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Unsupervised Learning of Generative Models for Robotic
Visual Anomaly Detection

Robert Skilton1 and Yang Gao2

Abstract—Visual anomaly detection is an im-
portant task for robotic maintenance systems,
which are employed in hazardous environments
such as nuclear reactors. Generative Adversarial
Nets (GANs) are a popular method for creat-
ing models that are able to generate complex
data samples such as natural images. Recent
research has demonstrated their capability in
image in-painting and medical anomaly detec-
tion, by searching for the latent space repre-
sentation, from which similar samples can be
generated. This is, however significantly compu-
tationally intensive and operates on timescales
that are prohibitive for real-time applications.
This paper proposes a method for automated
anomaly detection in images, using a regenera-
tion method which is compatible with real-time
applications. The method for image regenera-
tion is shown to work at timescales appropriate
for real-time applications whilst suffering only a
small loss in accuracy over previous techniques.
An anomaly detection method which calculates
residuals between an image and its correspond-
ing regeneration is proposed and evaluated.

I. Introduction
Visual anomaly detection relates to the problem

of using visual information, i.e. images or sequences
of images from a camera system, to detect anoma-
lies which may be damaged or defective items, or
items which were not anticipated to be present.
In our particular application case - a Tokamak
experimental nuclear fusion reactor, we are inter-
ested in both; detecting damaged components (for
an example see Figure 1), as well as detecting
objects that may have been accidentally left behind
following a maintenance campaign.
Generative models have been demonstrated to

be capable of regenerating whole or partial data
structures such as images, using semantic infor-
mation to accurately interpolate and extrapolate
highly complex and nonlinear information. This
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Fig. 1: Within nuclear fusion facilities, as well as
a number of other industrial application domains,
it is important to detect anomalous items using
visual information. The image shows a tile which
has been damaged by being splashed with liquid
metal.

type of image reconstruction is applicable to many
real-world problems including anomaly detection
in industrial and medical applications, and robot
situational awareness. Prediction of future states is
widely seen to be a key component of computational
intelligence. Generative Models such as Variational
AutoEncoders [1] and Generative Adversarial Nets
[2] may form a starting point for such a predictive
intelligence through their ability to predict likely
input data.
Generative Adversarial Nets learn to generate

data samples that are semantically similar to
training samples with high syntactic correctness,
whilst not actually directly learning training data.
As such they are able to generate entirely novel
samples.
GANs have also been demonstrated to have

the ability to reconstruct partial query samples
by searching for the latent distribution that will
generate a sample that is similar to the query
sample. This effectively demonstrates that trained
generative models of this type are able to capture
complex patterns of what is "expected" within
the input data. As such, this type of generative
model is useful not only for filling in missing
information, but can also be used as a measure
of expectedness of parts of the input data. By



learning to generate what is normal, novelty can be
detected by identifying elements that have not been
generated, through measuring the residual between
the generated data sample, and the original query
sample.

In this paper we demonstrate a technique which
is able to detect anomalous or novel items in
images, using an approach that uses generative
black-box modelling, trained using an unsupervised
training method, to learn what "normal" data
samples or images should look like. A method for
generating normal samples close to a given query
image is presented, allowing generated "normal"
data samples to be compared with query data for
novel information. The method is therefore thought
to be capable of detecting novel items without any
a priori information on the nature of those new or
novel items.

II. Related Work

Generative Adversarial Networks [2] are a recent
approach to training generative models based on
an unsupervised, adversarial approach. They have
been demonstrated to have capability in generating
complex natural images [3].
Generative adversarial networks consist of two

main elements, the Generator G, and a Discrimina-
tor D. The role of the discriminator is to estimate
the probability that a given data sample (e.g. an
image) is a natural image as opposed to an artificial
generated image. The role of the generator is to
attempt to randomly generate realistic data samples
that are able to fool the discriminator. As such,
the Generator and the Discriminator are playing
adversarial roles in a 2-player game, which can be
described in the minimax function:

min
G

max
D

V (D, G) = Ex∼Pdata
[log(D(x))]

+ Ez∼Pz(z) [log(1−D(G(z)))]
(1)

The Generator G operates on a simple random
prior, z ∼ pz, and implicitly defines a probability
distribution pg of generated samples G(z). In order
for the generated samples to match the real-world
data, it is desrable for pg to converge to pdata, the
distribution of natural training samples.

With D(x), the output of the Discriminator being
defined as the probability that sample x came
from the data (as opposed to being generated),
the optimisation problem can be defined as back-
propagation by ascending the gradient:

∇θd
1
m

m∑
i=1

[log(D(x(i))) + log(1−D(G(z(i))))] (2)

and descending the gradient:

∇θg
1
m

m∑
i=1

log(1−D(G(z(i)))) (3)

In other words, maximising the log probability
that x(i) is marked as coming from the training
data plus the log probability that z(i) is flagged as
being generated by adjusting the Discriminator pa-
rameters, whilst simultaneously minimising the log
probability that z(i) is marked as being artificially
generated by adjusting the Generator parameters.
Radford et al. [4] and Salimans et al. [5] build

substantially on this foundation by proposing a
number of improvements to the architectures and
training processes, as well as providing means
for assessing the performance of GANs, and pro-
viding insights into the types of representations
learned. It is made clear that continuous, linearly
interpolatable, semantic representations are implic-
itly mapped from the latent space, and this is
demonstrated qualitatively through interpolation
and vector arithmetic in latent space, generated
into image space representations which semantically
follow the interpolation or arithmetic.
Semantic Image In-painting with Deep Gener-

ative Models [6] attempts to make use of GANs
to complete partial images with generated photo-
realistic data. GANs have been shown to be capa-
ble of generating high-quality, realistic images [4],
however completion of partial images required con-
ditioning and constraining on the context provided
by the contents of the partial image. The Generator
once trained on a data set would normally generate
random images which would likely be significantly
different from the partial query image.
In order to achieve this, an attempt is made to

find the encoding in latent space ẑ which most
closely relates to the partial image data x in image
space. Once this is achieved, the image data can be
reconstructed using the generated image resulting
from this encoding, G(ẑ).

With this method and architecture, the authors
were able to generate strikingly impressive results
which, qualitatively look highly realistic, yet per-
formed relatively poorly on standardised signal-
to-noise ratio based metrics such as Peak Signal-
to-Noise Ratio (PSNR). This is attributed to the
networks generating semantically, but not, neces-
sarily visually similar images, questioning validity
of the standard metrics.

Generative Adversarial Networks have been used
in [7] for anomaly detection in medical imaging data.
A GAN was first trained on healthy samples, and
then used to predict anomalies based on methods
in [6] for finding the closest Generated data to the
real, query data.



Fig. 2: GANs can be used to regenerate images
based on learned models of expected contents.
Generated images can therefore be compared with
actual input images in order to automatically
identify regions of novel information that has not
been learned by the model during training.

Anomalies are then detected by adapting the
coefficients of the latent distribution from which
images are generated (z) by backpropagation, and
an anomaly score A(x) is produced, which can be
used for detection of anomalous regions within an
image. The final residual image can be used to
identify anomalous regions.

Another significant disadvantage is that the input
regeneration process requires optimising via back-
propagation which is a significantly time-consuming
process. Bi-directional GANs [8], and the ALI
model [9] provide another method for learning to
map input samples to latent space using a third
element, an Encoder, which is solely responsible
for this task. We utilise a simpler method, a latent
regressor which is also able to perform this task.

This paper applies GAN models, with the capabil-
ity of predicting latent representations to the task
of image regeneration and assess the performance.
This is undertaken with the eventual goal of robotic
anomaly detection in mind.

III. Image Regeneration for Anomaly
Detection

We hypothesise that by using a generative model
trained on normal data to create samples that are
close to the input image and then comparing the 2,
we can find novel information which the generative
model is unable to recreate (See figure 2).

The generative model was trained using only nor-
mal data (with no known anoamlies), in order that
the model could represent what is "normal". I.e. the
model should not have any in-built representation
of what could be classed as anomalous.
During training, the discriminator was simulta-

neously trained to not only discriminate between
real data and synthetic data samples produced
by the generator, but also to predict the latent
representation that the image came from (assuming
the image was created by the Generator).
After training, the generator and discriminator

could then be inverted (see Figure 4) in order

Fig. 3: Examples of normal (non-anomalous) exam-
ples from the image test set on the left, with the
regenerated images on the right. The regenerated
images are visually similar to the originals.

Fig. 4: Architecture of the GAN-based predictive
regeneration network. At training time (top) the
architecture is as with traditional GAN usage, with
the additional output from the discriminator being
a prediction of the latent representation, ẑ. At run-
time (bottom), the architecture is reversed, with
predicted latent space representations being used
to seed the Generator.

to sequentially predict a latent representation ẑ
corresponding to the query image, and then, feeding
this in as the input to the Generator, attemt
to regenerate the query image using the trained
"normal" image generative model.

Regenerations were carried out in this way for
both normal images and images containing anoma-
lies, whilst various methods for comparing the data
samples were assessed. The methods used to assess
the anomalousness of the input, based on the imput
image in combination with other items relating to
the generative model are as follows:
1) Residual scores (difference between input and

regenerated)
2) Discriminator scores for input image
3) Discriminator scores for regenerated image
4) PSNR (Peak Signal-Noise Ratio) of regener-

ated image
5) SSIM (Structural Similarity) of regenerated

image
6) Weighted sum of 1 and 3 (Similar to AnoGAN

score)



Fig. 5: Examples of Anomalous images (those
containing maintenance equipment) on the left,
and attempted regenerations on the right. The
regenerations are noticeably different from the
originals, in particular not featuring the novel
remote maintenance equipment. Our hypothesis
is that these discrepancies can be used to predict
anomalies.

7) Discriminator score difference

This includes several comparitive methods, as-
sessing difference between the input and regener-
ated image, as well as metrics that look at dis-
criminator scores for input images and regenerated
images individually. Figure 3 shows some examples
of image regenerations and the resulting residual
images.

A. Dataset

The experiments were conducted using a custom
dataset relating to visible components within the
Joint European Torus (JET) Tokamak, currently
the worlds largest nuclear fusion energy experiment,
located in Oxfordshire, UK.
The JET dataset consists of approximately

13,000 training images taken from photogrammetric
surveys of the machine, all of which are 64x64
sized samples from larger images taken at various
scales. Images contain views of various metallic
components that form the experimental fusion
reactor.

One subset of the images contains images of only
the JET Tokamak machine. The other contains
additional equipment used for maintenance. The
practical applicability of this is in detecting items
accidentally left behind during a maintenance
campaign, however the technique is independent of
the exact objects deemed to be anomalous, and any
useful results should extend to any unforseen arti-
cles within the environment, such as other objects,
missing components, and damaged components.
In addition, the Kinship Face in the Wild

(KinFaceW-I) [10] dataset, was used as a secondary
test case of regeneration performance.

IV. Architecture and Training

With standard Generative Adversarial Networks
(GANs), the Generator and the Discriminator are
playing adversarial roles in a 2-player game, which
can be described in the minimax function:

min
G

max
D

V (D, G) = Ex∼Pdata
[log(D(x))]

+ Ez∼Pz(z) [log(1−D(G(z)))]
(4)

The Generator G operates on a simple random
prior, z ∼ pz, and implicitly defines a probability
distribution pg of generated samples G(z). In order
for the generated samples to match the real-world
data, it is desrable for pg to converge to pdata, the
distribution of natural training samples.

With D(x), the output of the Discriminator being
defined as the probability that sample x came
from the data (as opposed to being generated),
the optimisation problem can be defined as back-
propagation by ascending the gradient:

∇θd
1
m

m∑
i=1

[log(D(x(i))) + log(1−D(G(z(i))))] (5)

and descending the gradient:

∇θg
1
m

m∑
i=1

log(1−D(G(z(i)))) (6)

I.e. maximising the log probability that x(i) is
marked as coming from the training data plus
the log probability that z(i) is flagged as being
generated by adjusting the Discriminator param-
eters, whilst simultaneously minimising the log
probability that z(i) is marked as being artificially
generated by adjusting the Generator parameters.
Our first modification is to train the GAN not

only to output the probability that the input, x, is a
real image, but also output a prediction of the latent
space representation that the image x came from,
ẑ. Rather than arriving at this through gradient
descent, as in [6], we would like the discriminator
to learn this mapping during training.

The additional network output is parametrised as
a vector of (100) real-valued numbers, output by a
final linear layer in parallel with the logistic sigmoid
layer for predicting image realism probability. The
new output is generated using a single linear layer,
which is trained using an L1 loss:

Lz_pred_i = |zi − ẑi| (7)



so the discriminator update step of the training
program becomes ASCEND:

∇θd
1
m

m∑
i=1

[ log(D(x(i))) + log(1−D(G(z(i))))

+ |zi − ẑi|]
(8)

Other generation methods and loss functions
were tried including use of tanh and Logistic
sigmoids to constrain ẑ to the region of interest,
and L2 and Cross Entropy loss functions, however
the combination of linear outputs with L1 loss was
found to work best in practice.
During training, the mapping from z → G(z) is

constantly changing, and so Lz_pred is not guaran-
teed to converge, however Lz_pred does not affect
the performance of G. One strategy for getting
Lz_pred to converge would be to add a final training
step, updating only the Discriminator, once good
performance has been achieved in the Generator.
Training was carried out over 250 epochs of

the 1000 image dataset, with randomly assigned
initial network weights (no transfer learning). It
is worth noting that although not quantified here,
the addition of the z predictor to the discriminator
network had little observed negative impact on
training of the Generator.

Our implementation made use of the TensorFlow
[11] library, and was trained using Tesla P100 GPUs
on a set of non-anomalous images (See Figure 3).

V. Results
This section summarises results of the evalu-

ations, firstly by examining the performance of
the GAN-based image regeneration method, using
standard metrics of image similarity, and secondly,
looking at the performance of above mentioned
methods for identifying anomalous images and
anomalous contents within images.

A. Regeneration Performance
Regenerations were timed using a single CPU

machine, with identical models and weights being
used for each method. Time taken for the pre-
dictive model to regenerate a batch of 64 images
was approximately 1 second, whilst elapsed time
during the iterative process (1000 iterations) was 90
minutes (5400 seconds). We therefore report a non-
trivial improvement in speed of image regeneration
of the order of 5000 times.
Regenerated image accuracy is assessed using

2 standard metrics, Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM)
[12]. Results are then compared between images
generated using each of the methods.

TABLE I: Summary of PSNR metric results (in
dB)

PSNR
(Backproapagated
Z)

PSNR
(Predicted Z)

Ratio

KinFaceW-I 21.36 15.64 0.78
JET 18.48 12.49 0.68

TABLE II: Summary of SSIM metric results
SSIM
(Backproapagated
Z)

SSIM
(Predicted Z)

Ratio

KinFaceW-I 0.74 0.55 0.74
JET 0.42 0.22 0.52

PSNR results show a mean PSNR of 15.64dB,
compared to 21.36dB for the backpropagation
method. This gives a PSNR ratio of 0.78. Mean
SSIM index values are 0.55 and 0.74 for our
method, and the backpropagation method respec-
tively. SSIM index ratio is therefore 0.74.
A single score ratio can then be obtained by

averaging the two score ratios, giving 0.76, a value
which indicates overall performance.

Quantatative regeneration accuracy results are
summarised and presented in Tables I and II.

B. Anomaly Detection Performance
Anomaly detection performance was assessed for

each of 7 metrics, each using different aspects of
the GAN system to try to predict anomalies.
Each of the identified methods assigns a single

scalar anomalousness score to each image. For each
metric score set, detection performance was tested
across a number of evenly distributed threshold
points in the score range, at each of which accuracy,
precision, and recall were assessed. These are
presented in Table III.

TABLE III: Accuracy at binary image anomaly
classification task, using a mean threshold on metric
scores, and maximum accuracy achieved across the
score range.

Method
Accuracy
(mean
thresh)

Maximum
Accuracy

Residual 0.63 0.63
Discriminator
scores (input)

0.52 0.56

Discriminator
scores
(regenerated)

0.56 0.59

PSNR 0.41 0.53
SSIM 0.41 0.52
AnoGAN-like
score

0.63 0.63

Discriminator
score difference

0.70 0.56



Fig. 6: Examples of anomalous query images and
their regenerations (Columns 1 and 2 respectively),
as well as residual images (Column 3) and detected
anomalous regions (Column 4).

As can be clearly seen, none of the methods
performed particularly well at this challenging task,
although methods using the residual score outper-
form the others in terms of maximum accuracy.
A qualative assessment of the results, examples

provided in Figures 6 and 7 gives some suggestions
as to why the performance may not be ideal.
Although the generative network is unable to
accurately recreate the novel features, the method
for predicting the latent representation using the
full query image is taking the anomalous regions
into account, and therefore the latent representation
found geenrates an image which is not only visually
close to the non-anomalous portions of the query
image, but tries also to be close to the anomalous
portions.

VI. Conclusions
We have demonstrated a new method for de-

tecting anomalous images without any supervised
training, and therefore without any prior knowledge
of the nature of the anomalies to be detected.
Regenerating images using GANs allows accurate re-
constructions of images based on learned generative
models, which represent the normal distribution
of the image data, or external environment. The
latent regressor method allows systems to regen-
erate images with an accuracy slightly lower than
state-of-the-art methods, whilst improving speed
of processing by several orders of magnitude, and

Fig. 7: Several examples of input images which
do not contain anomalies (left), the corresponding
regenerated images (middle), and residual images
(right). The regenerations are fairly similar to the
originals, and hence the residual images do not
highlight anything of particular interest.

thus bringing the techniques into applicability for
real-time applications. In some cases, the method
was able to regenerate details that were not recre-
ated by the backpropagation method, although,
in general both quality metrics still scored higher
for the backpropagated regenerations. This perhaps
indicates limitations in the PSNR and SSIM metrics
for measuring reconstruction accuracy and visual
similarity.
Image regeneration is of significant interest in

novelty and anomaly detection, and the proposed
methods can be further explored in relation to
novelty-based saliency mapping, with application
to robot interactions with an environment, and
autonomous inspection. A number of possible im-
provements to the presented techniques provide
further opportunities for valuable future work.
These include combining the two herein compared
methods, and using predicted latent representation
as starting point for further iterative refinements.
In addition, we would like to explore applying

newer architectures such as the BiGAN system for
similar anomaly detection problems.



Fig. 8: Accuracy curves for each of the metrics.

Fig. 9: Precision-Recall curves for each of the
metrics.

Fig. 10: F0.5 scores for each of the metrics.

Fig. 11: Heat mapped illustrations of the residual
anomaly scores of each of 64 test images from the
non-anomalous set (left) and the anomalous set
(right).
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