
WPCD-PR(18) 19785

D Samaddar et al.

Application of the parareal algorithm to
simulations of ELMs in ITER plasma

Preprint of Paper to be submitted for publication in
Computer Physics Communications

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Application of the parareal algorithm to simulations of

ELMs in ITER plasma

D. Samaddara,, D.P. Costerb, X. Bonninc, L.A. Berryd, W.R. Elwasifd, D.B.
Batchelord

aCCFE, Culham Science Centre,Abingdon, Oxon, OX14 3DB, UK
bMax-Planck-Institut für Plasmaphysik, Germany

cITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France
dOak Ridge National Laboratory, Oak Ridge, USA

Abstract

This paper explores the application of the parareal algorithm to simulations
of ELMs in ITER plasma. The primary focus of this research is identifying
the parameters that lead to optimum performance. Since the plasma dynam-
ics vary extremely fast during an ELM cycle, a straightforward application
of the algorithm is not possible and a modification to the standard parareal
correction is implemented. The size of the time chunks also have an impact
on the performance and needs to be optimized. A computational gain of 7.8
is obtained with 48 processors to illustrate that the parareal algorithm can
be successfully applied to ELM plasma.
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1. Introduction

The ever increasing demand for improving complexities in simulations
requires maximizing the efficient use of computational resources. Traditional
parallelization techniques (such as space parallelization) although reduce the
wallclock time, often reach saturation on modern supercomputing machines.
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Prallelizing the time domain ushers in a new possibility of optimizing resource
utilization. Parallel in time algorithms are not a replacement for but are
complimentary to other schemes of parallelization. This therefore allows
utilization of the gain achieved from existing parallelization and adding a
large improvement in computational gain.

Various parallel in time algorithms exist such as PITA [1], parareal [2],
RIDC [3, 4], PFASST [5]. This work explores the application of the Parareal
algorithm to a complex, non-linear simulation in fusion plasma. Of all the
algorithms that achieve temporal parallelization, the Parareal algorithm has
been the one to have been used the most in non-linear plasma physics simu-
lations over the years [6, 7, 8]. The algorithm was introduced in [2] and its
convergence and stability have been analyzed in great detail in [9, 10, 11, 12,
13, 14, 15, 16, 17].

This work seeks to explore temporal parallelization of simulations of Edge
Localized Modes (ELMs) that play a crucial role in the successful operation
of any fusion device [18, 19, 20, 21, 22]. ELMs are simulated using the
multi-fluid codes SOLPS 5.0 [23, 24] and SOLPS-ITER [25, 26]. ELMs have
been observed in experiments on present machines[27, 28]. These modes
exhibit irregular or quasi-regular periodicity and lead to deposition of huge
power fluxes on plasma facing walls . While ELMs are an area of strong
active research in the fusion community and there is significant information
collected from experimental databases, a complete understanding of ELMs
is still elusive to scientists.

One major hindrance in studying the behavior of ELMs using computer
simulations is their demand for extremely large wall clock times. This is
why adding a new dimension to the parallelization is of significance in ELM
research. A successful application of the Parareal algorithm makes these sim-
ulations much more feasible, allowing the inclusion of more complex physics
while still maintaining a reasonable computation time. However, due to the
strong non-linear phenomena involved, the application of temporal paral-
lelization to simulations of ELMs is unsurprisingly far from straightforward
and this work attempts to identify the computational parameters and regimes
that allow the best performance.

The present research is a follow-up of the work detailed in [8]. [8] demon-
strated that the parareal algorithm is applicable to edge plasma simulations
but relatively ’steady’ states were used as test beds. This work extends that
application to more strongly coupled non-linear phenomena called ELMs.
Due to the complex non-linear behavior of ELMs, the application poses new
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challenges. A modification to the application of the parareal correction allows
convergence and generates computational gain.

This paper is organized as follows: ELMs are described in sec.2 and sec.3
details how they are implemented in the code to be observed in the simula-
tions. Sec.4 describes the Parareal Algorithm and the results are described
in sec.5.

2. ELMs

Edge Localized Modes(ELMs) [29, 30] are periodic bursts of instabilities
at the plasma edge in a tokamak. A tokamak is a fusion device of toroidal
geometry with complex magnetic field lines to confine the burning plasma
of a few hundred million Kelvin within the vessel. As has been mentioned
in [8], simulations of the plasma edge is particularly challenging due to the
interactions with the materials of the walls of the vessel accompanied by both
radial (perpendicular to the magnetic field lines) and parallel (parallel to the
field lines) transports.

It is desirable to operate a tokamak in the H-mode (High Confinement
Mode) [18, 31, 32, 33] since that greatly enhances the energy confinement
time of the plasma. The energy confinement time τ is the characteristic time
scale in which the energy escapes the plasma. In fact, H-mode confinement
time is typically twice that of L-mode (Low Confinement mode). The sharp
transition from L-mode to H-mode occurs when the input heating power is
above a certain threshold. A sharp increase in the profile gradients (such
as of pressure, density or temperature) occurs over a very narrow region
(typically a few cm) at the plasma edge. This results in the formation of the
’edge transport barrier’ or ’H-mode pedestal’ which generates the improved
confinement. The suppression of turbulent transport at the plasma edge
is believed to be the reason behind the improved confinement - although a
complete understanding of the mechanisms at play is still an area of active
research.

While the improved confinement makes the H-mode an attractive oper-
ating regime, the presence of instabilities makes it more challenging. Two
MHD instabilities become prominent. The increasing pressure gradient leads
to ballooning instabilities and the gradient in the edge current generates the
peeling instability. These two instabilities are believed to be responsible for
ELMs [18, 19].
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ELMs are characterized by sudden bursts of energy and a transient rise
of heat loads on the divertor targets of the device. Depending on their am-
plitudes and frequencies, ELMs are classified into types I (large amplitudes
- hence often termed as ’giant’ ELMs) and II and III (smaller, hence often
known as ’grassy’ ELMs). Current predictions estimate [21, 34, 35] the heat
flux due to ELMs on the divertor plates at ITER (the world’s biggest exper-
imental tokamak) will be 20 times larger than what can be tolerated for a
reasonable lifetime of the target materials. This makes research into ELM
control and mitigation of primary importance for making fusion a viable
source of energy.

Despite the devastating impact of tremendous heat loads on plasma facing
components and leading to temporary degradation in confinement, ELMs
have strong positive consequences. They help to control plasma densities
and remove impurities from the plasma core. As a result, controlled ELMs
in H-mode is the desired operational mode for ITER.

3. ELMs in the SOLPS code

The SOLPS 5.0 and SOLPS-ITER codes are described in detail in [23,
24, 25, 26]. SOLPS stands for Scrape Off Layer Plasma Simulator which,
as the name suggests, simulates the Scrape Off Layer (SOL). The SOL is
the region between the wall of the device and the Last Closed Flux Surface
(LCFS), characterized by open field lines. Both codes solve the same set
of equations and SOLPS-ITER is considered to be an upgraded version of
SOLPS5.0. Both codes use the B2.5 package that solve the Braginskii fluid
equations for multiple species or all charge states of every individual element
present in the plasma [20]. The regimes studied are sufficiently collisional to
justify the use of fluid equations. In the present case, the fluid model is used
for both the charged species as well as the neutrals in the plasma as in [20].
Ideally, it is desirable to use a kinetic model to simulate the neutral species
in the plasma, but using the fluid model makes the computations tractable.

It is interesting to note that ELMs are believed to be intrinsically MHD
phenomena while SOLPS is not an MHD code. It must be clarified that
a code like SOLPS is used to study the impact of ELMs (and provide in-
sight into the effects of individual species which is impossible to perform in
an MHD code) rather than the mechanisms for their generation (which is
typically studied using MHD codes [36]).
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ELMs characteristically enhance the radial transport in a plasma. This
is typically simulated by increasing the diffusive or convective coefficient for
a brief period (say 1 ms) at regular intervals. The impact of that increase
successfully lasts much longer than 1 ms and simulates the behaviour of
an ELM-plasma. These simulations have been successfully bench marked
against experiments in the JET and TCV tokamaks [21, 22].

[8] studied relatively simpler cases in the tokamaks MAST and DIIID.
The present work simulates a significantly larger device - ITER - with a much
higher number of species mix (98) in the plasma. The physics involved in
these simulations are very similar to the cases described in [20]. The species
include all ions and neutrals of Deuterium, Tritium, Helium, Beryllium, Neon
and Tungsten and the complex interactions between the various charge states
are included in the simulations. As in [20], prompt redeposition of Tungsten,
which is otherwise released into the plasma as a result of sputtering at the
divertor targets, is included in the calculations. The density gradient driven
diffusivity has been increased by 10 times for 1 ms in every 20 ms to simulate
the ELM triggered plasma. This is illustrated in Fig.1 where the diffusivity
along the outer midplane is plotted for two different times.

A computational grid of size 96×36 as shown in Fig.2 was used as the
fine model for the SOLPS computations of ELMs in the ITER plasma. The
typical size of the timesteps for the fine computations was 1E−5sec. A typical
ELM cycle is shown in Fig.3 where the electron density at the separatrix on
the midplane (henceforth will be referred to as nesepm) and the maximum
total power flux (henceforth referred to as pwmxap) on the outer target
are plotted against time. It is seen that both these quantities are greatly
increased during the ELM and then reduce from the peak values during the
ELM-crash phase.

4. Parareal algorithm

The parareal algorithm was first introduced in [2]. It is described in
detail in [8]. The algorithm uses a predictor-corrector approach with an
accurate fine (F) integrator and another coarse integrator (G). Identifying
the optimum coarse predictor is generally the biggest challenge in all complex
applications. The parareal correction is given by eq.1.

λki+1 = F (λk−1
i ) +G(λki )−G(λk−1

i ) (1)
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Figure 1: The particle density gradient driven radial diffusivity is increased by 10 times
to simulate ELMs.
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Figure 2: A grid of size 96×36 was used for the fine or serial computation of the ELM
plasma in the ITER device.
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Figure 3: A typical ELM cycle using the SOLPS5.0 code package with the Fine solver is
demonstrated.
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λki+1 is the initial state for the (i +1)th time slice at the kth iteration. At
the kth iteration λki is evolved to λki+1 using F(λki ) and G(λki ).

Just as in [8], this paper also utilizes the event-based approach given in
detail in [37, 38, 39].

The coarse and fine calculations are repeated across a number of parareal
iterations k until convergence is achieved. Parareal convergence across a time
chunk or processor is said to have been achieved when the ’defect’ between
two successive fine calculations (k and k − 1) across that processor is below
a tolerance value. The sum of this defect in solutions across a time chunk
between ti and ti−1 is defined by

ζki =

∫ ti

ti−1

∣∣λk(t)− λk−1(t)
∣∣

|λk−1(t)|
dt. (2)

The solution is then converged for time slice i if,

ζki < tol, ∀i ≤ I. (3)

5. Results

The cases explored in this work used both the SOLPS5.0 and SOLPS-
ITER codes. In some cases, results from SOLPS-ITER were more stable
than those from SOLPS5.0. The value of tol in eq.3 was 0.005. The choice
of this value is explained in [8].

Following the work in [8], a reduced grid model of size 48×36 with bigger
timesteps was used as a coarse predictor for the Parareal implementation.
While this approach was relatively straightforward for the cases explored
in [8], the treatment turned out to be much more challenging for a plasma
with ELMs. The parareal solutions had spurious rises and falls in the plasma
quantities such as temperature and density throughout the ELM cycles. One
such ’catastrophic’ case is illustrated in Fig.4 where there is a rise in nesepm,
the electron density at the separatrix on the midplane (it must be noted that
other quantities like temperature and ion densities also behave similarly)
when there is expected to be a decrease as is seen in Fig.3a. This was a
simulation using 16 processors, with ntimF = 100 and dtG = 10 ∗ dtF . ntim
is the number of time-steps solved per processor and dt represents the size of
each time step. The subscripts F and G represent the fine and coarse cases,
respectively. It may be noted that ntimF ∗ dtF = ntimG ∗ dtG is the size of
each ’time chunk’ solved on every processor.
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Figure 4: A spurious rise in the electron density at the outer midplane obtained from the
parareal computation using a grid of 48× 36 and dtG = 10 ∗ dtF as the coarse solver.
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A closer look at the parareal computation shows that in this case, the
unwanted ELM rise starts at the 14th time chunk, which subsequently affects
successive time chunks solved by other processors. Plotting nesepm against
time for both k= 1 and k= 2 in Fig.5 showed that the rise occurs at the
parareal iteration k= 2, which somewhat implies that the parareal correction
as given by eq.1 might be the cause for this behaviour.

A possible explanation might be obtained if we take into account that the
radial profiles and the subsequent plasma dynamics vary extremely rapidly
during an ELM cycle. This is illustrated for the electron density and tem-
perature along the midplane in Figs.6 & 7. With the fact that eq.1 is an
algebraic correction at all grid points, it is not very surprising that after
applying eq.1, the plasma profiles change to an ELM rise phase while it is
expected to be in an ELM crash phase or vice versa.

This issue due to the rapidly varying profiles during an ELM is a cause for
concern since the success of the parareal algorithm depends on eq.1. However,
implementing a restriction to the parareal correction appeared to solve the
problem. At the kth parareal iteration, the value of each primary variable
was not allowed to vary more than that of the fine value computed at the
(k − 1)th iteration by X%. To ensure that the study was restricted to the
correction to the grid points and to rule out any impact of choosing a dtG
greater than dtF , dtG = dtF = 1E − 5s was chosen with a grid of 48×36 for
the coarse predictor. A series of simulations were performed with different
values of X = 1, 5, 20, 40. While the undesirable behaviour in the solutions
was eradicated with a decreasing value of X, the number of iterations required
for parareal convergence was minimum at X = 1.

With this promise, the next numerical parameter that was explored was
the size of the time chunk solved per processor. This involved varying ntimF

and subsequently varying ntimG, keeping dtF and dtG constant. The size of
the time chunk has been a factor influencing parareal performances in a large
number of previous applications [6, 8] and was found to be a strong one in
the present case. Once again with restricting the time step sizes such that
dtG = dtF = 1E−5s, a series of simulations were performed with 8 processors
or time chunks varying the values of ntim. The results are listed in Table1. It
was observed that ntim = 200 allowed the best parareal performance. This
dependence on ntim has been observed many times but a full mathematical
understanding of the parareal algorithm with respect to it is still unclear.

It is believed that SOLPS-like simulations with dt = 1E − 5s marginally
resolve ELM physics with very rapidly varying plasma dynamics. A step
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Figure 5: The parareal solutions are very sensitive to initial values in case of ELMs.
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Table 1: The number of iterations were minimum at ntimF = ntimG = 200 with parareal
correction restricted to X = 1.

ntim Parareal iteration k
20 4
200 2
300 3
400 No convergence

size of 1E − 6s is desired. But a serial computation of a single ELM cycle
would then take about 16.25 days! However, once the optimum parameters
(ntimF = 200 & X = 1) were identified, a set of parareal simulations were
performed with dtF = 1E−6s & dtG = 1E−5s. With the serial and parareal
wallclock times defined as Tser and TPR respectively, the computational gain
is defined as gain = Tser

TPR
. A computational gain of 7.8 was achieved with 48

processors, which is expected to rise with increasing processor counts. The
parareal solutions obtained for this case are shown in Fig.8 which illustrates
that ELM simulations with smaller than marginal timesteps (dt) can be
performed using the parareal algorithm.

6. Conclusion

The parareal algorithm is shown to work for a complex case of ELM
simulations in ITER plasma with 98 species. The rapidly changing radial
profiles during an ELM cycle pose unique challenges for this application.
A modification to the application of the parareal algorithm alleviates the
problem. The parareal performance is also found to be sensitive to the size
of the time chunk solved per processor. An optimum value for it is identified,
and a simulation with 48 processors yielded a computational gain of 7.8.

This application illustrates that ELM simulations can become more tractable
using the parareal algorithm. As a result more complex physics can be in-
corporated into the model, such as kinetic neutrals, and long simulations of
multiple ELM cycles may be performed within much shorter wall clock time.
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