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Abstract 

The pulsatile pressure driven fully-developed flow of a rarefied gas through an orthogonal 

duct is investigated, based on the time-dependent linear BGK equation, by decomposing 

the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory 

part, which is characterized by the gas rarefaction and oscillation parameters, the duct 

aspect ratio and the accommodation coefficient. As the oscillation frequency is increased 

the amplitude of all macroscopic quantities is decreased, while their phase angle lag is 

increased reaching the limiting value of π/2. As the gas becomes more rarefied higher 

frequencies are needed to trigger this behavior. At small and moderate frequencies there is 

a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct 

aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress 

amplitudes are increased, while their phase angle lags are slightly affected. The 

accommodation coefficient has a significant effect on the amplitude and a very weak one 

on the phase angle of the macroscopic quantities. The computation of the inertia and 

viscous forces clarifies when the flow consists of only one oscillating viscous region or of 

two regions, namely the inviscid piston flow in the core and the oscillating Stokes layer at 

the wall with the velocity overshooting. Finally, the time average oscillatory pumping 

power is increased as the oscillation frequency is reduced and its maximum value is one 

half of the corresponding steady one. 
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1. Introduction 

In the hydrodynamic (or viscous) regime, pulsatile and oscillatory pressure-driven fully-

developed flows, through channels of various cross sections have received, over the years, 

considerable attention [1-12]. Superimposing the oscillatory flow and the corresponding 

steady-state flow yields the pulsatile pressure driven flow [4]. Mathematical treatment of 

pulsatile flows in various geometries includes Fourier expansion [5], Laplace transform [6] 

and Green functions [7]. An early survey of the implemented analytical and semi-analytical 

methodologies may be found in [8]. It has been observed that in high frequencies, the flow 

lags the pressure gradient approximately by 90o and consists of the inviscid piston flow in 

the core and the frictional Stokes wall layer with the velocity overshooting (the so-called 

Richardson effect). Pulsatile and oscillatory flows, mainly due to their technological interest 

(e.g. flow propagation and control, reducing fouling, promoting mixing, heat and mass 

exchange, photonics and electronics cooling, aero-acoustics and thermo-acoustics) remain 

an active area of research [9-12].   

In the slip, transition and free molecular regimes however, where in addition to the 

oscillation frequency, the level of gas rarefaction plays a significant role in the flow 

properties and patterns, the corresponding work in rarefied pulsatile gas flows is very 

limited. Since these flows have not been investigated so far, there is both theoretical and 

technological interest. Following the theoretical understanding of the involved flow 

parameters on the macroscopic quantities in all flow regimes, rarefied pulsatile flows may be 

introduced in numerous microfluidics and vacuum technology applications [13-16]. In the 

slip regime, the oscillatory flow in rectangular channels has been solved in [17], based on 

the unsteady Stokes equation subject to slip boundary conditions. Of course, continuum-

based models are valid provided that both the mean free path and time are much smaller than 

the characteristic channel size and the pressure gradient oscillation time respectively. 

Therefore, in the transition and free molecular regimes the flow must be modeled by kinetic 

theory based on the Boltzmann equation [18] or reliable kinetic model equations [19-21]. 

In this framework, very recently, the rarefied oscillatory flow in a cylindrical tube has 

been simulated, based on the linearized BGK equation, with the assumption of small 

oscillatory pressure gradient amplitude [22]. The velocity distributions and the flow rates 

have been computed in the whole range of gas rarefaction and oscillation frequency. As far 
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as the authors are aware of there are no other works concerning oscillatory and pulsatile 

pressure driven flows via kinetic modeling. Here, the analysis in [22] is extended to pulsatile 

flows in channels of rectangular cross section. Computational results are provided for the 

velocities and flow rates, as well as for the mean wall shear stress, the acting viscous and 

inertia forces and the pulsatile pumping power. 

It is worthwhile to note that although rarefied flows due to pulsatile or oscillatory 

pressure gradients have received very little attention, the corresponding flows due to 

oscillating boundaries have been investigated in one and two dimensional configurations in 

a considerable number of works [23-33]. These flows are present in a variety of micro 

electromechanical systems, such as resonating filters, sensors and actuators [34-39], where 

the computation of the damping forces in the narrow gaps between moving microstructures 

is crucial in order to control and optimize the resolution and sensitivity of the signal. In most 

cases simulations are based on linearized kinetic models [19-21], which are numerically 

solved in an efficient and accurate manner [40].  

The experience gained from the analysis and computations described in oscillatory 

boundary driven flows, as well as from [22], has been a great asset in the present work, 

where, as pointed out above, the time-dependent rarefied gas flow through a long channel of 

rectangular cross section driven by a pulsatile pressure gradient is solved. The remaining of 

the paper is organized as follows: In Section 2, all macroscopic quantities of the rarefied 

pulsatile gas flow are described in detail, decomposing the flow into the oscillatory and 

steady parts. Also, the dimensionless parameters characterizing the flow are specified. In 

Section 3, the kinetic equations with the associated boundary conditions and the 

implemented numerical scheme are provided. The numerical results are presented in Section 

4 and they include the amplitude, phase angle and time evolution of the most important 

macroscopic quantities in terms of the parameters specifying the flow. The velocities and 

flow rates are given in Section 4.1, the mean wall shear stresses and the acting forces in 

Section 4.2 and the pumping powers in Section 4.3. The concluding remarks are outlined in 

Section 5. Finally, in Appendices A and B, the kinetic formulation of pulsatile flow between 

parallel plates and closed form expressions in the hydrodynamic and slip regimes are 

provided respectively. 
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2. Flow configuration and definition of macroscopic quantities 

Consider the time-dependent isothermal flow of a monatomic rarefied gas through a long 

duct with a constant rectangular cross section restricted as / 2 / 2H y H    and 

/ 2 / 2W x W   . Without loss of generality, the height is assumed to be smaller or equal to 

the width of the channel  H W . The area and the perimeter of the channel cross section 

are defined by A H W    and  2 H W     respectively. The flow is caused by a 

pulsatile pressure gradient that consists of a constant part that does not vary in time and that 

produces a steady flow forward, plus an oscillatory part, with the oscillation frequency  , that 

moves the fluid only back and forth and that produces zero net flow over each cycle. 

Furthermore, the duct is considered as adequately long, in order to ignore end effects and 

assume pulsatile fully-developed flow. This flow set-up has been extensively investigated in 

the hydrodynamic regime [4], while the corresponding work in the transition and free 

molecular regimes is limited [22]. 

Next, the main flow quantities of the pulsatile flow are introduced first in dimensional 

and then, in dimensionless form. The local pulsatile pressure gradient depends on the flow 

direction z  and time t . It may be written as  

           
ˆ ˆ, ,

cosPUL S SdP t z dP z dP z t dP z dP z
t

dz dz dz dz dz


      
    

    
 

     expSdP z dP z
i t

dz dz


 
     

�   (1) 

where ˆ /PULdP dz , /SdP dz  and ˆ /dP dz  refer to the pulsatile, steady and oscillatory pressure 

gradients,   /dP z dz   is the amplitude of the oscillating pressure gradient, while �  denotes 

the real part of a complex expression, with 1i   . It is evident that the time average over 

one period of the pressure gradient of the oscillatory flow is zero, while of the pulsatile flow 

is different than zero and equal to the steady pressure gradient. Due to the linearity of Eq. (1), 

the steady and oscillatory parts of the pulsatile fully-developed flow can be solved 

independently of each other. This is a useful breakdown, because the steady part of the flow 

has already been solved in [41,42] and therefore, only the oscillatory part remains for 

investigation.  
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The pulsatile pressure gradient generates a gas flow in the z   direction, which is 

characterized by its pulsatile velocity and shear stress distributions given by  

           ˆ ˆ, , , , , , , expPUL S SU t x y U x y U t x y U x y U x y i t                  �  (2) 

and 

     , ,
ˆ ˆ, , , , ,PUL jz S jz jzΠ t x y Π x y Π t x y             

     , , , expS jz jzΠ x y Π x y i t         � ,   ,j x y     (3) 

respectively. In all cases the pulsatile quantities consist of the steady and oscillatory parts. 

The superscript ^ always denotes time-dependent quantities. The complex functions  ,U x y 

,  ,x zΠ x y     and  ,y zΠ x y     completely determine the oscillatory pressure driven flow. 

From Eqs. (1-3), it is seen that in general, the pressure gradient, the velocity and the shear 

stress are not in phase with each other. Integrating the velocity over the cross section and the 

wall shear stress along the perimeter of the cross section the mean velocity and mean wall 

shear stress are defined: 

       1ˆ ˆ ˆ, , expPUL PUL S S

A

U t U t x y dA U U t U U i t
A




               �   (4) 

       , , , ,
ˆ ˆ ˆ, , expPUL W PUL jz S W W S W WΠ t Π t x y d Π Π t Π Π i t



 


              �  (5) 

The quantities with the subscript “S” always denote the steady part, while U  and WΠ  are 

complex and related to the oscillatory part. 

Furthermore, the pulsatile mass flow rate is defined as 

         ˆ ˆ, , , expPUL PUL S S

A

M t t z U t x y dA M M t M M i t 


                   �    (6) 

where SM  and  M t  denote the steady and oscillatory mass flow rates, while the mass 

density  ,t z     varies in time and in the axial direction (it is constant at each cross 

section) and it is defined by the equation of state once the operating pressure and temperature 

are specified. The net oscillatory mass flow rate over one oscillation cycle is zero.  

Next, based on the mean velocity and wall shear stress, the inertia (or acceleration) 

 ÎF t   and viscous  V̂F t   forces acting on a fluid volume A dz   passing through the channel 

are given by 
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       ,

ˆ ˆ
ˆ ˆPUL
PUL I I

U t U t
F t dz A dz A F t

t t
 

  
         

  
    (7) 

and 

      , , ,
ˆ ˆ ˆ
PUL V S V V S W WF t F F t dz Π Π t           .     (8) 

As expected the inertia force is related only to the oscillatory part, while the viscous force has 

both steady and oscillatory parts. At any point in time, the driving pressure force 

     , ,
ˆ ˆ ˆ
PUL P S P P SF t F F t A dP A dP t                 (9) 

must equal the net sum of the viscous and inertia forces that may add or subtract from each 

other at different times within the oscillatory cycle. Then, the following steady and oscillatory 

force balances are formed: 

Steady: ,S S WA dP dz Π           (10) 

Oscillatory:      
ˆ

ˆ ˆ
W

U t
A dP t dz A dz Π t

t
 


       


    (11) 

It is noted that due to the fully-developed flow there is no net momentum flux. 

Finally, the pumping power needed to drive the pulsatile flow is defined as  

   ˆ ˆ
PUL SE t E E t               (12) 

where the steady the oscillatory pumping powers are given by the product of the 

corresponding acting pressure forces times the mean velocities written as 

S S SE A dP U            (13) 

and  

         ˆ ˆ cos expE t A dP t U t A dP t U i t            �     (14) 

respectively. Since the oscillatory part  Ê t   does not produce any net flow forward and 

since the steady part SE  is the same as that in steady flow, any power expenditure on the 

oscillatory part of the flow reduces the efficiency of the flow. It is noted that the integral of 

the oscillatory pumping power over one cycle in nonzero, hence oscillatory flow requires 

energy to maintain even the net flow is zero. This energy expenditure is required to balance 

the energy dissipation at the channel wall, while the net energy expenditure for accelerating 

and decelerating the flow is zero [4]. 
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The parameters which define the problem in dimensional form include the gas properties, 

the operating pressure and temperature, the channel geometry and the oscillation frequency. 

They are significantly reduced by introducing the corresponding quantities in dimensionless 

form, allowing in parallel, a more detailed flow investigation.  

To achieve that the two dimensionless flow parameters defining the present pulsatile flow 

are specified [22]. The first one is the gas rarefaction parameter   and it is given by 

PH


           (15) 

where  is the gas viscosity at some reference temperature T  and 2RT   is the most 

probable molecular speed ( /BR k m , with Bk  denoting the Boltzmann constant and m  the 

molecular mass, is the gas constant). The rarefaction parameter is proportional to the inverse 

Knudsen number. The second one is the frequency parameter   and it is given by  

P


           (16) 

where  /P   is the intermolecular collision frequency and   the oscillation frequency. 

Hence, small and large values of   correspond to high and low pressure gradient oscillation 

respectively. As    , the oscillatory part of the flow diminishes. The two parameters are 

independent of each other.  

Also, the dimensionless independent space and time variables 

/x x H , /y y H , /z z H  and t t  ,     (17) 

with 1/ 2 1/ 2y    and    / 2 / 2H W x H W    are introduced. The dimensionless area 

and perimeter of the channel cross section are defined by 2/A A H  and / H    

respectively, while  / 2 1 /A H W   . The dimensionless amplitude of the local oscillatory 

pressure gradient is 

 
 

 
 1dP z dP zH

X
P z dz P z dz


 

 
,       (18) 

with 1X  . This assumption is typical in fully-developed flows (also in steady-state setups), 

in order to permit the linearization of the governing kinetic equation and it is valid for any 

pressure difference provided that the channel is adequately long [40,41]. For comparison 

purposes between the oscillatory and steady flow, the amplitude of the oscillatory pressure 
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gradient is taken equal to the steady one ( / /SdP dz dP dz  ). In this way, SX X , and the 

peak values of the macroscopic quantities (velocity, flow rate, shear stress, and pumping 

power) of the oscillatory flow can be compared with the corresponding ones of the steady 

flow. 

All velocities (pulsatile, oscillatory and steady) are non-dimensionalized by the most 

probable speed  . More specifically, Eq. (2) is divided by  X  to yield 

     ˆ ˆ, , , , ,PUL Su t x y u x y u t x y         (19) 

where  ,Su x y  is the steady flow velocity and  ˆ , ,u t x y  is the oscillatory flow velocity, 

which may be written as 

           ˆ , , , exp , exp ,A Pu t x y u x y it u x y i u x y t         � �  

   , cos ,A Pu x y t u x y       (20) 

In Eq. (20) the subscripts A  and P  denote the amplitude and the phase angle of the complex 

oscillatory velocity  ,u x y . The mean velocities are also non-dimensionalized by the most 

probable speed   and the resulting mean steady and oscillatory velocities are denoted by Su  

and  û t  respectively. 

Next, the dimensionless flow rate is defined by introducing (17), (19) and (20) along with 

the equation of state 2 / 2P   into Eq. (6) to obtain    2 ˆ /PUL PULM t H PXG t   , where 

   ˆ ˆ
PUL SG t G G t  .         (21) 

In Eq. (21), SG  is the well-known steady flow rate given by [41]  

 
 

 / 21/2

1/2 / 2

2 ,
W H

S S

W H

H
G u x y dxdy

W  

          (22) 

and  Ĝ t  is the oscillatory flow rate given by 

   
 

 / 21/2

1/2 / 2

ˆ ˆ2 , ,
W H

W H

H
G t u t x y dxdy

W  

   .       (23) 

The oscillatory flow rate  Ĝ t  may be also written as 
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        ˆ exp exp cosA P A PG t G it G i G t G G t          � �    (24) 

where the flow rate G , as well its amplitude AG  and phase angle PG , may be computed by 

integrating accordingly the corresponding velocity quantities. Based on the above definitions 

it is readily seen that the dimensionless flow rates may be connected to the dimensionless 

mean velocities by the following expressions: 2S SG u  and    ˆ ˆ2G t u t . 

All stresses (pulsatile ˆPUL , oscillatory ̂  and steady S ) are non-dimensionalized by 

 2PX . Here, we are interested mainly in the mean pulsatile wall shear stress  ,ˆPUL W t  

which consists of the steady mean wall shear stress ,S W  plus the oscillatory one  Ŵ t  

written as 

        , , , ,ˆ exp exp cosW W W A W P W A W Pt it i t t               � � .  (25) 

In Eq. (25) the subscripts A  and P  denote the amplitude and the phase angle of the 

corresponding oscillatory complex shear stresses.  

All forces in Eqs. (7-9) are divided by  2
PPX H  to yield the corresponding 

dimensionless ones: 

     ,

ˆ
ˆ ˆ sinPUL I I A P

dG
F t F t dzA dzA G G t

dt

 
 

        (26) 

       , , , , , ,
ˆ ˆ ˆ2 2 cosPUL V S V V S W W S W W A W PF t F F t dz t dz t                   (27) 

     , ,
ˆ ˆ 1 cosPUL P S P PF t F F t Adz t          (28) 

The balance equations of the steady , ,S V S PF F  and oscillatory      ˆ ˆ ˆ
I V PF t F t F t   forces 

in dimensionless form are: 

Steady:  
1

, / 2 4 1S W

H
A

W
 


        

      (29) 

Oscillatory:    , ,sin 4 1 cos cosA P W A W P

H
G G t t t

W

  


      
 

   (30) 

Equation (29) has been also reported in previous works related to steady fully-developed 

flows through channels of various cross sections [43,44]. Equation (30) is the corresponding 

one for oscillatory flow. The first and second terms at the left hand side refer to the inertia and 
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viscous forces respectively, while the right hand side refers to the pressure forces. In Section 

4.3, these forces are plotted for various values of   and  .   

Finally, the dimensionless pumping power is derived by dividing Eqs. (12-14) by 

   2X XP H  to find    ˆ ˆ
PUL SE t E E t  , where the steady pumping power is 

/ 2S SE AdzG  and the oscillatory one is written as 

     1 1ˆ cos cos exp
2 2

E t Adz tG t Adz t G it     �  

    1 1
cos exp cos cos

2 2A P A PAdz t G i G t AdzG t G t     � .  (31) 

By integrating Eq. (31) over one oscillation cycle, the average pumping power over the cycle 

is formed as  

   
2

0

1 1ˆ cos
2 4 A PE E t dt AdzG G




  .      (32) 

In the low frequency regime, where 0PG   and A SG G� , it is seen that the average 

oscillatory pumping power is half of the corresponding steady one ( / 2SE E� ). 

The prescribed pulsatile flow is solved here in the whole range of   and  , which may 

vary from zero to infinity and for various aspect ratios  / 0,1H W  . The solution is based on 

the kinetic modeling described in the next section. The oscillatory flow rate G , mean wall 

shear stress W  and pumping powers  Ê t  and E  are probably the most important quantities 

from a technological point of view, while the oscillatory velocity  ,u x y  is more important 

from a theoretical point of view providing an insight view of the flow characteristics. All 

these quantities along with their time evolution are provided in the results section.  

 

3. Kinetic formulation and numerical scheme 

For arbitrary values of the parameters   and   the flow must be simulated based on 

kinetic theory, where the main unknown is the distribution function  , ,f f t  r ξ , 

which is a function of time t , position vector  , ,x y z   r  and molecular velocity 
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vector  , ,x y z  ξ . The unknown distribution obeys the time-dependent nonlinear 

two-dimensional BGK equation [18] 

 M
x y z

f f f f P
f f

t x y z
  


   

    
      

      (33) 

where  /P   is the collision frequency and 

     
3/2

2ˆ, , exp 2
2

M
PUL

m
f t n m kT

kT
            

r ξ ξ U     (34) 

is the local Maxwellian distribution. Due to the assumption of isothermal fully-developed 

flow the temperature T  is constant and the number density  n n z  varies only in the 

z   direction. Also, the macroscopic velocity has only the z   component and it is the 

same with the pulsatile velocity defined in Eq. (2), i.e.,  ˆ ˆ0,0,PUL PULUU . The pulsatile 

velocity and shear stress (defined in Eq. (3)) at some position z  in the flow direction may 

be obtained by the first and second moments of f  according to 

   1ˆ , , , ,PUL zU t x y f t d
n

       r ξ ξ        (35) 

and 

     ,
ˆ ˆ, , , ,PUL jz j z PULΠ t x y m U f t d        r ξ ξ ,   ,j x y     (36) 

respectively. 

The condition of small local pressure gradient ( 1X � ) allows the linearization of Eq. 

(33) by representing the unknown distribution function as 

      0
ˆ, , 1 , , , 1 expPULf t f Xh t x y Xz it        r ξ c ,    (37) 

where /c ξ , 2
0 3/2 3

exp
n

f c
 

     is the absolute Maxwellian and  ˆ , , ,PULh t x y c  is 

the unknown perturbed distribution function referring to the pulsatile fully-developed 

flow, which may be decomposed as 

     ˆ ˆ, , , , , , , ,PUL Sh t x y h x y h t x y c c c       (38) 
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with  ˆ , ,Sh x y c  and  ˆ , , ,h t x y c  referring to the steady and oscillatory parts respectively. 

Substituting expressions (37) and (38) into Eq. (33) and introducing the dimensionless 

variables, yields the following two linearized BGK kinetic model equations: 

   2 , , ,S S
x y z z S S

h h
c c c c u x y h x y

x y
 

      
c      (39) 

   
ˆ ˆ ˆ

ˆˆ2 , , , , ,it
x y z z

h h h
c c c e c u t x y h t x y

t x y

 


           
� c    (40) 

The first one describes the steady fully-developed flow through an orthogonal duct and it 

is solved in [41,42]. The second one describes the oscillatory fully-developed flow and it 

is the one to be solved in the present work.  

Since Eq. (40) is linear, it is convenient to introduce the complex distribution 

function  , ,h x y c  so that  

     ˆ , , , , , exph t x y h x y it   �c c .      (41) 

Also, the molecular velocity vector  , ,x y zc c cc  is transformed as  , , zc c , where 

cosrc    and sinc   . Then, Eq. (40) is rewritten in terms of h  as 

 cos sin 2 ,z z

h h
h i c c u x y

x y

     


           
.    (42) 

The non-dimensionalization, linearization and the molecular velocity vector 

transformation are also applied to the velocity and the shear stress given by Eqs. (35) and 

(36) to obtain: 

  2

2

0 0

1
, c

z zu x y c he d d dc


 


 




           (43) 

    2

2

0 0

1
, cos c

xz z zx y c he d d dc


    


 




         (44) 

    2

2

0 0

1
, sin c

yz z zx y c he d d dc


    


 




    .     (45) 
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At this stage the component zc  of the molecular velocity vector may be eliminated by 

applying the so-called projection procedure and introducing the reduced perturbed 

distribution function 

    21
, , , , , , , expz z zY x y h x y c c dc   







    .     (46) 

Equation (46) is multiplied by  2exp /z zc c   and the resulting equation is integrated 

over zc  to deduce 

1
cos sin

2

Y Y
i Y u

x y

     


           
.     (47) 

Operating similarly on the moments of h , given by Eqs. (43-45), yields: 

  2

2

0 0

1
,u x y Ye d d


   




           (48) 

    2

2

0 0

1
, cosxz x y Ye d d


     




         (49) 

    2

2

0 0

1
, sinyz x y Ye d d


     




         (50) 

It is noted that Re ImY Y iY   is complex and the same applies for the velocity  ,u x y  and 

the shear stresses  ,jz x y , ,j x y . 

Turning now to the boundary conditions it is noted that Maxwell diffuse-specular 

boundary conditions are used. The gas–surface interaction is modeled as [18]  

 1M
Wf f f     ,  0c n > ,      (51) 

where the superscripts (+) and (−) denote distributions leaving from and arriving to the 

boundaries respectively, M
Wf  is the Maxwellian defined by the wall conditions, 0 1   

is the tangential momentum accommodation coefficient corresponding to the percentage 

of diffuse reflection of the gas at the wall and n  is the unit vector normal to the 

boundaries and pointing towards the flow. Following the linearization and projection 

procedures as defined above it is readily deduced that at the wall boundaries  

 1Y Y   , 0c n > .       (52) 
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These boundary conditions are applied at 1/ 2y    and  / 2x H W  . 

It is noted that as the aspect ratio /H W  is reduced, the two-dimensional flow 

gradually tends to the corresponding one-dimensional flow between parallel plates. In 

Appendix A, the formulation of the kinetic equation with the associated conditions for the 

limiting case of / 0H W   is provided. 

The kinetic formulation of the oscillatory fully-developed flow setup is properly 

defined by Eq. (47) with the associated moments (48-50) subject to boundary conditions 

(52). The numerical solution is deterministic. The discretization in the molecular velocity 

space is performed using the discrete velocity method. The continuum spectrum 

 0,    is substituted by a discrete set m , 1,2...m M , which is taken to be the roots 

of the Legendre polynomial of order M , accordingly mapped from  1,1  to  0, . 

Also, a set of discrete angles n , 1,2...n N  equally spaced in  0, 2  is defined. The 

discretization in the physical space is based on a second order central difference scheme. 

The discretized equations are solved in an iterative manner and the iteration map is 

concluded when the criteria 

   1
Re, , Re, ,
k k

i j i ju u     and     1
Im, , Im, ,
k k

i j i ju u         (56) 

is fulfilled. Here,   is the tolerance parameter, the superscript k  denotes the iteration 

index, , 1,2... 1i j L   are the nodes in the physical space, while Re,iju  and Im,iju  are the 

real and imaginary part of macroscopic velocity respectively at each node  ,i j . This 

numerical scheme has been extensively applied in steady-state and time-dependent flow 

configurations with considerable success [43-46, 22]. The numerical parameters have 

been gradually refined to ensure grid independent results up to at least three significant 

figures.  

Once the kinetic problem is solved the oscillatory complex velocity 

     , , exp ,A Pu x y u x y iu x y     and shear stress      , ,, , exp ,jz jz A jz Px y x y i x y      , 

,j x y  are computed in terms of  ,  , /H W  and  . The overall oscillatory quantities 

of the flow rate, the mean wall shear stress and the pumping power are deduced in a 
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straightforward manner, based on the expressions provided in Section 2. The pulsatile 

flow quantities are also readily deduced by adding the corresponding steady ones. 

Closing this section it is interesting to comment on the behavior of Eq. (47) at limiting 

values of   and  . When both 1   and 1  , the flow is in the hydrodynamic or 

slip regimes [22]. In these regimes analytical solutions, based on the unsteady Stokes 

equation with either no-slip or slip boundary conditions, have been obtained and 

presented in Appendix B. As     ( 0  ) and    (finite values of  ), Eq. (47) 

is reduced to the one describing the steady fully-developed flow through a rectangular 

duct at the corresponding  . In the specific case of 0  , with 0  , the kinetic 

equation for steady-state flow at the free molecular limit is recovered. At the other end, as 

0   ( ), Eq. (47) yields 0Y  , i.e., the solution tends to vanish at very high 

frequencies due to fluid inertia. It is expected the behavior of Eq. (47) at the limiting 

conditions to be reflected in the numerical results. 

 

4. Results and discussion 

Numerical results of the time evolution, as well as of the amplitude and phase angle 

of the main macroscopic quantities in terms of the gas rarefaction parameter  , the 

oscillation parameter  , the duct aspect ratio /H W  and the accommodation coefficient 

  are provided, in four subsections. Section 4.1 describes the velocity distributions in 

pulsatile and oscillatory flows. Sections 4.2 and 4.3 describe the overall quantities of flow 

rate and mean acting forces (including the mean wall shear stress) respectively. Since the 

corresponding steady parts are well-known results are provided only for the oscillatory 

parts. Finally, Section 4.4 describes the oscillatory time-dependent and average pumping 

powers including a comparison with the corresponding steady pumping powers. 

 

4.1 Velocity distributions 

In Fig.1 the time evolution over one cycle of the oscillatory  ˆ , 0,u t y  and pulsatile 

     ˆ ˆ,0, 0, ,0,PUL Su t y u y u t y   velocity distributions, given in Eqs. (19-20), are plotted 

with respect to  1/ 2,1/ 2y   at 0x   in the case of a square duct ( / 1H W  ). The 

plots are for  0.1,1,10   covering a wide range of the gas rarefaction and 0.1  , 10  
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referring to high and low frequency oscillation respectively. The evolution is shown with 

a time step of / 2 , at 0t  , / 2 ,   and 3 / 2 . As expected, the oscillatory velocity 

over one cycle, takes both positive and negative values (the fluid is moved forth and back) 

and the time average velocity over one cycle is zero (no net flow). The effect of   on the 

amplitude of the oscillatory velocity is significant. As it is seen, it is greatly reduced as   

is decreased and this behavior becomes even stronger as   is increased (less gas 

rarefaction). The time evolution of the pulsatile velocity is obtained by superimposing on 

the oscillatory velocity the corresponding steady one, which depends only on  . Since 

the steady flow is independent of   the behavior of the pulsatile velocity with respect to 

  is qualitatively the same with the oscillatory one. Consequently, at large   (e.g., 

10  ), where the amplitude of the oscillatory velocity is large, the difference between 

the amplitude of the pulsatile velocity and the corresponding steady one is also large. On 

the contrary, as the oscillatory flow tends to diminish, which is happening as   is 

decreased and   is increased, the pulsatile velocity gradually tends to the steady one at 

the corresponding  . This is particularly evident at 0.1   and 10  , where 

   ˆ ,0, 0,PUL Su t y u y� . As it is outlined in Section 2, the present results are based on the 

assumption that the amplitude of the oscillatory pressure gradient is the same with the 

steady pressure gradient ( ˆ/ /SdP dz dP dz  ). Having this in mind it is interesting to note 

that the pulsatile velocity takes only positive values, i.e., there is no flow reversal at any 

time. This observation may be technologically significant in applications where a pulsatile 

flow is desired, e.g. in order to enhance mixing or heat transfer under rarefied conditions, 

without however having particles moving opposite to the pumping direction or hot gas 

transported backwards into colder regions. In any case, if ˆ/ /SdP dz dP dz  , although the 

net flow is nonzero, flow reversal may be present. 

In Fig. 2, the contours of the oscillatory velocity amplitude  ,Au x y  are presented in a 

two dimensional layout for square ( / 1H W  ) and orthogonal ( / 0.1H W  ) ducts, with 

 0.1.1,10   and 0.1  . As it is seen at this relatively high oscillation frequency the 

effect of   moving from the free molecular ( 0.1  ) through the transition ( 1  ) up to 

the slip ( 10  ) regime is remarkable. At 0.1   there is a very close qualitative 
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resemblance with the corresponding steady one, with the velocity amplitude taking its 

maximum values at the center of the cross section of the duct and then, it is monotonically 

reduced towards the walls of the cross section. At 10  , the situation is reversed, with 

the maximum amplitudes appearing in a very thin layer adjacent to the walls, while 

outside this layer the velocity amplitude is smaller and almost constant. At the 

intermediate value of 1   the maximum amplitudes occur in a wider region between the 

center and the walls of the duct. This description is valid for both aspect ratios. 

Furthermore, the velocity overshooting (known as the “Richardson effect”), is well-

known in the hydrodynamic regime [4] and it has been also recently observed in 

oscillatory rarefied gas flow through a tube [22].   

The oscillatory velocity amplitude Au  and phase angle Pu  along the symmetry axis 

0x   are plotted in Figs. 3 and 4 for oscillatory flow through a square duct ( / 1H W  ) 

and an orthogonal duct ( / 0.1H W  ) respectively for various values of   and  . In the 

former case  1/ 2,1/ 2x   and in the latter one    / 2 , / 2x H W H W    . The 

objective here is to comment on the dependency of Au  and Pu  on   and  , as well as to 

observe the effect of the aspect ratio /H W . Always, as   is decreased, i.e., the 

oscillation frequency is increased, the amplitude Au  is reduced and the phase angle lag Pu  

is increased. It is also seen that in general at small   and large   (e.g., 0.1   and 

0.1  ) the velocity amplitudes have the expected shape with their maximum appearing 

at the center of the duct, while the corresponding phase angles are small. However, as   

is increased and   is reduced the velocity amplitude is flattening in the core of the flow 

and the maximum amplitude is appearing in a region far from the center of the orthogonal 

duct. At large   and small   (e.g., 10   and 1  ) Au  remains constant from the 

center of the duct until close to the wall and then, in a thin layer adjacent to the wall it is 

rapidly increased and decreased. The corresponding phase angle lags Pu  are large, even 

up to / 2   with regard to the pressure gradient and they remain constant from the center 

of the duct until the wall layer, where they change significantly in an oscillatory manner. 

The thickness of the region where the velocity overshooting occurs is decreased as   is 

increased and   is reduced. Therefore, in high or even moderate frequencies (it depends 

also on  ), the flow consists of two layers: the inviscid piston flow in the core, 
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dominated by inertia forces and the frictional Stokes wall layer dominated by viscous 

forces. Comparing the corresponding results in Figs. 3 and 4, it is clearly seen that the 

velocity overshooting (or Richardson effect) appears first in the orthogonal duct and then 

in the square duct. For example at 0.1   , 1    and 10   , the velocity 

amplitudes for / 1H W   (Fig. 3) take their maximum values at the duct center, while for 

/ 0.1H W   (Fig. 4)  their maximum values occur far from the duct center. It is concluded 

that as the aspect ratio /H W is reduced the velocity overshooting appears at smaller   

and/or larger  . 

 

4.2 Flow rates 

The behavior of the oscillatory flow rates  ˆ cosA PG G t G   in terms of  ,  , the 

aspect ratio /H W  and the accommodation coefficient   is investigated. 

In Fig. 5, the flow rate amplitude AG  and phase angle PG  are provided in terms of   

with 21,10,10      and  / 1,0.5,0.1,0H W  . The case of / 0H W   corresponds to 

oscillatory flow between parallel plates. Purely diffuse reflection is assumed at the wall (

1  ). It is clearly seen that   has a strong effect on the amplitude AG , while its effect 

on PG  is very weak. More specifically, for 1  , AG  is monotonically decreased as   is 

increased, while for 210,10      it is initially decreased, then it is increased up to some 

local maximum appearing at  5,15   and finally it is decreased. This behavior is 

justified by the fact that at adequately high oscillation frequencies (e.g., 1  ), AG  is 

significantly affected and it is monotonically reduced with increasing  . On the contrary 

at low oscillation frequencies (e.g., 210,10     ), the variation of AG  with   has some 

resemblance with the steady flow rate including the presence of a Knudsen minimum, as 

long as   is sufficiently small to ensure   . Then, as   is further increased the 

inequality does not hold and AG  is decreased. With regard to the phase angle, PG  is 

always monotonically increased with   and it is almost independent of the oscillation 

frequency  . At very small values of   it is almost zero, then at moderate values of   it 

is rapidly increased and finally, at large values of   it is asymptotically increased 
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reaching the limiting value of / 2 .The described behavior of AG  and PG  with regard to 

  and   is qualitatively the same in all aspect ratios /H W . It is clear however, that the 

aspect ratio has quantitatively a significant effect on AG  and a weak effect on PG , which 

becomes even weaker as   is increased and the flow becomes stationary. In general, AG  

is always increased as /H W  is decreased and this is more evident for 1  . Concerning 

the value of the local maximum of AG  at large   within some  5,15   again it is 

increased as the aspect ratio /H W  is decreased obtaining the maximum value in the case 

of flow between parallel plates ( / 0H W  ). 

In Fig. 6, the flow rate amplitude AG  and phase angle PG  are provided in terms of   

with  0.1,1,10  ,  / 1,0.1H W   and the accommodation coefficient  1,0.85,0.7  . 

As expected,  , AG  is monotonically increased as   is increased, i.e., the reflection 

becomes more specular. The phase angle PG  however, does not strongly depend on the 

type of gas-surface interaction. As   is decreased the phase angle lag is only slightly 

increased for the same   and  , which becomes more evident as   is decreased and at 

moderate values of  . 

 In Fig. 7, the oscillatory flow rate  ˆ cosA PG G t G  , is plotted versus time 

 0, 2t  for typical values of   and   with  / 1,0.1H W  . The time evolution of the 

dimensionless pressure gradient is equal to cos t . It is seen that Ĝ  strongly depends on 

both the gas rarefaction parameter and the oscillation frequency. When 0.1  , the Ĝ  

profiles for 21,10,10      (low and moderate oscillation frequencies) are very close to 

each and in phase with the pressure gradient, while for 0.1   (high oscillation 

frequency) Ĝ  has a smaller amplitude and a larger lagging phase angle. As   is 

increased the effect of   becomes gradually more dominant. At 1  , the Ĝ  profiles 

only for 210,10      are close to each other and in phase, while for  0.1,1   the 

amplitude is reduced and the phase angle lag is increased. This behavior is further 

enhanced at 10  , where the effect of the oscillation frequency is very significant for 

 0.1,1,10   and remains not important only for 210  . It is seen that at 1   and 
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0.1  , as well as at 10   and 0.1,1   the amplitudes are very small and the phase 

angle lags are almost / 2 . These observations are valid for both aspect ratios. 

Quantitatively, as /H W  is decreased moving from the square duct to the parallel plates 

setup the amplitude is increased and the phase angle lag is slightly increased, which is in 

agreement with the observations in Fig. 6. It is also noted that the peak of the flow rate 

amplitude always falls short of reaching the corresponding steady flow rate, which is 

clearly contributed to the inertia of the fluid, which must be accelerated and decelerated in 

each cycle. 

Tabulated results of the flow rate amplitude AG  and phase angle PG for the specific 

case of an orthogonal duct with / 0.1H W   are presented in Tables 1 and 2 respectively 

in terms of the gas rarefaction 4 210 ,10      and the oscillation parameter 

20.1,1,10,50,10     . In addition, the flow rate amplitude  S
AG  and phase angle  S

PG  in 

the slip regime, based on the analytical expression (B10), are provided for 1   with 

50   and 210  . In the last column of Table 1, the well-known steady flow rates (

   ), denoted by  SG  , for 15   are also included [41]. By comparing AG  and 

PG  with the corresponding  S
AG  and  S

PG  it is readily seen that there is very good 

agreement up to at least two significant figures for 10   (both   and   must be large) 

and then, as   is decreased the discrepancies are gradually increased. Also, the values 

 , AG  for the large oscillation parameter 210   are in very good agreement with the 

corresponding steady flow rates  SG   in small and intermediate values of   and then, 

as   is further increased the discrepancies also increase. This is expected since steady 

conditions are recovered provided that the oscillation parameter is large (which it is, since 

210  ) and also    (which is the case only when 10  ). These comparisons 

demonstrate the accuracy of the kinetic results. 

Furthermore, it is seen in Table 1 that for any given  , AG  is monotonically 

increased with  , being always less than the corresponding stationary solution  SG  . 

Also, as   is increased, for 1  , AG  is monotonically decreased, while for 10   it is 

initially decreased until 1  , where a local minimum is observed, then it is increased up 
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to some  , which depends on  , and finally as   is further increased it is again 

decreased. As 0  and for all  , the solution tends to the semi-analytical steady free 

molecular flow rate, which is equal to 1.991 (see Table II in [41]). For small values of   

and adequately large values of  , AG  tends to diminish, since due to the high oscillation 

frequency and the deduced inertial forces the gas has great difficulty to reach a peak flow. 

In Table 2, for any given   the phase angle PG  is increased as   is decreased, i.e., 

as the oscillation frequency is increased. At very high frequencies and adequately large 

, this may result to almost zero amplitude with / 2  phase angle. Also, for any given  , 

PG  is monotonically increased with  , being almost zero in the free molecular regime 

and then, it is increasing as the oscillatory flow becomes less rarefied, reaching the 

maximum phase angle lag in the hydrodynamic limit. Overall, as the oscillation frequency 

is increased the flow rate amplitude is decreased, while the phase angle is increased, 

which in accordance with the observations made in Section 4.1 for the velocity 

distributions. 

 

4.3 Mean wall shear stresses and acting forces 

Next, the behavior of the oscillatory mean wall shear stress  , ,ˆ cosW W A W Pt     in 

terms of  ,   and /H W  is investigated. It is noted that the steady mean wall shear 

stress   1

, 0.25 1 /S W H W    is independent of   and depends only on the aspect ratio 

/H W  (Section2, Eq. (29)). 

In Fig. 8, the oscillatory mean wall shear stress amplitude ,W A  and phase angle 

 , ,W P    are plotted in terms of    with 21,10,10      and  / 1,0.5,0.1,0H W  . For 

very small values of   the mean wall shear stress amplitude ,W A  takes the same value as 

the corresponding steady one ,S W  at the same /H W . Then, as   is increased it is 

slightly reduced and then, from some   in the late transition or slip regimes it is rapidly 

decreased. The value of   where this rapid decrease of ,W A  is starting depends on   and 

it is increasing as   is decreasing. At 21,10,10      the corresponding values of   are 
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about  0.1, 2,10  . Thus, the variation of ,W A  does not include the local maxima 

observed in the variation of AG  (Fig. 5). This overall behavior of ,W A  is valid for all 

values of the aspect ratio /H W . Also, it is seen that ,W A  depends strongly on the aspect 

ratio, particularly in the free molecular and slip regimes and it is always increased as 

/H W  is decreased. The dependency of the oscillatory mean wall shear stress phase angle 

,W P  on  ,   and /H W  is very close to the corresponding one of the flow rate phase 

angle PG  in Fig. 5. More specifically, it is increased with   having a rapid increase in the 

transition regime, it is also increased as   is decreased and finally, it demonstrates a weak 

dependency on /H W .  

It is noted that comparing the corresponding phase angle lags ,W P  and PG , it has been 

found (although it is not clearly seen in Figs. 5 and 8) that ,W P  is almost always slightly 

smaller than PG  deducing that the mean wall shear stress has a smaller phase angle lag 

than the flow rate. This observation is always true in the slip and hydrodynamic regimes 

[4,5]. It has been found however, that in some narrow band of the transition regime close 

to 1 �  and high oscillation frequency 1  , ,W P  may be slightly larger than PG .  

In Fig. 9, the oscillatory shear stress    ,, , cosW W A Pt t       is plotted versus 

time  0, 2t  for typical values of   and   with  / 1,0.1H W  . The time evolution of 

the dimensionless pressure gradient is equal to cos t . As expected, W  depends on both 

the gas rarefaction parameter and the oscillation frequency and behaves similarly to the 

flow rate Ĝ  (Fig. 7). As   is decreased the amplitude is decreased and the lagging phase 

angle is increased and this behavior becomes more intense as   is increased. 

Furthermore, as /H W  is decreased, the amplitude is increased, while the phase angle is 

slightly increased.  

Next in Fig. 10, the oscillatory inertia, ÎF , viscous V̂F  and pressure ˆ
PF  forces, as 

defined in Eq. (30) are plotted over one oscillation period  0, 2t   for  0.1,1,10  , 

 0.1,1,10   and / 1H W  . The forces are readily computed based on the amplitudes 

and phase angles of the flow rate and mean wall shear stress. In all cases the force balance 
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equation (30) is satisfied. The inertia forces refer to the core flow and the viscous forces 

refer to the Stokes layer. It is interesting to observe the behavior of ÎF  and V̂F  in terms of 

  and  . The phase difference between these two forces is always / 2 . In the cases of 

 0.1   ,  1    and  10    the viscous and inertia forces lag and lead the 

corresponding pressure force respectively by a phase angle of / 4 . The amplitudes of 

the two forces are about the same. Then, in the cases of  10, 1,0.1    and 

 1, 0.1   , the inertia forces almost coincide with the corresponding pressure forces, 

while the viscous forces lag the other two forces by almost / 2  and their amplitudes are 

close to zero. The flow consists of two regions: the core region oscillating in a plug mode 

and, adjacent to the wall, the oscillating thin viscous or Stokes layer with the velocity 

overshooting.  Finally, in the cases of  1, 10    and  0.1, 1,10    this 

behavior is reversed, i.e., the viscous coincide with pressure forces, while the inertia 

forces lead by almost / 2  and their amplitudes are close to zero. The flow consists of 

one oscillating region with no velocity overshooting. This description clarifies the 

behavior of the inertia and viscous forces in terms of   and more important in terms of 

, e.g., at 10   and 1   the flow is dominated mainly by inertia forces, while at 0.1 

, the flow will be dominated by inertia forces only if 0.1  . 

It is noted finally, that based on the computed quantities, Eq. (30) is satisfied very 

accurately, which of course provides additional confidence about the validity of the 

numerical results. 

  

4.4 Pumping power 

In Fig. 11, the oscillatory pumping power, defined as  ˆ /E Adz   

 cos cos / 2A PG G t t   (see Eq. (31)), is plotted in terms of  0, 2t  for 

 0.1,1,10   and 20.1,1,10,10      with / 0.1H W  . The pumping power has two 

peaks within each oscillatory cycle because it consists of the product of the oscillatory 

pressure times the oscillatory flow. Its integral over one cycle is not zero in order to drive 

the oscillatory flow, although the oscillatory net flow is zero. The dependency of the 
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oscillatory pumping power on   and   is similar to the one observed for the flow rate, 

i.e. in general, as   is decreased (the oscillation frequency is increased) its amplitude is 

decreased and its phase angle lag is increased. This behavior becomes more dominant as 

  is increased. 

As pointed above, even when the flow is reversed, which is occurring at the second 

half of the oscillation cycle at time  / 2,t    where the flow rate is negative, the 

pumping power remains positive. It is seen however, in Fig.11 that at certain times 

 0, 2t  , the oscillatory pumping power may become negative. This is more evident at 

large   and small   and it is occurring because in dense gases and at relatively high 

frequencies the flow rate is completely out of phase with the pressure gradient (it becomes 

proportional to a sinusoidal function). Thus, when the pressure gradient becomes negative 

and the flow is reversed, the sign of the flow rate remains positive for a certain time 

interval and during this interval the overall pumping power becomes negative. This time 

interval is increased as   is decreased. Of course in rarefied gases and/or low frequencies 

Ê  is always positive because the flow rate is in phase with the pressure gradient. 

Finally, in Fig. 12, the average oscillatory pumping power  / cos / 4A PE Adz G G  

(see Eq. 32) over one period of oscillation in terms of   are plotted, with 

20.1,1,10,10      and for ducts with / 1H W   and 0.1 . The steady pumping power 

/ 2S SE AdzG , which depends only on  , is also plotted for comparison purposes. It is 

seen that as the oscillatory flow approaches steady conditions, which is the case of 

210   and 10  , as expected, E  is about half of SE . This behaviour is even extended 

to smaller values of   provided that   is adequately small (  ). Also, as 0   and 

for all   the steady free molecular flow is recovered, E  is exactly one half of the steady 

free molecular pumping power. Furthermore, in cases where    the average 

oscillatory pumping power is smaller than these limiting values and it is significantly 

decreased with  . This is expected since at very high frequencies the flow rate amplitude 

tends to diminish. Also, the local maximum values of E  at large   are appearing due to 

the corresponding behaviour of AG , shown in Fig. 5. With regards to the aspect ratio, E  

is increased as /H W  is increased.   
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5. Concluding remarks 

The pulsatile isothermal fully-developed flow in an orthogonal duct is investigated by 

decomposing the flow into the steady and oscillatory parts. The steady part is well-known 

and therefore, the investigation is focused mainly on the oscillatory part, which is 

numerically solved, based on the time-dependent linear BGK equation, in a wide range of 

the gas rarefaction parameter 20,10      and the oscillation parameter 2 210 ,10     , as 

well as for various values of the duct aspect ratio  / 1,0H W   and the tangential 

momentum accommodation coefficient  0,1  . It is noted that   and   are inversely 

proportional to the Knudsen number and the oscillation frequency respectively. The 

results are in dimensionless form and include all macroscopic quantities of theoretical and 

technological interest and more specifically, the amplitude and phase angle, as well as the 

time evolution of the velocity distribution, the flow rate, the mean wall shear stress, the 

acting inertial and viscous forces, the pumping power and the time average pumping 

power. The results have been successfully validated at limiting values of   and   by 

comparison with corresponding analytical results in the slip regime (both 1   and 

1  ), in the free molecular regime ( 0  ) and with numerical results for steady 

fully-developed flow (    and   ). 

Always as   is decreased (i.e., the oscillation frequency is increased) the amplitude 

of all macroscopic quantities is decreased and their phase angle lag with respect to the 

pressure gradient is increased. Actually, at very small   the amplitude tends to diminish 

and the phase angle lag approaches the limiting value of / 2 . It is important to note 

however, that as   is decreased (i.e., the gas becomes more rarefied) higher frequencies 

are needed to trigger the behavior described above. 

For comparison purposes the amplitude of the oscillatory pressure gradient is taken to 

be equal with the steady pressure gradient. Having this in mind it is useful to note that the 

pulsatile velocity distribution, which is obtained by adding the oscillatory and steady 

velocities, is always positive and therefore, there is no flow reversal. Furthermore, the 

amplitudes of the flow rate and the mean wall shear stress are increased with   being 

always smaller than the corresponding steady ones. In terms of gas rarefaction the 
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dependency of the flow rate amplitude is not monotonic indicating that at moderate and 

large   there is a critical   to obtain the maximum flow rate. The mean wall shear stress 

amplitude remains almost constant in the free molecular and transition regimes and then it 

is rapidly reduced. Comparing the corresponding phase angle lags of the flow rate and the 

mean wall shear stress it has been found that in most cases the former one is slightly 

larger, while this situation is reversed in a narrow band of the transition regime and high 

oscillation frequencies. Concerning the duct aspect ratio it has been found that as the 

aspect ratio /H W  is decreased the flow rate and mean wall shear stress amplitudes are 

increased, while their phase angle lags are slightly affected. Similarly, the gas-surface 

interaction at the wall, specified by the accommodation coefficient  , has a significant 

effect at the amplitudes and almost no effect at the phase angles of the macroscopic 

quantities. 

The inertia and viscous forces, having always a phase difference of / 2 , are 

computed in a wide range of   and  . Their amplitudes are about the same when   . 

As   is increased and   is decreased the inertia forces dominate causing a core 

oscillating plug-flow with a thin Stokes layer. In the opposite situation (i.e., as   is 

decreased and   is increased) the viscous forces become more important causing a typical 

viscous oscillatory flow without velocity overshooting. 

Finally, the oscillatory pumping power has two peaks within each oscillatory cycle 

and its integral over one cycle is not zero. The nonzero time average pumping power is 

needed to maintain the oscillatory flow, although the oscillatory net flow is zero and it is 

increased as the oscillation frequency is reduced. Actually, as stationary conditions are 

reached, the time average pumping power is obtaining its maximum values, which have 

been found to be one half of the corresponding steady ones. Adding the time average 

oscillatory pumping power with the steady one, yields the total average power to maintain 

the pulsatile flow. 
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Appendix A. Kinetic formulation of the pulsatile flow between parallel plates 

In the specific case of / 0H W   the flow setup is reduced to pulsatile flow between 

two parallel plates and it is modeled by the one-dimensional time-dependent BGK model 

in the domain 1/ 2 1/ 2y   . Following a mathematical manipulation similar to the one 

presented in Section 3, the steady and oscillatory parts of the pulsatile flow are modeled. 

The steady part results to the well-known kinetic formulation of steady Poiseuille flow 

between parallel plates [40]. The oscillatory part results to the following equations: 

 2y z z

h
c h i c c u y

y

 


        
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  2

3/2

1 c
xz y z x y zy c c he dc dc dc



  


  

          (A3) 

Next, the xc  and zc  components of the molecular velocity vector are eliminated by 

introducing the reduced distribution function 

    2 21
, , , , expy x y z z x x zY y c h x c c c c c dc dc



 
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Equation (A1) is multiplied by  2 2exp /x z x zc c c c    and the resulting equation is 

integrated over xc  and zc  to deduce 
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with Y  being a complex function, while the velocity and shear stress distributions are 
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The Maxwell diffuse-specular boundary conditions become  

     1/ 2, 1 1/ 2,y yY c Y c    , 0xc ¤ .      (A7) 
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The one-dimensional oscillatory flow problem ( / 0H W  ), defined by Eqs. (A5-A7), 

is solved in order to have a complete view of the effect of the channel aspect ratio 

 / 0,1H W   on the oscillatory flow characteristics. 

 

Appendix B. Analytical solutions in the hydrodynamic and slip regimes 

The hydrodynamic and slip regimes are characterized by large values of both flow 

parameters   and  . As     and    , by retaining the fully-developed flow 

assumption the continuity equation is identically satisfied and the z momentum equation 

becomes [3,4,17] 

     2 2

2

ˆ ˆ ˆ ˆm m m
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t dz x y
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where the pressure gradient  ˆ , /PULdP z t dz    and velocity    ˆ , ,m
PULU t x y   , with ,m H S  

denoting the hydrodynamic and slip solutions, are defined by Eqs. (1) and (2) 

respectively. The pressure gradient and the velocity are decomposed into the steady and 

oscillatory parts. The former one yields the steady Stokes equation and the latter one may 

be written in dimensionless form as 
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where      ,m mu u x y , ,m H S , is the complex hydrodynamic or slip velocity. 

Equation (B2) is also known as the unsteady Stokes equation. The steady and unsteady 

Stokes equations subject to no-slip and slip boundary conditions have been solved 

analytically in [47] and [17] respectively. Here, we are interested mainly to the oscillatory 

flow and therefore, the solution of Eq. (B2) is provided in terms of the present notation 

without however describing the methodology.  

In the hydrodynamic regime ( m H ), Eq. (B2) subject to the associated no-slip 

boundary conditions  , 1 / 2 0u x    and  / 2 , 0u H W y   is solved to yield  
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where  2 1jb j   , 0,1,2,3,...j   and 2 22 /j jp b i   . The velocity field is 

integrated according to Eq. (22) to find the hydrodynamic flow rate  
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Then, the velocity field is differentiated with respect to x  and y  to find the shear stresses  
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and
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 In the slip regime ( m S ), Eq. (B2) subject to the associated slip boundary 

conditions [17] 
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where 1.016P   is the viscous slip coefficient is solved to yield 
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In Eq. (B8) 2 22 /j jp b i   , while the eigenvalues jb  are the roots of the trascedental 

equation  tan / 2 /j j Pb b   . Then, the slip flow rate and shear stresses are 

 

 2 3 20

1 cos 2 1
8

coth1 2 sin / 2
2

S j
j

j PP
j jj j j

b H
G p

WW p pb p b
H









 
 
  

             

  (B10) 

       
 0 2

sin / 2 cos sinh
2

1 2 sin / 2 cosh sinh
2 2

j j jS
xz

j P P
j j j j j j

b b y p x

W W
b p b p p p

H H


 
 





 
                   

  (B11)
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

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



 
 
   

                   

  (B12) 

The closed form expressions (B4-B6) and (B10-B11) are implemented to validate the 

kinetic solution for large values of both   and  . 
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Table 1: Flow rate amplitude  , AG  in terms of gas rarefaction parameter   and oscillation 

parameter   for / 0.1H W   
 
   , AG     , S

AG   SSG  

0.1   1   10   50   100   50   100       

0.0001 1.984 1.988 1.988 1.988 1.988   1.988 

0.001 1.939 1.973 1.974 1.974 1.974   1.974 

0.01 1.648 1.892 1.903 1.903 1.903   1.903 

0.05 1.057 1.712 1.758 1.759 1.759   1.759 

0.1 7.543(-1) 1.583 1.666 1.667 1.667   1.667 

0.5 2.033(-1) 1.116 1.451 1.456 1.456   1.456 

1 9.992(-2) 8.084(-1) 1.411 1.426 1.427 1.104 1.104 1.427 

2 4.999(-2) 4.793(-1) 1.431 1.492 1.494 1.263 1.265 1.494 

4 2.499(-2) 2.462(-1) 1.414 1.719 1.732 1.567 1.578 1.737 

6 1.666(-2) 1.646(-1) 1.245 1.952 1.999 1.841 1.881 2.016 

8 1.250(-2) 1.237(-1) 1.042 2.142 2.262 2.059 2.168 2.307 

10 9.999(-3) 9.914(-2) 8.720(-1) 2.259 2.503 2.198 2.428 2.605 

15 6.666(-3) 6.627(-2) 6.043(-1) 2.216 2.918 2.191 2.874 3.364 

20 5.000(-3) 4.977(-2) 4.622(-1) 1.931 2.989 1.920 2.966  

30 3.333(-3) 3.323(-2) 3.157(-1) 1.409 2.548 1.405 2.541  

40 2.500(-3) 2.494(-2) 2.398(-1) 1.093 2.054 1.091 2.050  

50 2.000(-3) 1.996(-2) 1.934(-1) 8.959(-1) 1.698 8.941(-1) 1.696  

100 1.000(-3) 9.990(-3) 9.832(-2) 4.725(-1) 9.167(-1) 4.721(-1) 9.159(-1)  
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Table 2: Flow rate phase angle  , PG  (rad) in terms of gas rarefaction parameter   and oscillation 

parameter   for / 0.1H W   
 

  
 , PG     , S

PG  

0.1   1   10  50  100  50   100   

0.0001 9.593(-3) 1.179(-3) 1.201(-4) 2.403(-5) 1.201(-5)   

0.001 6.085(-2) 8.113(-3) 8.321(-4) 1.665(-4) 8.324(-5)   

0.01 3.015(-1) 4.828(-2) 5.024(-3) 1.005(-3) 5.026(-4)   

0.05 6.989(-1) 1.487(-1) 1.582(-2) 3.166(-3) 1.583(-3)   

0.1 9.217(-1) 2.343(-1) 2.541(-2) 5.087(-3) 2.544(-3)   

0.5 1.442 6.409(-1) 8.037(-2) 1.612(-2) 8.062(-3)   

1 1.510 9.416(-1) 1.451(-1) 2.924(-2) 1.462(-2) 2.242(-2) 1.121(-2) 

2 1.540 1.241 2.901(-1) 5.970(-2) 2.988(-2) 5.191(-2) 2.597(-2) 

4 1.555 1.421 6.145(-1) 1.410(-1) 7.085(-2) 1.320(-1) 6.629(-2) 

6 1.560 1.473 8.931(-1) 2.481(-1) 1.261(-1) 2.385(-1) 1.210(-1) 

8 1.563 1.497 1.082 3.753(-1) 1.949(-1) 3.658(-1) 1.896(-1) 

10 1.565 1.512 1.202 5.130(-1) 2.758(-1) 5.044(-1) 2.704(-1) 

15 1.567 1.532 1.345 8.340(-1) 5.113(-1) 8.293(-1) 5.067(-1) 

20 1.568 1.542 1.405 1.057 7.463(-1) 1.056 7.433(-1) 

30 1.569 1.551 1.462 1.274 1.076 1.275 1.075 

40 1.569 1.556 1.490 1.360 1.239 1.361 1.240 

50 1.570 1.559 1.507 1.405 1.322 1.406 1.322 

100 1.570 1.565 1.539 1.492 1.455 1.492 1.455 
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Figure 1: Time evolution of oscillatory  ˆ 0, ,u y t  (left) and pulsatile  ˆ 0, ,PULu y t  (right) 

velocity distributions in terms of distance  1/ 2,1 / 2y   at certain times  0, 2t  for 

/ 1H W  ,  0.1,1,10   and  0.1,10  . 
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Figure 2: Contours of oscillatory velocity amplitude  ,Au x y  for / 1H W   (left) and / 0.1H W   

(right),  0.1,1,10   and 0.1  .  
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Figure 3: Oscillatory velocity amplitude  ,0Au x  and phase angle  ,0Pu x  in terms of 

distance  1/ 2,1 / 2x   for / 1H W  ,  0.1,1,10   and 210 ,0.1,1,10     .  
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Figure 4: Oscillatory velocity amplitude  ,0Au x  and phase angle  , 0Pu x  in terms of distance 

   / 2 , / 2x H W H W     for / 0.1H W  ,  0.1,1,10   and 210 ,0.1,1,10     .   
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Figure 5: Oscillatory flow rate amplitude AG  and phase angle PG  in terms of gas 

rarefaction parameter   for 21,10,10      and  / 1,0.5,0.1,0H W  .  
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Figure 6: Oscillatory flow rate amplitude AG  and phase angle PG  in terms of the gas 

rarefaction parameter   for / 1H W   (solid lines) and / 0.1H W   (dashed lines), 

110 ,1,10      and accommodation coefficient  1,0.85,0.7  . 
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Figure 7: Oscillatory flow rate Ĝ  over one oscillation period for an orthogonal duct with 

/ 1H W   (left) and / 0.1H W   (right) for  0.1,1,10   and 20.1,1,10,10     . 
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Figure 8: Oscillatory mean wall shear stress amplitude  , ,W A    and phase angle 

 , ,W P    in terms of the gas rarefaction parameter   for 21,10,10      and 

 / 1,0.5,0.1,0 .H W  . 
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Figure 9: Oscillatory mean wall shear stress Ŵ  over one oscillation period for / 1H W   

(left) and / 0.1H W   (right),  0.1,1,10   and 20.1,1,10,10     . 
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Figure 10: Oscillatory inertia ÎF , viscous V̂F  and pressure ˆ

PF  forces over one oscillation period for 

 0.1,1,10  ,  0.1,1,10   and / 1H W   (all forces are divided by Adz ). 
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Figure 11: Oscillatory pumping power Ê  over one oscillation period for  0.1,1,10  , 
20.1,1,10,10      and / 0.1H W   (pumping power is divided by Adz ).  
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Figure 12: Average pumping power E  over one period of oscillation along with the steady 
state pumping power SE  in terms of the rarefaction parameter   for / 1H W   (left) and 

/ 0.1H W   (right) with 20.1,1,10,10      (pumping powers are divided by Adz ). 


