger the value of γ the larger the evaluation interval for the Hermite polynomials
becomes. Therefore, for larger value of γ the points are further away from each other
for the same values of Ncol, which leads to improved condition numbers. On the other
hand, Hermite polynomials take very large values on big domains, which can lead to
an overflow.
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Fig. 4: Test functions with different gradients.

Recall that for the function f2 from the previous section γ = 1 provided good
results. However, in that case the interpolation interval was [−4, 4]. Therefore, the
evaluation interval for Hermite polynomials is also [−4, 4] which corresponds to smaller
condition number (equivalent to γ = 4 in Figure 3). Since for the function f1, the
interpolation interval was [−1, 1], increasing γ = 2—and hence the evaluation interval
to [−2, 2]—reduced the condition number and allowed for stable computations for
higher values of Ncol.

As mentioned before, the conditioning of the interpolation matrix does not depend
on the interpolated function itself. However, the impact on the result can be different
for different functions. Consider the following functions on the interval [−1, 1] (see
Figure 4):

f c
1 = cos(x2), f c

2 = cos(2x2), f c
4 = cos(4x2).(68)

We expect that the faster the function change, especially near the boundaries, the
more sensitive the interpolation quality should be towards the condition number.
Indeed, looking at the L2-error (see Figure 5) we see that for f c

1 the quality is good
for all integer values of γ between 1 and 5. On the other hand, for the function f c

4

the result for γ = 1 is considerably worse than for other values. Note that the values
of γ are not fixed to integers but any γ > 0 can be chosen. On the other hand, the
stability is not sensitive to minor changes of γ which is why we use a rough integer
estimation of the desired evaluation interval.
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Fig. 5: The L2 error for the testing functions for different values of γ. For the more
flat function f c

1 all values of γ suit equally good. For the other two functions it is
preferable to use γ ≥ 3.
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Even though using large γ appears to be advantageous one should not forget
that Hermite polynomials take very large values on big domains. That can lead to
cancellations and overflow. From our experience, the range [3, 5] seems to be optimal
for γL for most of the cases.

5.4. Interpolation on a uniform grid. Spectral interpolation on uniform grids
is known to be intrinsically ill-conditioned causing large errors close to the boundary
[17]. This ill-conditioning persists after a basis transformation so that the number of
basis functions Ncol needs to be chosen small enough in applications where uniform
nodes are of interest. We consider the following function for our tests,

(69) fu(x) = sin(2x) + cos(4x) +
1

2 + x
, x ∈ [−1, 1].

Figure 6a shows the L2 error in the interpolation of function fu for ε = 0.1 as a
function of the number of collocation points. The Chebyshev-QR algorithm and the
HermiteGF algorithm for various values of γ are considered. First, we note that we
again need to choose γ large enough to get results of the same quality as with the
Chebyshev-QR algorithm. The results of the Chebyshev-QR algorithm also clearly
show the increase of the error that is typical for uniform points (starting at Ncol = 24).
For the HermiteGF method, the error starts to decrease again as soon as the condition
number of the interpolation matrix stagnates at a very large value (cf. Figure 6b).
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(a) L2 error of HermiteGF (γ given in
the legend) and Chebyshev-QR methods
(CQR).
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(b) HermiteGF, conditioning.

Fig. 6: Error of in interpolation of the function fu on a uniform grid.

5.5. Multivariate interpolation. In this section we take a look at high dimen-
sional interpolation. As mentioned before, RBF-QR methods require forming a full
collocation matrix which leads to very high computational costs in 3+ dimensions.
Consider the function,

(70) f3(x) = cos(‖x‖2)

We now look at the behavior of HermiteGF-tensor for different dimensions. With the
use of simple parallelization via built-in Julia tools, it was possible to run tests for
1–5D. The largest simulation run contained 1.5 ·106 points. Due to the computational
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complexity for 5D only 5–18 points per dimension have been considered. One can see
in Figure 7 that even though the error increases for larger values of Ncol with the
dimension, the rate of decay of the error is the same for all dimensions.

Note that the underlying RBF expansion used in Chebyshev-QR could be used
in a similar fashion to construct a tensor based algorithm. However, the restriction
to the unit domains still holds.

In order to demonstrate the potential for the HagedornGF expansion for anisotropic
basis functions, we consider the following function,

(71) fa(x, y) = cos

(
(x+ y)2

2.88
+

(y − x)2

4.5

)
, x, y ∈ [−1, 1]

This is an anisotropic modification of a two-dimensional function f3 used for the tests
earlier. We expect that anisotropic interpolation should suit better in this case than
a regular HermiteGF-tensor. For testing purposes only matrices E of the following
form were considered,

(72) E =

(
ε2 ξ2

ξ2 ε2

)
, ξ < ε < 1.

Indeed, as one can see in Figure 8 there exists a matrix E for which the error is smaller
than for the HermiteGF interpolants with equal values of ε in both directions.
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Fig. 7: Dependence of the L2 error of the HermiteGF-tensor (γ = 3) interpolation
on the number Ncol of Chebyshev nodes per dimension. The value of ε is set to 0.1.
The interpolation quality of the HermiteGF-tensor algorithm is almost dimension
independent. The error has been computed on a uniform grid with 53 points per
dimension.
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Fig. 8: Anisotropic interpolation of the function fA for the positive-definite E of

type E =
(
ε2 ξ2

ξ2 ε2

)
with ε = 0.4, ξ = 0.2 (121 Halton nodes in 2D). The result is

better than all HermiteGF interpolants with the same values of the shape parameter
in both directions. The error has been evaluated at 289(= 172) uniformly distributed
evaluation points.

6. Performance tests. To assess the computational complexity and the per-
formance of our HermiteGF-tensor code, we report here the run times of the Julia

code. Compared to MATLAB, Julia is faster for 3–5D, while the performance differ-
ence is negligible in 1–2D. The experiments where performed on the DRACO cluster
of the Max Planck society. A DRACO node is equipped with Intel ’Haswell’ Xeon

E5-2698v3 processors with 32 cores @2.3 GHz and 128 GB of memory. The param-
eters of the basis functions are set to ε = 0.1 and γ = 3. The number of evaluation
points per dimension was fixed to Neval = 53 in all tests. In a first test, we have split
the timings to the following three essential parts of the algorithm:

• Forming of the interpolation matrix H̃(Xcol) and evaluation matrix H̃(Xeval);
• Inversion of the interpolation matrix;
• Evaluation of the interpolant s.

The timings for the first two tasks are shown in Figure 9a as a function of the prob-
lem dimension for Ncol = 20 collocation points per dimension. Due to the tensor
formulation of the algorithm these first two parts do not impose significant costs. In-
deed, we only need to evaluate and invert small one dimensional matrices. The costs
grow linearly in the dimensionality, since we have two evaluations and one inversion
of one-dimensional matrices per dimension. The evaluation of the interpolant s, on
the contrary, gets exponentially more expensive with increase of the dimensionality.
That is due to the fact that we need to evaluate our interpolant in every point of
the multidimensional tensor grid and the domain size grows exponentially with the
dimension if we keep the amount of points per dimension constant. This can be seen
from the run times reported in Figure 9b for the total simulation times which show
an exponential increase in the problem dimension. Note that the total CPU time
reported in Figure 9b steems from serial simulations in 1–3D and from parallel runs
on 32 nodes for 4 and 5D. In order to minimize the influence of disturbances, we have
run all serial simulations 100 times and report the minimum time. For the parallel
runs, the disturbances are negligible.

As for the wall clock time, in 1–3D dimensions with moderately low amount of
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Fig. 9: The timings of the HermiteGF-tensor interpolation for 1–5D.

points (up to 35 per dimension) the interpolation can be run in less than a minute
without parallelization (see Figure 9b). For 4–5D, parallelization is required. The
largest simulation (185 points in 5D) takes slightly less than a day on a full node of
the DRACO cluster.

7. Conclusion. In this paper we derived a new stabilization algorithm for the
RBF interpolation in the flat limit (ε → 0). The main idea of “isolating” the ill-
conditioning in a special matrix is the same as in [9, 5, 7]. On the other hand, we
use a novel expansion of RBFs through Hermite polynomials based on the generating
functions theory. Even though a standard RBF-QR approach is possible, we follow
the road of choosing the number M of expansion functions to be equal to N . This
simplifies the algorithm greatly and enables an efficient implementation for up to
millions of points in 5D. Compared to the existing RBF-QR stabilization methods
(Chebyshev-QR and Gauss-QR) the 1D HermiteGF-based method features the same
accuracy while having a simpler structure. The structure of the HermiteGF method
is very similar to Gauss-QR, however, the structure of the parameters ε, γ of basis
functions is simpler: ε is the original shape parameter of the RBF basis and γ stands
for the size of the evaluation domain of the Hermite polynomials. The interpolation
quality is not sensitive to a specific value of γ.

Two ways to generalize the algorithm to the multivariate case were discussed.
When tensor grids can be used, the HermiteGF-tensor method provides a very effi-
cient embarassingly parallel solution. A similar solution could be also possible with
the underlying RBF expansions of Chebyshev-QR and Gauss-QR algorithms. A com-
bination with compression techniques as e.g. proposed by Zhao [21] will be explored
in future work. As for the RBF-QR technique, we make a step forward by providing
an opportunity for anisotropic approximations. The next steps in that direction is to
develop an algorithm of choosing an optimal shape matrix E and to use fast multipole
methods to speed up the computation [20].

The HermiteGF-tensor algorithm has been implemented both in MATLAB and
Julia. The MATLAB code showed to be less sensitive to floating point arithmectics
with large numbers. The Julia implementation, on the other hand, features more
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efficient computation. Moreover, the Julia built-in parallelization toolbox enabled
an implementation of 5D interpolation with up to 18 points per dimension. With
Julia being open source, it is possible to run it on any cluster. HermiteGF-tensor
is currently the only available stable implementation of the RBF interpolation in the
flat limit with millions of points.
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