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Summary

The drift-reduced global Braginskii system is implemented in GRILLIX, a plasma turbulence code able to treat

diverted geometries, by using the flux-coordinate independent approach (FCI). We solve a 4-field model evolving

the density, the electron temperature, the vorticity and parallel ion momentum. The difference between the system

with the Boussinesq approximation (BS) and the full system (FS) is investigated. The Boussinesq approxiamtion is

widely used since it reduces the numerical and computational complexity significantly. In order to understand the

impact of the Boussinesq approximation a flux tube geometry is chosen as the computational domain. The

conservation of energy and particles is derived and tested within the code, both in FS and BS. Moreover, we will

discuss that the Boussinesq approximation has subtle effects on the energy theorem of the model, and a conserved

energy-like quantity is only obtained if the Boussinesq approximation is applied in a consistent way. We will also

present numerical and computational techniques in order to relax the Boussinesq approximation. The code is

validated by the method of manufactured solutions, which yields the expected order of accuracy.

Keywords: Boussinesq-approximation, turbulence, Flux-coordinate independent (FCI), edge, method of manufactured

solutions (MMS)

1 Inroduction

The understanding of turbulence in the scrape-off layer (SOL) is of major importance for future fusion devices.

Turbulent transport of particles and heat out of the core plasma mainly affects the plasma confinement characteristics

of the entire device [?freidberg] . Large amplitude effects like filaments and blobs may have a strong impact on the

plasma-wall interaction. In the edge of a tokamak, where the plasma has a low temperature and high collisionality,

a fluid model is appropriate. The Braginskii set of equations [?braginskii] is suitable for the description of the effects

in the edge region, however it demands too heavy computational resources. Using the fact that plasma confinement
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is mainly determined by low frequency dynamics, a drift reduced model can be used from the Braginskii system

more suited for numerical treatment [?zeiler]. In addition the Boussinesq approximation is often employed, which

reduces the numerical and computational complexity significantly. However, its use becomes questionable in the SOL

where large fluctuations compared to the background may appear[?xu]. Consequently the relaxation of the Boussinesq

approximation is an important part in a plasma turbulence code suitable for the edge region. Its impact on isolated

blobs has been studied in [?bousblob]. Here we investigate the impact of the Boussinesq approximation on a turbulence

simulation.

2 Physical model

The drift reduced Braginskii system is solved in a periodic slab geometry (ex, ey, ez), where the poloidal coordinate

is y ∈ [ymin, ymax], the radial coordinate is given by x ∈ [xmin, xmax] and the toroidal coordinate is z ∈ [0, 2π]. A

constant magnetic field B = B0ez is applied in the whole domain.

2.1 Equations

We employ the drift reduced Braginskii equations from [?zeiler], where we furthermore neglect electron inertia

(me/mi � 1) and the magnetic induction (βe ≡ 4πpe/B
2 � 1). Cold ions Ti = 0 are assumed, but the electron tem-

perature Te is kept in the governing model. Moreover, the polarization drift is neglected in the advective derivative.

In the following all quantities are normalized according to t̂ = cs
L‖
t, x̂⊥ = x⊥

ρs
, n̂ = n

n0
, φ̂ = eφ

T0
, B̂ = B

B0
, û‖ =

u‖
cs
, ĵ‖ =

j‖
csen0

, x̂‖ =
x‖
L‖
, T̂e = Te

T0
. The normalized quantities are on the left side under hat, which will be dropped

in the following for clarity and conciseness. The perpendicular direction is normalized with the ion sound radius

ρs = c
√
TeMi/eB0. The coordinates are given in terms of some characteristic length scale L‖. This fixes the dimen-

sionless parameter δ = ρs/L‖. Time is measured in terms of L‖/cs with the sound speed cs =
√
Tee/mi. The density,

the magnetic field and the electron temperature are normalized to some reference values n0, B0, T0, respectively.

Under the drift reduction the perpendicular velocities of the electrons and ions can be written as ve⊥ = vE×B + vd

and vi⊥ = vE×B +vpol where the E×B-drift vE×B , the diamagnetic drift vd and the polarization drift up are defined

respectively as vE×B = ez ×∇φ, vd = −ez ×∇pe/n and up = δez × di
dtvE×B . The resulting system of equations in

normalized units can be written as
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∂

∂t
n+ δ−1 [φ, n] = nC(φ)− C(pe)−∇ ·

[
nv‖eb

]
+D(n) + Sn, (1)

∂

∂t
u‖ + δ−1

[
φ, u‖

]
+ u‖∇‖u‖ = − 1

n
∇‖pe +D(u‖), (2)

∂

∂t
Te + δ−1 [φ, Te] =

4

3

[T 2
e

n
C(n) +

7

2
TeC(Te)− TeC(φ)

]
+

2

3

0.71

n
Te∇ ·

j‖
e
b− 2

3
Te∇‖v‖e − v‖e∇‖Te +D(Te) + St, (3)

∇ ·
[
n
∂

∂t
∇⊥φ

]
+ δ−1∇ · n [φ,∇⊥φ] +∇ · nu‖∇‖∇⊥φ = −C(pe) +∇ ·

[
bj‖

]
+D(ω), (4)

j‖
σ‖

= −∇‖φ+
Te
en
∇‖n+ 1.71∇‖Te (5)

where the dimensionless conductivity σ‖ = cs
R0

mi

me

1
0.51νe

and the generalized vorticity is given by ωFS = ∇ · n∇⊥φ.

The operator C(f) = −2 ∂
∂yf models the curvature of the magnetic field. The plasma exhaust from the core is

modeled with the gaussian source terms Sn and St. We add diffusion terms in perpendicular and parallel direction

D(f) = ∇ ·
[
νf∇⊥f

]
+ ∇ ·

[
µf∇‖f

]
respectively. The E × B-advection is written as an Arakawa bracket [φ, f ] =

∂xφ∂yf − ∂yφ∂xf [?arakawa].

2.2 Energy theorem

The total energy theorem of the system consists of the perpendicular kinetic energy E⊥ = 1
2nv

2
e , the ion parallel

kinetic energy E‖ = 1
2nv

2
‖i and the thermal energy ET = 3

2pe. Summing the energies contained in the system yields,

∂

∂t

∫
dV [E⊥ + E‖ + ET ] =

∫
dV [−

j2
‖

σ
+ CSD + Cp]. (6)

where the surface have no contribution with the proper choice of boundary conditions discussed in the next section.

The first term on the right side is the ohmic heating acting as an energy sink. This term appears due to the neglect

of ohmic heating in the temperature equation as was also shown in [?zeiler]. The second part

CSD =
1

2
Miv

2
e(D(n)−D(ωFS)⊥+Sn)+

1

2
Miv

2
‖i(D(n)−D(ωFS)⊥+Sn)+

3

2
Te(D(n)+Sn)+

3

2
n(D(T )+ST )−φD(ωFS)+nv‖iD(u‖)−

Snu2
‖

2

are terms coming from the sources and diffusion. The last correction term Cp = − 1
2nvpol∇ · (v2

‖i + v2
e)) appears in

the energy equation due to the neglect of the polarization current in the advective derivative and is expected to be

small. The energy theorem serves as a diagnostic and will be checked in section 4.

2.3 Boussinesq approximation

The Boussinesq approximation is widely used in the plasma turbulence community [?gbs, ?hermes, ?tokam, ?grillix4]. The

main point of it is the assumption that the fluctuations of the density are very small compared to the background,
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such that one neglects the spatial and temporal dependence of the density (n(x, y, z, t) → n0 = 1) in the vorticity

equation leading to a simplification. One form of the Boussinesq approximation often used is∇·[n d
dt∇⊥φ]→ n0

d
dt∇2

⊥φ

giving the left side of Eq. (4):

n0

B2

[
∂

∂t
∇2
⊥φ

]
+ δ−1 n0

B3

[
φ,∇2

⊥φ
]

+
n0

B
u‖∇‖∇2

⊥φ, (7)

where the Boussinesq vorticity is ωBS = ∇2
⊥φ. No assumptions about the density fluctuations are made in the rest

of the system. Of course this is a strong approximation, especially in the scrape-off layer where large amplitude

fluctuations can occur. The main argument for the Boussinesq approximation is the simpler solution of the vorticity

equation. There is no physical justification for it, if the main interest is the study of turbulence or large amplitude

filaments in the scrape-off layer. One can construct an energy like quantity for the perpendicular kinetic energy

EBS⊥ = 1
2n0ve in the Boussinesq approximation giving the modified energy theorem,

∂

∂t

∫
dV [EBS⊥ + E‖ + ET ] =

∫
dV [−

j2
‖

σ
+ CSD + Cp + CBS ], (8)

The additional terms CBS = [φve +φu‖b] · ∇ωBS have no counterparts in the other energy equations, meaning that

in the Boussinesq approximation the energy is not conserved anymore. In order to preserve the energy one has to

neglect the parallel advetion of ωBS and write φve∇ωBS = ∇ · [φωBSve]−ωBSφ∇ ·ve. Neglecting the divergence of

ve leads to a total divergence and a conserved energy. Consequently the Boussinesq approximation is much more than

just neglecting spatial and temporal dependence of the density in the vorticity equation as it breaks the conservation

properties ∇·j = 0 of the entire system. It requires two more strong assumptions that are not acceptable in general in

the edge region and realistic geometries. Nevertheless one gets a consistent delta-f energy, which has to be conserved

when applying the Boussinesq approximation. A conservative form of the Boussinesq approximation is shown in

[?hermes, ?simankov]

2.4 Numerical implementation

The physical model is implemented in GRILLIX, which in general can treat complex geometries with die FCI approach

[?grillix1, ?grillix2, ?grillix3]. Here we want to test and verify the global model with electron temperature staying in

a slab geometry. In the poloidal planes we have a Cartesian grid such that standard finite differences can be used.

For timestepping the Karniadakis scheme was employed [?bdf3]. Special attention is required in FS when discretizing

the operators ∇ · (n [φ,∇⊥φ]) and ∇ · (nu‖∇‖∇⊥φ
)
, which is realized on staggered grids, see Figure 1. For example

in the operator ∇ · n [φ,∇⊥φ] the perpendicular gradient maps φ to the staggered grid ∇xφi±
1
2 ,j = ±φi+1,j−φi,j

h
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ui+1
2 ,j

ui−1
2 ,j

ui,j

ui,j+1
2

ui,j−1
2

h

Figure 1: Quantity u is mapped to the staggered grid.

and ∇yφi,j±
1
2 = ±φi,j+1−φi,j

h . In order to evaluate the product between the density and the Arakawa bracket on the

staggered grid, the denstiy and potential need to be mapped to the perpendicular staggered grid. The divergence maps

the quantity back to the full grid. This procedure is required in order to get a consistent scheme for the E×B-advection

meaning that one receives the standard Arakawa bracket [φ,∇2
⊥φ] when setting the density n = n0. Otherwise the

stencil skips neighboring grid points (checker-boarding). The numerical implementation of both operators is tested

within the method of manufactured solution in the next section.

3 Verification by the method of manufactured solutions (MMS)

The implementation of the physical model in GRILLIX has been verified with the method of manufactured solutions
[?mms], which is a standard procedure in the community [?mms2, ?mms3]. Our testing functions are given by

f(x, y, ρ, t) = [c1cos(k
ρ
1ρ) + s1sin(kρ2ρ)] · [c+ sin(ψ + tω)] · [e1e−ex·x̄ + c2cos(k

x
1 x̄) + s2sin(kx2 x̄] · [c3cos(ky1 ȳ) + s3sin(ky2 ȳ)]

with x̄ =
2π(x−xmin)

(xmax−xmin)
,ȳ = 2π(y−ymin)

(ymax−ymin) and arbitrary parameters c1, k
ρ
1 , s1, k

ρ
2 , c, ψ, ω, e1, ex, c2, s2, k

x
1 , k

x
2 , c3, s3, k

y
1 , k

y
2

within the interval [0,2] for the density, the parallel momentum, the vorticity and the temperature. All parts of FS

−2.4−2.2−2.0−1.8−1.6−1.4−1.2−1.0−0.8
log(h)
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∆

2
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φ

u ∥
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Figure 2: L2-Norm ∆2 of the numerical error for the complete model. Second order accuracy of the implementation
is confirmed.

were tested separatly. Here only the result for the complete model is presented without the sources Sn and St with
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the parameters in the range of a typical turbulence simulation with σ‖ = 2.5, δ−1 = 580, νn,u,ω,t = 50, µn,u,ω,t = 0.1.

The domain ranges from xmin = 0 to xmax = 64 and ymin = 0 to ymax = 64. The resolution in the parallel direction

of ∆ρ = 2π
16 /2

i and in the radial direction of h = 4.0/2i where i = 0, 1, 2 is covered. As shown in Figure 2 the

numerical error in the L2-norm ∆2 = |unum − uana|2/|uana|2 decreases with second order in the grid spacing as

expected. Consequently the model was implemented correctly.

4 Turbulence simulations

In this section a turbulence simulation is performed for both the BS and FS. The parameters are given by σ0 =

1.5, νn,u,t,φ = 10, µn,u,t,φ = 10−2, δ−1 = 580, h = 0.5, δz = 2π/32, ρs = 1.0, xmax = 64, ymax = 64. Density

and electron temperature sources are modeled with the function S(f) = csrc(ftarget− < f >zonal), where csrc is a

constant rate and ftarget is the target value of the quantity. The volume averaged density and electron temperature,

particle conservation and the energy theorem from Eq. (5) are shown in Figure 3. The energy is conserved up to the
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Figure 3: a) zonal average of n and Te, both quantities are saturated. b) particle conservation. c) Kinetic and
thermal energies of the system, thermal energy ET is scaled by a factor of 50. d) Energy theorem shows good energy
conservation.

correction terms coming from the ohmic heating, sources and diffusion. The correction term Cp was not included in
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the diagnostics suggesting that these terms are indeed very small and can be neglected. The same result holds also

for BS including the additional correction terms, see Eq. (7). In Figure 4 the profiles < n >y,z,t and < Te >y,z,t,

the fluctuation level f̂ =
√
< f2−<f>2

<f>2 >y,z,t, convective and diffusive transport of particles Γn = ΓCn + ΓDn =<

nvE×B >y,z,t + < D∂xn >y,z,t and thermal energy Γp = ΓCp +ΓDp = 3
2 < pevE×B >y,z,t + 3

2n < D(Te) >y,z,t + 3
2Te <

D(n) >y,z,t are shown for BS and FS. Here < ... >y,z,t indicates the poloidal, toroidal and time average, respectively.

The biggest difference is the fluctuation level. There is a slight difference in the profile for both the density and

Figure 4: Comparison between BS (black) and FS (blue) for the profiles, the energy and particle transport and
fluctuation levels.

temperature. Consequently the particle transport is higher in BS. The same holds for the energy transport. From a

qualitative point of view there is no big impact of the Boussinesq approximation on turbulence dynamics at least for

the chosen parameters and geometry. This result might change for steaper gradients in the density. Strong convective

particle transport indicates that transport is dominated by turbulence in the source free region. The sloping convective

transport of thermal energy arises due to the neglec of ohmic heating in the temperature equation as it acts as an

energy transfer term.
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5 Conclusion

Our code GRILLIX was extended to a full 4-field model without the Boussinesq approximation. It has been shown

with the method of manufactured solutions that the model was implemented correctly. Furthermore the code con-

serves the energy and particles of the entire system. Saturated turbulence simulations have shown no big impact of

the Boussinesq approximation on the dynamics. Another investigations with steaper density gradients and general

geometry are needful and might change this result.

6 Outlook

The simulations in this work have been performed in a periodic slab geometry in order to relax on the Boussinesq

approximation and understand the impact of it. The implementation of parallel boundaries is the next step for

this geometry and has been already started. The final goal is the usage of the full capability of GRILLIX meaning

that performing similar turbulence simulations in a realistic diverted geometry with X-point which was done in the

Boussinesq approximation in [?grillix4].
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