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Abstract. The pulsatile pressure driven fully-developed flow of a rarefied gas through a long circular tube is 

investigated, based on the time-dependent linear BGK equation, by decomposing the flow into its steady and 

oscillatory parts. As the oscillation frequency is increased the amplitude of all macroscopic quantities is 

decreased, while their phase lag with respect to the pressure gradient is increased reaching the limiting value of 

90
0
. As the gas becomes more rarefied higher frequencies are needed to trigger this behavior. The computation 

of the inertia and viscous forces in terms of the gas rarefaction and oscillation parameters, clarifies when the 

flow consists of only one oscillating viscous region or of two regions, namely the inviscid piston flow in the core 

and the oscillating Stokes layer at the wall with the velocity overshooting. The maximum value of the time 

average oscillatory pumping power is one half of the corresponding steady one. 

1 INTRODUCTION 

Time-dependent vacuum gas flows are strongly related to gas distribution systems of fusion reactors, 

consisting of channels with different lengths and cross sections. The flow in such pipe networks varies from the 

free molecular regime up to the hydrodynamic limit or in the whole range of the Knudsen number. Depending on 

the vacuum pumping system, the driving pumps and the operating conditions, phenomena related to oscillatory 

gas flow may produce enhanced counter flow of gas [1,2]. The detailed investigation of the pulsatile and 

oscillatory motion of gases in the whole range of the Knudsen number is important to avoid such harmful 

phenomena and to compute the associated energy losses.  

In the hydrodynamic (or viscous) regime, pulsatile and oscillatory pressure-driven fully-developed flows, 

through channels of various cross sections have received, over the years, considerable attention [3-6]. In the slip, 

transition and free molecular regimes however, where in addition to the oscillation frequency, the level of gas 

rarefaction plays a significant role in the flow properties and patterns, the corresponding work in rarefied 

pulsatile gas flows is very limited. In the slip regime, the oscillatory flow in rectangular channels has been solved 

in [7], based on the unsteady Stokes equation subject to slip boundary conditions. Of course, continuum-based 

models are valid provided that both the mean free path and time are much smaller than the characteristic channel 

size and the pressure gradient oscillation time respectively. Therefore, in the transition and free molecular 

regimes the flow must be modeled by kinetic theory based on the Boltzmann equation or reliable kinetic model 

equations [8]. 

In this framework, very recently, the rarefied oscillatory flow in a cylindrical tube has been simulated, based 

on the linearized BGK equation, with the assumption of small oscillatory pressure gradient amplitude [9]. Here, 

the analysis is extended to pulsatile flows in circular tubes and computational results are provided for the flow 

rate, the wall shear stress and the pumping power as well as for the acting inertia and viscous forces. 

2 FLOW CONFIGURATION AND DEFINITION OF MACROSCOPIC QUANTITIES 

Consider the time-dependent isothermal flow of a monatomic rarefied gas through an infinite long circular 

tube of radius R . The flow is caused by a pulsatile pressure gradient that consists of a constant part that does not 

vary in time and that produces a steady flow forward, plus an oscillatory part, with the oscillation frequency  , 

that moves the fluid back and forth and that produces zero net flow over each cycle [9]. 

The main flow quantities of the pulsatile flow are introduced first in dimensional and then, in dimensionless 

form. The local pulsatile pressure gradient depends on the flow direction z  and time t . It may be written as  
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ˆ ˆ, ,
cos expPUL S S SdP t z dP z dP z t dP z dP z dP z dP z

t i t
dz dz dz dz dz dz dz

 
        

               
 (1) 

where ˆ /PULdP dz , /SdP dz  and ˆ /dP dz  refer to the pulsatile, steady and oscillatory pressure gradients, 

  /dP z dz   is the amplitude of the oscillating pressure gradient, while  denotes the real part of a complex 

expression, with 1i   . It is evident that the time average over one period of the pressure gradient of the 

oscillatory flow is zero, while of the pulsatile flow is different than zero and equal to the steady pressure gradient. 

Due to the linearity of Eq. (1), the steady and oscillatory parts of the pulsatile fully-developed flow can be solved 

independently of each other. This is a useful breakdown, because the steady part of the flow has already been 

solved in [8] and therefore, only the oscillatory part remains for investigation.  

The pulsatile pressure gradient generates a gas flow in the zdirection, which is characterized by its 

pulsatile velocity and shear stress distributions given by  

           ˆ ˆ, , expPUL S SU t r U r U t r U r U r i t                 (2) 

           ˆ ˆ, , expPUL S SΠ t r Π r Π t r Π r Π r i t              ,   (3) 

respectively. The superscript ^ always denotes time-dependent quantities. The complex functions  U r  and 

 Π r  completely determine the oscillatory pressure driven flow. Integrating the velocity over the cross section 

the mean velocity and wall shear stress are defined: 

       
1ˆ ˆ ˆ, expPUL PUL S S

A

U t U t r dA U U t U U i t
A




                (4) 

       , , ,
ˆ ˆ ˆ, expPUL W PUL S W W S W WΠ t Π t r d Π Π t Π Π i t



                (5) 

The quantities with the subscript “S” always denote the steady part, while U  and WΠ  are complex and related to 

the oscillatory part. 

Furthermore, the pulsatile mass flow rate is defined as 

         ˆ ˆ, , expPUL PUL S S

A

M t t z U t r dA M M t M M i t 


                 (6) 

where SM  and  M t  denote the steady and oscillatory mass flow rates, while the mass density  ,t z     

varies in time and in the axial direction (it is constant at each cross section) and it is defined by the equation of 

state once the operating pressure and temperature are specified.  

Next, based on the mean velocity and wall shear stress, the inertia (or acceleration)  ˆ
IF t   and viscous 

 ˆ
VF t   forces acting on a fluid volume A dz   passing through the channel are given by 

 
   

 ,

ˆ ˆ
ˆ ˆPUL
PUL I I

U t U t
F t dz A dz A F t

t t
 

  
         

  
   (7) 

and 

      , , ,
ˆ ˆ ˆ
PULV S V V S W WF t F F t dz Π Π t            .    (8) 

As expected the inertia force is related only to the oscillatory part, while the viscous force has both steady and 

oscillatory parts. At any point in time, the driving pressure force 
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     , ,
ˆ ˆ ˆ
PUL P S P P SF t F F t AdP AdP t               (9) 

must equal the net sum of the viscous and inertia forces that may add or subtract from each other at different 

times within the oscillatory cycle. Then, the following steady and oscillatory force balances are formed: 

Steady: ,S S WA dP dz Π         (10) 

Oscillatory:  
 

 
ˆ

ˆ ˆ
W

U t
AdP t dz A dz Π t

t



        


   (11) 

It is noted that due to the fully-developed flow there is no net momentum flux. 

Finally, the pumping power needed to drive the pulsatile flow is defined as    ˆ ˆ
PUL SE t E E t      , where the 

steady the oscillatory pumping powers are given by the product of the corresponding acting pressure forces times 

the mean velocities written as S S SE AdPU   and  

         ˆ ˆ cos expE t AdP t U t AdP t U i t                (12) 

respectively. Since the oscillatory part  Ê t   does not produce any net flow forward and since the steady part 

SE  is the same as that in steady flow, any power expenditure on the oscillatory part of the flow reduces the 

efficiency of the flow. It is noted that the integral of the oscillatory pumping power over one cycle is nonzero, 

hence oscillatory flow requires energy to maintain even the net flow is zero. 

The parameters which define the problem in dimensional form include the gas properties, the operating 

pressure and temperature, the channel geometry and the oscillation frequency. They are significantly reduced by 

introducing the corresponding quantities in dimensionless form, allowing in parallel, a more detailed flow 

investigation.  

The two dimensionless flow parameters defining the present pulsatile flow are specified [9]. The first one is 

the gas rarefaction parameter   and it is given by 
PR




 , where   is the gas viscosity at some reference 

temperature T  and 2 gR T   is the most probable molecular speed ( gR  is the gas constant). The rarefaction 

parameter is proportional to the inverse Knudsen number. The second one is the frequency parameter   and it is 

given by 
P




 , where  /P   is the intermolecular collision frequency and   the oscillation frequency. 

Hence, small and large values of   correspond to high and low pressure gradient oscillation respectively. As 

  , the oscillatory part of the flow diminishes. When both 1   and 1  , the flow is in the 

hydrodynamic or slip regimes. 

Also, the dimensionless independent space and time variables /r r R , /z z R  and t t , are 

introduced. The dimensionless area and perimeter of the tube cross section are defined by 2/A A R  and 

/ R    respectively, while / 2A  . The dimensionless amplitude of the oscillatory pressure gradient is  

 
 

 
 1dP z dP zR

X
P z dz P z dz


 

 
,     (13) 

with 1X  . This assumption is typical in fully-developed flows (also in steady-state setups), in order to permit 

the linearization of the governing kinetic equation and it is valid for any pressure difference provided that the 

channel is adequately long [8,9]. For comparison purposes between the oscillatory and steady flow, the amplitude 

of the oscillatory pressure gradient is taken equal to the steady one ( / /SdP dz dP dz  ). In this way, SX X , 

and the peak values of the macroscopic quantities (velocity, flow rate, shear stress, and pumping power) of the 

oscillatory flow can be compared with the corresponding ones of the steady flow. 

All velocities (pulsatile, oscillatory and steady) are non-dimensionalized by the most probable speed  . More 

specifically, Eq. (2) is divided by  X  to yield 
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     ˆ ˆ, ,PUL Su t r u r u t r       (14) 

where  Su r  is the steady flow velocity and  ˆ ,u t r  is the oscillatory flow velocity, which may be written as 

               ˆ , exp exp cosA P A Pu t r u r it u r i u r t u r t u r             
  (15) 

In Eq. (15) the subscripts A  and P  denote the amplitude and the phase of the complex oscillatory velocity 

 u r . The mean velocities are also non-dimensionalized by the most probable speed   and the resulting mean 

steady and oscillatory velocities are denoted by Su  and  û t  respectively. 

Next, the dimensionless flow rate is defined by introducing (14) and (15) along with the equation of state 

2 / 2P   into Eq. (6) to obtain    2 ˆ /PUL PULM t R PXG t   , where    ˆ ˆ
PUL SG t G G t  . Here, SG  is the 

well-known steady flow rate [8],  Ĝ t  is the oscillatory flow rate and they are given by 

 
1

0

4S SG u r rdr     and      
1

0

ˆ ˆ4 ,G t u t r rdr  .    (16) 

The oscillatory flow rate  Ĝ t  may be also written as 

        ˆ exp exp cosA P A PG t G it G i G t G G t             (17) 

where the flow rate G , as well its amplitude AG  and phase PG , may be computed by integrating accordingly the 

corresponding velocity quantities. It is readily seen that the dimensionless flow rates may be connected to the 

dimensionless mean velocities by the following expressions: 2S SG u  and    ˆ ˆ2G t u t . 

All stresses (pulsatile, oscillatory and steady) are non-dimensionalized by the reference pressure P . More 

specifically, Eq. (3) is divided by  2PX  to yield 

           ˆ ˆ, , cosPUL S S A Pt r r t r r r t r            ,   (18) 

where  S r  is the steady shear stress and  ˆ ,t r  is the oscillatory shear stress. In Eq. (18) the subscripts A  

and P  denote the amplitude and the phase of the corresponding oscillatory complex shear stresses. The pulsatile 

wall shear stress is obtained for 1r  . 

All forces in Eqs. (7-9) are divided by  2
PPX R  to yield the corresponding dimensionless ones: 

     ,

ˆ
ˆ ˆ sinPUL I I A P

dG
F t F t dzA dzA G G t

dt

 

 
       (19) 

       , , , , , ,
ˆ ˆ ˆ2 2 cosPULV S V V S W W S W W A W PF t F F t dz t dz t                   (20) 

     , ,
ˆ ˆ 1 cosPUL P S P PF t F F t Adz t        (21) 

The balance equations of the dimensionless steady , ,S V S PF F  and oscillatory      ˆ ˆ ˆ
I V PF t F t F t   forces are: 

Steady: , 1/ 4S W       (22) 

Oscillatory:    , ,sin 4 cos cosA P W A W PG G t t t


 


       (23) 

Equation (22) has been also reported in previous works related to steady fully-developed flows [10,11]. Equation 
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(23) is the corresponding one for oscillatory flow. The first and second terms at the left hand side refer to the 

inertia and viscous forces respectively, while the right hand side refers to the pressure forces. 

Finally, the dimensionless pumping power is derived by dividing Eq. (12) by    2X XP R  to find 

   ˆ ˆ
PUL SE t E E t  , where the steady pumping power is / 2S SE AdzG  and the oscillatory one is written as 

        
1 1 1ˆ cos cos exp cos cos
2 2 2

A P A PE t Adz tG t Adz t G i G t AdzG t G t        (24) 

By integrating Eq. (34) over one oscillation cycle, the average pumping power over the cycle is formed as  

   
2

0

1 1ˆ cos
2 4

A PE E t dt AdzG G




  .    (25) 

In the low frequency regime, where 0PG   and A SG G , it is seen that the average oscillatory pumping power 

is half of the corresponding steady one ( / 2SE E ). 

The prescribed pulsatile flow is solved here in the whole range of   and  , which may vary from zero to 

infinity. The solution is based on the kinetic modeling described in the next section. 

3 KINETIC FORMULATION 

For arbitrary values of the parameters   and   the flow must be simulated based on kinetic theory, where 

the main unknown is the distribution function  , ,f f t  r ξ , which is a function of time t , position vector 

 , ,x y z   r  and molecular velocity vector  , ,x y z  ξ . The unknown distribution obeys the time-

dependent nonlinear two-dimensional BGK equation [12] 

 M
r z

f f f f P
f f

t r r z


 

 

   
    
      

     (26) 

where  /P   is the collision frequency and 

     
3/2

2
ˆ, , exp 2

2
M

PUL

m
f t n m kT

kT

             
r ξ ξ U    (27) 

is the local Maxwellian distribution. Due to the assumption of isothermal fully-developed flow the temperature 

T  is constant and the number density  n n z  varies only in the zdirection. Also, the macroscopic velocity 

has only the zcomponent and it is the same with the pulsatile velocity defined in Eq. (2), i.e., 

 ˆ ˆ0,0,PUL PULUU . The pulsatile velocity  ˆ ,PULU t r   and shear stress  ˆ ,PULΠ t r   (defined in Eq. (3)) at 

some position z  in the flow direction may be obtained by the first and second moments of f : 

   
1ˆ , , ,PUL zU t r f t d
n

     r ξ ξ    and        ˆ ˆ, , ,PUL r z PULΠ t r m U f t d      r ξ ξ  (28) 

The condition of small local pressure gradient ( 1X ) allows the linearization of Eq. (26) by representing 

the unknown distribution function as 

     0
ˆ, , 1 , , expPULf t f Xh t r Xz it       r ξ c ,    (29) 

where /c ξ , 
2

0 3/2 3
exp

n
f c

 
     is the absolute Maxwellian and  ˆ , , ,PULh t x y c  is the unknown 

perturbed distribution function referring to the pulsatile fully-developed flow, which may be decomposed as 
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     ˆ ˆ, , , , ,PUL Sh t r h r h t r c c c      (30) 

with  ˆ ,Sh r c  and  ˆ , ,h t r c  referring to the steady and oscillatory parts respectively. Substituting expressions 

(29) and (30) into Eq. (26) and introducing the dimensionless variables, yields the following two linearized BGK 

kinetic model equations: 

   2 ,S S
r z S S

ch h
c c u r h r

r r






 
     

c     (31) 

   
ˆ ˆ ˆ

ˆˆ2 , , ,it
r z z

ch h h
c c e c u t r h t r

t r r




 
           

c    (32) 

where cosrc    and sinc   . The first one describes the steady fully-developed flow through a circular 

tube and it is solved in [10]. The second one describes the oscillatory fully-developed flow and it is the one to be 

solved in the present work. However, since it is also solved in [9], the non-dimensionalization and the 

linearization are omitted here and only the final kinetic equation is given as  

sin 1
cos

2

Y Y
i Y u

r r

  
   

 

   
     

   
.   (33) 

The complex velocity and shear stress are given by the moments of Y  as 

 
2

2

0 0

1
u r Ye d d



   




      and      
2

2

0 0

1
cosr Ye d d



     




   .  (34) 

Turning to the boundary conditions it is noted that purely diffuse scattering is assumed at the wall, i.e., 
M

wf f  , where the superscript    denotes particles departing from the wall and 
M
wf  is the Maxwellian 

distribution defined by the wall conditions. Based on the above and following the linearization and projection 

procedures in [9] it is deduced that the wall boundary ( 1r  ) is given by 

 1, , 0Y    , / 2 3 / 2    .     (35) 

At the symmetry axis ( 0r  ), molecules are reflected specularly, i.e.,  

   0, , 0, ,Y Y      , 0 / 2   , 3 / 2 2    .   (36) 

The kinetic formulation of the oscillatory fully-developed flow setup is properly defined by Eqs. (33-36). The 

numerical solution is deterministic and it has been extensively applied in steady-state and time-dependent flow 

configurations with considerable success [8,13,14].  

4 RESULTS AND DISCUSSION 

In Fig. 1 the oscillatory flow rate    ˆ cosA PG t G t G   and the pulsatile one    ˆ ˆ
PUL SG t G G t   are 

plotted versus time  0,2t   for  0.1,1,10   and  0.1,1,10  . The oscillatory flow rate over one cycle, 

takes both positive and negative values (the fluid is moved forth and back) and the time average flow rate over 

one cycle is zero (no net flow). The amplitude of the oscillatory flow rate is reduced as   is decreased and this 

behavior becomes even stronger as   is increased (less gas rarefaction). The time evolution of the pulsatile flow 

rate is obtained by superimposing on the oscillatory flow rate the corresponding steady one, which depends only 

on  . Since the steady flow is independent of   the behavior of the pulsatile flow rate with respect to   is 

qualitatively the same with the oscillatory one. Consequently, at large   (e.g., 10  ), where the amplitude of 

the oscillatory flow rate is large, the difference between the amplitude of the pulsatile flow rate and the 

corresponding steady one is also large. On the contrary, as the oscillatory flow tends to diminish, which is 

happening as   is decreased and   is increased, the pulsatile flow rate gradually tends to the steady one at the 

corresponding  . This is particularly evident at 0.1   and 10  , where  ˆ
PUL SG t G . It is also noted that 
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the pulsatile flow rate takes only positive values, i.e., there is no flow reversal at any time. This observation may 

be technologically significant in applications where a pulsatile flow is desired, e.g. in order to enhance mixing or 

heat transfer under rarefied conditions, without however having particles moving opposite to the pumping 

direction or hot gas transported backwards into colder regions. 

 

 

Figure 1: Oscillatory Ĝ  and pulsatile ˆ
PULG  flow rates over one oscillation period for various values of   and  . 

 

In Fig. 2, the oscillatory mean wall shear stress amplitude  , ,W A    and phase  , ,W P    are plotted in 

terms of   with 
20.1,1,10,50,10     . For very small values of   the mean wall shear stress amplitude ,W A  

takes the same value as the corresponding steady one , 0.25S W  . As   is increased it is slightly reduced and 

then, from some   in the late transition or slip regimes it is rapidly decreased. The value of   where this rapid 

decrease of ,W A  is starting depends on   and it is increasing as   is decreasing. Thus, the variation of ,W A  

depends monotonically on   and does not include the local maxima observed in the variation of AG  that has 

been reported in [9]. With regard to the phase difference, ,W P  is always monotonically increased with   and it 

is almost independent of the oscillation frequency  . At very small values of   it is almost zero, then at 

moderate values of   it is rapidly increased and finally, at large values of   it is asymptotically increased 

reaching the limiting value of / 2 . The dependency of the oscillatory wall shear stress Ŵ  on   and   is very 

close to the corresponding one of the flow rate Ĝ  shown in Fig. 1 and therefore, it is omitted here. 

 

 

Figure 2: Oscillatory wall shear stress amplitude ,W A  and phase ,W P  in terms of   for various values of  . 

 

Next in Fig. 3, the oscillatory pumping power, defined as    ˆ / cos cos / 2A PE Adz G G t t   (see Eq. (24)), 

is plotted in terms of  0,2t   for  0.1,1,10   and 20.1,1,10,10    
. The pumping power has two peaks 

within each oscillatory cycle because it consists of the product of the oscillatory pressure times the oscillatory 

flow. Its integral over one cycle is not zero in order to drive the oscillatory flow, although the oscillatory net flow 

is zero. The dependency of the oscillatory pumping power on   and   is similar to the one observed for the 

flow rate, i.e. in general, as   is decreased (the oscillation frequency is increased) its amplitude is decreased and 

its phase lag is increased. This behavior becomes more dominant as   is increased. 
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As pointed above, even when the flow is reversed, which is occurring at the second half of the oscillation 

cycle at time  / 2,t    where the flow rate is negative, the pumping power remains positive. It is seen 

however, in Fig. 3 that at certain times  0,2t  , the oscillatory pumping power may become negative. This is 

more evident at large   and small   and it is occurring because in dense gases and at relatively high frequencies 

the flow rate is completely out of phase with the pressure gradient (it becomes proportional to a sinusoidal 

function). Thus, when the pressure gradient becomes negative and the flow is reversed, the sign of the flow rate 

remains positive for a certain time interval and during this interval the overall pumping power becomes negative. 

This time interval is increased as   is decreased. Of course in rarefied gases and/or low frequencies Ê  is always 

positive because the flow rate is in phase with the pressure gradient. 

 

 

Figure 3: Oscillatory pumping power Ê  over one oscillation period for various values of   and   (pumping 

power is divided by Adz ). 

Finally, in Fig. 4, the oscillatory inertia, ˆ
IF , viscous ˆ

VF  and pressure ˆ
PF  forces are plotted over one 

oscillation period  0,2t   for  0.1,1,10   and  0.1,1,10  . In all cases the force balance equation (23) is 

satisfied. The inertia forces refer to the core flow and the viscous forces refer to the Stokes layer. The phase 

difference between these two forces is always / 2 . In the cases of  0.1   ,  1    and  10    

the viscous and inertia forces lag and lead the corresponding pressure force respectively by a phase angle of 

/ 4 . The amplitudes of the two forces are about the same. Then, in the cases of  10, 1,0.1    and 

 1, 0.1   , the inertia forces almost coincide with the corresponding pressure forces, while the viscous 

forces lag the other two forces by almost / 2  and their amplitudes are close to zero. The flow consists of two 

regions: the core region oscillating in a plug mode and, adjacent to the wall, the oscillating thin viscous or Stokes 

layer with the velocity overshooting. In the cases of  1, 10    and  0.1, 1,10    this behavior is 

reversed, i.e., the viscous coincide with pressure forces, while the inertia forces lead by almost / 2  and their 

amplitudes are close to zero. The flow consists of one oscillating region with no velocity overshooting. This 

description clarifies the behavior of the inertia and viscous forces in terms of   and  . 

5 CONCLUDING REMARKS 

The pulsatile isothermal fully-developed flow in a circular tube is investigated by decomposing the flow into 

the steady and oscillatory parts. The steady part is well-known and therefore, the investigation is focused mainly 

on the oscillatory part, which is numerically solved, based on the time-dependent linear BGK equation, in a wide 

range of the gas rarefaction parameter   and the oscillation parameter  . 

Always as   is decreased (i.e., the oscillation frequency is increased) the amplitude of all macroscopic 

quantities is decreased and their phase lag with respect to the pressure gradient is increased. Actually, at very 

small   the amplitude tends to diminish and the phase lag approaches the limiting value of / 2 . It is important 

to note however, that as   is decreased (i.e., the gas becomes more rarefied) higher frequencies are needed to 

trigger the behavior described above. The amplitude of the oscillatory pressure gradient is taken to be equal with 

the steady pressure gradient. Having this in mind it is useful to note that the pulsatile flow rate is always positive 

and therefore, there is no flow reversal. Furthermore, the amplitude of the wall shear stress is increased with   

being always smaller than the corresponding steady ones. In terms of   the wall shear stress amplitude remains 

almost constant in the free molecular and transition regimes and then it is rapidly reduced. The phase lag of the 

wall shear stress is increased as   is increased.  
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Figure 4: Oscillatory inertia ˆ
IF , viscous ˆ

VF  and pressure ˆ
PF  forces over one oscillation period for various 

values of   and   (forces are divided by Adz ). 

 
The oscillatory pumping power has two peaks within each oscillatory cycle and its integral over one cycle is 

not zero. The nonzero pumping power is needed to maintain the oscillatory flow, even though the oscillatory net 

flow is zero and it is increased as the oscillation frequency is reduced. By adding the oscillatory pumping power 

to the steady one, yields the total power to maintain the pulsatile flow. 

Finally, the inertia and viscous forces, having always a phase difference of / 2 , are computed in a wide 

range of   and  . Their amplitudes are about the same when   . As   is increased and   is decreased the 

inertia forces dominate causing a core oscillating plug flow with a thin Stokes layer. In the opposite situation 

(i.e., as   is decreased and   is increased) the viscous forces become more important causing a typical viscous 

oscillatory flow without velocity overshooting. 
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