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Abstract

We consider a time-dependent diffusion-reaction model for two vector unknowns, satisfying a divergence-
free constraint, and the associated scalar Lagrange multiplier. The motivation for studying such model is
provided by a plasma physics problem arising in the modeling of nuclear fusion devices (Braginskii equations),
where the two vector unknowns represent ion and electron velocities, the scalar unknown is the electrostatic
potential and the divergence-free constraint reflects the physical assumption of quasi-neutrality. We first
recast the problem in a form reminiscent of the standard Stokes problem, which allows us to recognize
the importance of using a compatible discretization for the vector and scalar unknowns, then propose and
analyze a stable finite element formulation. Following this, we address some peculiar geometrical aspects
of the model, showing how they can be naturally dealt with within our formulation, and finally discuss a
solution procedure for the resulting linear system based on the classical Uzawa algorithm. Some numerical
experiments complete the paper.

Keywords: Finite elements, inf-sup stable discretization, Braginskii equations, quasi-neutrality condition,
plasma physics, tokamak modeling
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1. Introduction1

The magnetic confinement approach to nuclear fusion for civil applications relies on the construction of2

large toroidal devices where a hydrogen plasma is heated while being confined by a strong magnetic field.3

In order to obtain the plasma ignition, three simultaneous conditions must be fulfilled: high temperature,4

high density and long confinement time. Ensuring these conditions has proven to be a major technological5

challenge, which must be supported by a deep physical understanding of the involved processes; in this6

context, an important role is played by the use of numerical models.7

In this paper, we are interested in fluid models which are used to describe the heat and particle fluxes
occurring in the peripheral region of the confined plasma, the so-called Scrape-off Layer (SOL) [1]. A suitable
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model for the SOL is the following fluid system (see (2.1e)–(2.3i) in [2, § 2])

∂tnα +∇ · (nαuα) = Sn,α (1)
∂t (mαnαuα) +∇ · (mαnαuα ⊗ uα + πα)

= −∇pα + eαnα
(
−∇Φ+ 1

cuα ×B
)
+Rα + SM,α (2)

∂t
(
3
2pα

)
+∇ ·

(
3
2pαuα + qα

)
+ pα∇ · uα + πα : ∇uα = Qα + ST,α (3)

∇ · J = 0. (4)

Here, α denotes the various ion species as well as the electrons, characterized by their mass mα, charge
eα, number density nα, velocity uα and pressure pα; Φ and B denote the electrostatic potential and the
magnetic field, respectively, c is the speed of light, πα and qα are momentum and energy fluxes, Rα and
Qα represent the momentum and energy exchanges among the various species, and Sn,α,SM,α, ST,α are
particle, momentum and energy sources, respectively. Finally, J is the current resulting from the plasma
flow, defined by

J =
∑
α

eαnαuα.

Constitutive equations for πα, qα, Rα and Qα are derived in [2] from the kinetic description of the system,8

the source terms are assumed to be prescribed and the magnetic field is assumed to be known and constant,9

thereby assuming that the equilibrium field, produced by external coils and by the plasma current, is much10

larger than the changes in B caused by the transport processes; under such assumptions, and provided11

that suitable initial and boundary conditions have been specified, system (1)–(4) represents a closed initial-12

boundary value problem.13

Equation (4) is referred to as quasi-neutrality condition, since it prevents the local build-up of electric14

charge. For a plasma, net electric charge appears on spatial scales comparable with the Debye length, which15

is much smaller than the size of technical devices, so that quasi-neutrality is a correct assumption. Such an16

assumption has a fundamental impact on the fluid model, for which an interesting parallel can be drawn17

with the incompressibility assumption in standard fluid mechanics; this is one of the main focuses of the18

present paper and will be discussed in further details in the following.19

For typical fusion devices, the Lorentz force terms proportional to ∇Φ and uα × B are by far the20

dominating ones in the momentum equation (2), together with the pressure gradient terms, so that the21

geometry of B, and in particular the topology of its flux surfaces, are of paramount importance in the study22

of (1)–(4). Given the complexity of the magnetic geometry in technical devices (see for instance [3]), its23

accurate representation is a challenge for any numerical method, and has motivated many authors to explore24

various approaches concerning the numerical discretization and the choice of the computational grid.25

A class of models based on an approximation of (1)–(4) known as drift-reduced equations [4, 5], aiming26

at extracting the dominant physical processes, isolating some stiff terms, and mitigating the computational27

cost, is used in various codes for the simulation of the SOL, either in the transport or the turbulent regime,28

such as [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Despite the large variety of the proposed drift-reduced29

models, common aspects of such models are: a) projecting the momentum equation (2) in the directions30

parallel and perpendicular to B; b) using the resulting perpendicular momentum equation to obtain, upon31

discarding some small terms, an algebraic expression for the perpendicular velocity (the “drifts”), which32

is then substituted at the continuous level in the remaining equations; c) substituting nα and uα into (4)33

to obtain an elliptic equation for Φ, again at the continuous level, and finally d) discretizing the resulting34

system.35

Concerning the numerical discretization, the importance of a flexible strategy in the construction of the36

computational grid has been recognized in many publications. A first requirement, as pointed out in [10], is37

that, due to the strong anisotropy of the problem in the directions parallel and perpendicular to B, “[…] it is38

essential that the mesh be aligned with the flux surfaces; i.e. for most triangles, there should be one side with39

its two extremities lying on the same flux surface.” Another important aspect is allowing for local refinement40

in regions with sharp gradients and regions which are particularly critical for the correct computation of41

the source terms, such as the divertor plates. Finally, it is desirable to extend the grid until the wall of42
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the confinement vessel, which typically has an irregular geometry. The proposed approaches include block43

structured grids with cut cells [18], fully unstructured triangular grids [19, 20, 10, 21, 22, 23, 24], and hybrid44

grids combining both structured and unstructured blocks [25, 26].45

As an alternative to the drift-reduced approach, one could consider solving directly (1)–(4), taking46

advantage of the increase in available computational power with respect to the time when the first drift-47

reduced models were introduced. In fact, this would be appealing for at least two reasons: on the one hand,48

the structure of (1)–(4) is the same encountered in compressible fluid dynamics problems, as opposite to the49

Poisson bracket nonlinearity appearing in the drift-reduced system, which would allow using more standard50

and well established techniques; on the other hand, such system offers the possibility to treat the electric51

potential Φ as the Lagrange multiplier associated with the quasi-neutrality condition, as it will be discussed52

in the rest of the present paper, thereby providing a solid ground for its treatment both from the continuous53

and the discrete viewpoint.54

As a first step towards exploring the feasibility of discretizing directly (1)–(4), we consider here an
extremely stripped-down version of the problem, retaining the following ingredients: the velocities u and ue
of one ion species and of the electrons, respectively, the corresponding Lorentz force terms −∇Φ + u ×B
and ∇Φ− ue ×B, and the quasi-neutrality condition. The resulting system is

∂tu = −∇Φ+ u×B + ν∆u+ f (5)
0 = ∇Φ− ue ×B + νe∆ue + fe (6)

∇ · (u− ue) = 0. (7)

Notice that in (5)–(7) the electron mass has been neglected, which is an assumption also adopted in the drift-55

reduced models, and the dissipative effects have been represented by simple diffusive terms with prescribed,56

constant coefficients ν,νe. Concerning the computational domain, we focus on transport processes and57

consider an axisymmetric problem, so that, in a cylindrical coordinate system R, z, ϕ, each quantity is a58

function of two spatial variables R, z; despite this reduction to a two-dimensional computational domain,59

however, we retain the three-dimensional character of the velocity vectors u,ue as well as of the magnetic60

field B, in order to represent the effects associated with the nontrivial geometry of the problem.61

The goal of this paper is addressing the following aspects: mathematical well-posedness of (5)–(7), defi-62

nition of a suitable finite element discretization for such problem, definition of an efficient solution procedure63

for the computation of the electric potential Φ, and providing a correct framework for the treatment of the64

three-dimensional geometrical aspects. The well-posedness derives from a stability argument for Φ, regarded65

as Lagrange multiplier; a stable finite element formulation can then be derived using classical finite element66

spaces for the Stokes problem. The computation of Φ can be performed adapting the Uzawa algorithm,67

taking into account that, due to the Lorentz force, the operator is not self-adjoint. Finally, to handle the68

geometrical complexity we introduce three ingredients: the problem is treated in three spatial dimensions,69

introducing the axial symmetry through the finite element space; a hybrid, unstructured mesh composed70

both of triangles and quadrilaterals is adopted; a nonstandard representation for the discrete velocity is71

introduced.72

The rest of the paper is organized as follows: § 2 discusses some qualitative aspects of (5)–(7), relating73

them to the full system (1)–(4) as well as to the drift-reduced models; § 3 summarizes the geometry of74

the problem; § 4 and § 5 are devoted to the well-posedness of the continuous and discrete formulations,75

respectively; § 6 addresses various issues which are crucial for an efficient and accurate computational76

strategy; finally, § 7 presents a numerical verification of the proposed method. § 8 draws some conclusions77

and provides some outlooks.78

2. Qualitative aspects of the model79

As already mentioned, the Lorentz force terms are the dominant ones in (5) and (6), so that the solution
of (5)–(7) is characterized by

u⊥ ≈ u⊥
e ≈ −∇Φ×B

B2
, (∇Φ)‖ ≈ 0, (8)
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where the superscripts ‖ and ⊥ denote the parallel and perpendicular directions to B, respectively (see80

also § 3 for additional details). This qualitative behavior is also relevant for the complete problem (1)–(4)81

and defines one of the fundamental drifts accounted for in the drift-reduced models, namely the E cross B82

drift uE = −∇Φ×B
B2 . The main problem with (8) is that nothing can be concluded about the electrostatic83

potential Φ, and more precisely about its variation in the directions perpendicular to B. In fact, since (8)84

yields equal velocities for ions and electrons, condition (7) is trivially satisfied for any choice of Φ. Hence,85

terms other than the Lorentz force in (5)–(7), despite being smaller that the latter, have a fundamental86

importance in shaping the electrostatic potential and, by virtue of (8), the ion velocities. Such terms are87

the ion inertia ∂tu and the momentum dissipative fluxes ν∆u and νe∆ue, which appear in our reduced88

model as proxies of the material derivative of the ion momentum and of the friction terms of the complete89

model (1)–(4), respectively.90

In the terminology of the drift-reduced models, the uE drift is said to be ambipolar, meaning that it91

does not differentiate among positive and negative charged particles, while other terms in the momentum92

equations which differentiate among ions and electrons are collectively referred to as polarization current.93

The computation of Φ taking into account the polarization current is a delicate component of the drift-
reduced models. A typical approach is separating this computation in two steps: along the parallel and the
perpendicular directions to B. In the parallel direction, i.e. along the magnetic field lines, the condition
(∇Φ)‖ = 0 from (8) can be used (or, more precisely, its correspondent form derived from the electron
momentum equation in (2)). For open field lines, i.e. for magnetic filed lines which intersect the boundary
of the domain, this can be used to “propagete” a boundary condition for Φ inside the domain, thereby
fully determining the electrostatic potential. For closed field lines on the contrary, i.e. for magnetic filed
lines which close upon themselves inside the domain without intersecting the boundary, prescribing (∇Φ)‖

is not enough and (∇Φ)⊥ must be taken into account. A possible approach is performing some algebraic
manipulations on (1)–(4) in order to isolate an elliptic problem for Φ of the form (omitting some terms
which are not relevant for the point being discussed)

∇ ·
(
σ‖(∇Φ)‖ + σan(∇Φ)⊥

)
= rhs. (9)

However, while σ‖ and the right-hand side of (9) are derived directly from the complete problem (1)–(4),94

σan is “an ad hoc anomalous perpendicular conductivity” (see [10, § 2.7]), and hence the term involving the95

perpendicular derivatives of Φ is not consistent with the complete Braginskii equations. Such an approach96

is used in the SOLPS family of models [8, 9, 11, 12], which are used to simulate the SOL in axisymmetric97

devices for long time scales and thus represent a direct reference for our work. As observed in [11, § 3],98

despite the possibility to justify, in principle, the introduction of σan by means of physical arguments, in99

practice this parameter is treated as a tuning parameter to ensure convergence of the numerical scheme and100

can have a significant impact on the computed solution.101

In this paper we explore an alternative approach which does not rely on the introduction of any anomalous102

perpendicular conductivity but rather computes Φ by regarding it in (5) and (6) as the Lagrange multiplier103

associated with the (charge) incompressibility condition (7), and then resorting to standard techniques for104

the incompressible Stokes problem.105

We emphasize that the analogy between the quasi-neutrality condition and the incompressible fluid106

dynamics is not due to a simple formal correspondence of our reduced model (5)–(7) with the Stokes system;107

rather, there is a deep physical correspondence between the quasi-neutrality assumption in the Braginskii108

system (1)–(4) and the motivation for considering nondivergent flows in standard fluid dynamics. In fact, in109

fluid dynamics a divergent mass flow results in density variations, which cause pressure fluctuations through110

the equation of state, which ultimately tend to counteract the density variations themselves. Whenever111

the dynamics of these fluctuations is much faster than the time scale of the problem being considered112

(i.e. for low Mach numbers) it is justified, and computationally convenient, to eliminate them altogether113

enforcing a divergent free mass flow. Having eliminated the density variations from the system, the pressure114

fluctuations are not determined anymore by the equation of state, but instead take the role of Lagrange115

multiplier ensuring the fulfillment of the zero divergent constraint. For a plasma, a current with nonvanishing116

divergence results in local charge build-up, which causes electric potential fluctuations through the Maxwell117

4



equations, which ultimately tend to restore an electrically neutral condition. Since the dynamics of these118

electric oscillations is much faster than the time scales considered in the SOL modeling, it is justified to119

eliminate the charge fluctuations enforcing a nondivergent current. This however prevents us from using120

the Maxwell equations to compute Φ, which instead can be determined as the Lagrange multiplier ensuring121

local quasi-neutrality. This is outlined in table 1. For a more rigorous treatment of the quasi-neutral limit

compressible fluid dynamics incompressible fluid dynamics
prognostic continuity equation for ρ time independent constraint ∇ · u = 0
state equation: p = p(ρ) p Lagrange multiplier for ∇ · u = 0
sound waves
plasma, local charge build-up plasma, quasi-neutrality
prognostic equation for ρc =

∑
α eαnα time independent constraint ∇ · J = 0

Maxwell equation: Φ = Φ(ρc) Φ Lagrange multiplier for ∇ · J = 0
plasma frequency

Table 1: Schematic comparison of the assumptions of incompressibility and quasi-neutrality in fluid mechanics and plasma
physics, respectively. Notice the correspondence between the mass and charge densities, ρ and ρc, as well as between the
pressure p and the electrostatic potential Φ.

122

we also refer to [27, 28].123

3. Problem geometry124

To simulate technical devices, the governing equations for the plasma flow must be solved in the three-125

dimensional region occupied by the plasma itself. Hence, (5)–(7) must be considered within a bounded126

domain Ω ⊂ R3 and u, ue, B, as well as the forcing terms, are vector fields taking values in R3. At the127

same time, given that an important class of fusion devices, the so-called tokamaks, is characterized by axial128

symmetry, and given that in many cases an axially averaged computation, which neglects the symmetry129

breaking fluctuations of the flow, can be considered satisfactory, two-dimensional simulations in the R − z130

plane are also of great interest (this is indeed the case considered in the SOLPS code suite). This motivates131

us to consider both two and three-dimensional versions of (5)–(7).132

A convenient way to handle both formulations is working with the weak form of the problem, deriving the
axially symmetric case from the general three-dimensional one. The three-dimensional weak form of (5)–(7)
is readily obtained multiplying each equation by a test function, formally integrating over Ω, integrating by
parts and using the homogeneous Dirichlet boundary conditions for ue and u, arriving at∫

Ω

[∂tu · v + ν∇u : ∇v − Φ∇ · v − u×B · v]dx =

∫
Ω

f · v dx, (10)∫
Ω

[νe∇ue : ∇ve +Φ∇ · ve + ue ×B · ve]dx =

∫
Ω

fe · ve dx, (11)∫
Ω

∇ · (u− ue)q dx = 0. (12)

To obtain the axially averaged problem, we need to outline the design of a tokamak device, as illustrated
in figures 1 and 2 (see also [1]). Let us first introduce cylindrical coordinates R, z, ϕ. The magnetic field B
winds around the magnetic axis µ and around the major axis z, defining field lines and magnetic surfaces.
Inner magnetic surfaces are closed and covered by either a single field lines or, for rational surfaces, by a
collection of field lines, while outer magnetic surfaces intercept the boundary of the domain; closed and
open magnetic surfaces are separated by the last closed magnetic surface. Half planes R ≥ 0, ϕ = Const
are called poloidal planes. Due to the toroidal symmetry of the device, the three-dimensional domain Ω can
be represented as Ω = Ω̃ × [−π, π), where Ω̃ is the poloidal section Ω ∩ πpol and πpol is the poloidal plane
ϕ = 0. The intersection of the last closed magnetic surface with πpol is the separatrix; moreover, on πpol,
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Figure 1: Outline of the design the a tokamak device. The magnetic field B winds around the magnetic axis µ and the major
axis z. This plot shows a closed magnetic surface, i.e. a closed surface covered by a single magnetic line.

the O point and the X point are defined by the intersection with the magnetic axis and the self-intersection
of the separatrix, respectively. The separatrix also defines three regions: the main plasma, the scrape-off
layer and the private region, as depicted in figure 1, right. The magnetic field identifies the parallel direction
b = B/B. Notice that in general b is not perpendicular to the poloidal plane, except at special points such
as the O point and the X point. The two-dimensional, toroidally averaged version of (10)–(12) is obtained

Figure 2: Outline of the design of a tokamak device. Left: three-dimensional view showing two closed magnetic surfaces, the
magnetic axis µ, the cylindrical coordinates R, z, one poloidal plane πpol and the O point, i.e. the intersection of the magnetic
axis with the poloidal plane. Right: view of the poloidal plane showing the O point and the X point, one closed magnetic
surface (dash-dot line), the separatrix (continuous line), two open field lines (dashed line and dotted line) and the two divertor
plates d. The right plot shows also the main plasma regions: the main plasma a, the scrape-off layer b and the private region c.

considering both test and trial functions which are independent from the homogeneity coordinate ϕ. This
leads to ∫

Ω̃

[
∂tũ · ṽ + ν∇ũ : ∇ṽ − Φ̃∇ · ṽ − ũ×B · ṽ

]
Rdx̃ =

∫
Ω̃

f · ṽRdx̃, (13)∫
Ω̃

[
νe∇ũe : ∇ṽe + Φ̃∇ · ṽe + ũe ×B · ṽe

]
Rdx̃ =

∫
Ω̃

fe · ṽe Rdx̃, (14)∫
Ω̃

∇ · (ũ− ũe)q̃ Rdx̃ = 0, (15)

with dx̃ = dR dz. Functions denoted by a tilde can be regarded either as functions of the two variables
R, z (and possibly time), defined on Ω̃, or as functions of R, z, ϕ defined on Ω and constant in ϕ. Despite
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the reduction to a two-dimensional problem, the vector fields in (13)–(15) retain their three-dimensional
character, so that ũ, ũe and ṽ, ṽe take values in R3; the differential operators, expressed with respect to the
coordinate unit vectors eR, ez, e−ϕ (where e−ϕ = −eϕ, the signs being chosen so that the resulting base is
right-handed) are

∇ṽ =

 ∂RṽR ∂z ṽR −R−1ṽ−ϕ

∂Rṽz ∂z ṽz 0
∂Rṽ−ϕ ∂z ṽ−ϕ R−1ṽR

 , ∇ · ṽ = ∂RṽR + ∂z ṽz +R−1ṽR.

We notice that the weak form (13)–(15), combined with the vector notation, allows writing the axisymmetric133

problem in a much simpler form compared to the strong, component form used, for instance, in [11]. Finally,134

we mention that, for all practical applications, R is strictly larger than zero in Ω̃, i.e. the plasma does not135

reach the major axis of the device.136

4. Analysis of the continuous model137

In this section, we consider the well-posedness of the reduced model (5)–(7) in three space dimensions
with homogeneous Dirichlet boundary conditions for the ion and electron velocities, without assuming any
symmetry of the system. Nevertheless, our analysis readily extends to the axisymmetric case (13)–(15) using
the fact that, thanks to R ≥ Rmin > 0,

(p̃, q̃)∼ =

∫
Ω̃

p̃q̃ Rdx̃

defines an equivalent scalar product in L2(Ω̃). Hence, let Ω denote a bounded domain in R3 with Lipschitz138

continuous boundary ∂Ω, and let Lp(Ω), for either p = 2 or p = ∞, and Hk(Ω), for k = 1, 2, denote the139

standard Lebesgue and Sobolev spaces on Ω. We will also need the subset H1
0 (Ω) ⊂ H1(Ω) of the functions140

with vanishing trace on ∂Ω, its dual space H−1(Ω) = (H1
0 (Ω))

′, the subspace L2∫
=0

(Ω) ⊂ L2(Ω) of functions141

with vanishing mean value and H1∫
=0

(Ω) = H1(Ω) ∩L2∫
=0

(Ω); both H1
0 (Ω) and H1∫

=0
(Ω) are endowed with142

the norm ‖∇q‖L2(Ω) for a generic function q. The corresponding vector spaces (H1
0 (Ω))

d, (L2(Ω))d and143

(H−1(Ω))d are denoted by H1
0(Ω), L2(Ω) and H−1(Ω), respectively. Finally, we introduce the Bochner144

function spaces Lp(0, T ;X) and Lp(0, T ;X), for p = 2 or p = ∞, where (0, T ] is the time interval and X,X145

stand for any of scalar or vector function spaces introduced above. In the following, the domain Ω will be146

omitted whenever there is no ambiguity.147

Let B ∈ L∞, f ,fe ∈ L2(0, T ;H−1) and u0 ∈ L2. The variational formulation of (5)–(7) reads as
follows: find u ∈ C0(0, T ;L2) ∩ L2(0, T ;H1

0), ue ∈ L2(0, T ;H1
0) and Φ ∈ L2(0, T, L2∫

=0
) such that, for a. e.

t ∈ (0, T ],
d

dt
(u,v) + ν(∇u,∇v)− (Φ,∇ · v)− (u×B,v) = 〈f ,v〉 , (16)

νe(∇ue,∇ve) + (Φ,∇ · ve) + (ue ×B,ve) = 〈fe,ve〉 , (17)
(∇ · (u− ue), q) = 0 (18)

for all (v,ve, q) ∈ H1
0 ×H1

0 × L2∫
=0

, with
u(t = 0) = u0.

Well-posedness of this weak formulation is ensured by the following result.148

Theorem 1. Let B, f , fe and u0 be as above. Then there exists a unique weak solution (u,ue,Φ) of (16)–149

(18) on [0, T ].150

Proof. Since H1
0 andH1∫

=0
are separable, there exist two dense sequences {v̄i}, {q̄i}; let Vn = span{v̄1, · · · , v̄n}

and Qn = span{q̄1, · · · , q̄n}. For ε1, ε2 > 0, define

uε
n =

n∑
i=1

aεi (t)v̄i, uε
e,n =

n∑
i=1

bεi (t)v̄i, Φε
n =

n∑
i=1

cεi (t)q̄i

7



such that, for i = 1, . . . , n,

((uε
n)

′, v̄i) + ν(∇uε
n,∇v̄i)− (Φε

n,∇ · v̄i)− (uε
n ×B, v̄i) = 〈f , v̄i〉 , (19)

ε1((u
ε
e,n)

′, v̄i) + νe(∇uε
e,n,∇v̄i) + (Φε

n,∇ · v̄i) + (uε
e,n ×B, v̄i) = 〈fe, v̄i〉 , (20)

ε1((Φ
ε
n)

′, q̄i) + ε2(∇Φε
n,∇q̄i) + (∇ · (uε

n − uε
e,n), q̄i) = 0, (21)

with uε
n(t = 0) = Pnu0, uε

e,n(t = 0) = 0 and Φε
n(t = 0) = 0, Pn denoting the orthogonal projection onto Vn

with respect to the L2 inner product. The existence and uniqueness of an approximate solution on [0, T ]
is ensured by Picard’s theorem. For i = 1, . . . , n multiply (19), (20) and (21) by aεi (t), bεi (t) and cεi (t),
respectively, sum over i and add the resulting equations to get

1

2

d

dt
‖uε

n‖2L2 +
ε1
2

d

dt
‖uε

e,n‖2L2 +
ε1
2

d

dt
‖Φε

n‖2L2

+ ν‖∇uε
n‖2L2 + νe‖∇uε

e,n‖2L2 + ε2‖∇Φε
n‖2L2 = 〈f ,uε

n〉+
〈
fe,u

ε
e,n

〉
and observe that, using Poincaré’s inequality,

〈f ,uε
n〉 ≤

C2
p + 1

2ν
‖f‖2H−1 +

ν

2
‖∇uε

n‖2L2 ,

and the same holds for
〈
fe,u

ε
e,n

〉
. Therefore,

d

dt
‖uε

n‖2L2 + ε1
d

dt
‖uε

e,n‖2L2 + ε1
d

dt
‖Φε

n‖2L2

+ ν‖∇uε
n‖2L2 + νe‖∇uε

e,n‖2L2 + 2ε2‖∇Φε
n‖2L2 ≤ C

ν
‖f‖2H−1 +

C

νe
‖fe‖2H−1 .

(22)

We can now integrate (22) in time obtaining uniform estimates in n for the following norms:

‖uε
n‖L2(0,T ;H1

0)
‖uε

e,n‖L2(0,T ;H1
0)

‖Φε
n‖L2(0,T ;H1∫

=0
);

corresponding uniform estimates in n for the time derivatives can be obtained following [29, § 7.1.2]:

‖(uε
n)

′‖L2(0,T ;H−1) ‖(uε
e,n)

′‖L2(0,T ;H−1) ‖(Φε
n)

′‖L2(0,T ;(H1∫
=0

)′).

Such estimates allow us to conclude that there exists a unique solution uε,uε
e ∈ L2(0, T ;H1

0)∩C0(0, T ;L2),
Φε ∈ L2(0, T ;H1∫

=0
) ∩ C0(0, T ;L2) such that

〈(uε)′,v〉+ ν(∇uε,∇v)− (Φε,∇ · v)− (uε ×B,v) = 〈f ,v〉 , (23)
ε1 〈(uε

e)
′,ve〉+ νe(∇uε

e ,∇ve) + (Φε,∇ · ve) + (uε
e ×B,ve) = 〈fe,ve〉 , (24)

ε1 〈(Φε)′, q〉+ ε2(∇Φε,∇q) + (∇ · (uε − uε
e), q) = 0, (25)

for almost every t ∈ [0, T ], for every (v,ve, q) ∈ H1
0 × H1

0 × H1∫
=0

and satisfying the prescribed initial151

condition.152

Let us now consider the limit ε1 → 0. Taking (v,ve, q) = (uε,uε
e ,Φ

ε) in (23)–(25) and proceeding as in
the derivation of (22) yields

d

dt
‖uε‖2L2 + ε1

d

dt
‖uε

e‖2L2 + ε1
d

dt
‖Φε‖2L2

+ ν‖∇uε‖2L2 + νe‖∇uε
e‖2L2 + 2ε2‖∇Φε‖2L2 ≤ C

ν
‖f‖2H−1 +

C

νe
‖fe‖2H−1 ,

(26)

which provides uniform estimates in ε1 for the following norms:

‖uε‖L2(0,T ;H1
0)

‖(uε)′‖L2(0,T ;H−1) ‖uε
e‖L2(0,T ;H1

0)
‖Φε‖L2(0,T ;H1∫

=0
).
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Hence, for ε1 → 0, the following limits exist: uε w−→ uε2 , uε
e

w−→ uε2
e in L2(0, T ;H1

0), Φε w−→ Φε2

in L2(0, T ;H1∫
=0

) and (uε)′
w−→ (uε2)′ in L2(0, T ;H−1). For an arbitrary integer N , let us now take

(v,ve, q) = (v̄i, v̄i, q̄i), for i = 1, . . . , N , in (23)–(25) and, upon choosing a collection of smooth functions
{ai(t), bi(t), ci(t)}Ni=1 such that bi(0) = bi(T ) = ci(0) = ci(T ) = 0, let us multiply each equation by ai(t),
bi(t) and ci(t), respectively, add over i and integrate in time to obtain∫ T

0

[〈(uε)′,vN 〉+ ν(∇uε,∇vN )− (Φε,∇ · vN )− (uε ×B,vN )] dt =

∫ T

0

〈f ,vN 〉 dt, (27)∫ T

0

[ε1 〈(uε
e)

′,ve,N 〉+ νe(∇uε
e ,∇ve,N ) + (Φε,∇ · ve,N ) + (uε

e ×B,ve,N )] dt =

∫ T

0

〈fe,ve,N 〉 dt, (28)∫ T

0

[ε1 〈(Φε)′, qN 〉+ ε2(∇Φε,∇qN ) + (∇ · (uε − uε
e), qN )] dt = 0, (29)

where we have defined

vN =

N∑
i=1

ai(t)v̄i, ve,N =

N∑
i=1

bi(t)v̄i, qN =

N∑
i=1

ci(t)q̄i. (30)

Observe now that∫ T

0

ε1 〈(uε
e)

′,ve,N 〉 dt = −
∫ T

0

ε1(u
ε
e ,v

′
e,N )dt ≤ ε1‖uε

e‖L2(0,T ;L2)‖v′
e,N‖L2(0,T ;L2)

so that, considering the uniform bound for ‖uε
e‖L2(0,T ;L2) and the fact that ve,N is fixed, this term vanishes

for ε1 → 0. The same is true for the term involving (Φε)′ in (29). Passing to the limit in (27)–(29) we
conclude that the limit solution satisfies∫ T

0

[〈(uε2)′,vN 〉+ ν(∇uε2 ,∇vN )− (Φε2 ,∇ · vN )− (uε2 ×B,vN )] dt =

∫ T

0

〈f ,vN 〉 dt, (31)∫ T

0

[νe(∇uε2
e ,∇ve,N ) + (Φε2 ,∇ · ve,N ) + (uε2

e ×B,ve,N )] dt =

∫ T

0

〈fe,ve,N 〉 dt, (32)∫ T

0

[ε2(∇Φε2 ,∇qN ) + (∇ · (uε2 − uε2
e ), qN )] dt = 0, (33)

In fact, since functions of the form (30) are dense in L2(0, T ;H1), L2(0, T ;H1), we conclude that, for a.e.
t ∈ [0, T ], for every (v,ve, q) ∈ H1

0 ×H1
0 ×H1∫

=0
,

〈(uε2)′,v〉+ ν(∇uε2 ,∇v)− (Φε2 ,∇ · v)− (uε2 ×B,v) = 〈f ,v〉 , (34)
νe(∇uε2

e ,∇ve) + (Φε2 ,∇ · ve) + (uε2
e ×B,ve) = 〈fe,ve〉 , (35)

ε2(∇Φε2 ,∇q) + (∇ · (uε2 − uε2
e ), q) = 0. (36)

The last step is taking the limit ε2 → 0. Proceeding from (34)–(36) as done in the derivation of (26), we
obatin uniform bounds in ε2 for ‖uε2‖L2(0,T ;H1

0)
, ‖(uε2)′‖L2(0,T ;H−1) and ‖uε2

e ‖L2(0,T ;H1
0)

; a uniform bound
for ‖uε2

e ‖L∞(0,T ;H1
0)

can also be obtained. A uniform bound for Φε2 now follows from an inf-sup condition
and (35). Indeed, by an inf-sup condition between L2∫

=0
and H1

0, there exists β > 0 such that, for every
q ∈ L2∫

=0
,

β‖q‖L2 ≤ sup
0 6=v∈H1

0

(q,∇ · v)
‖∇v‖L2

.

From (35) we have

(Φε2 ,∇ · ve) ≤
(
(νe + C2

p‖B‖L∞)‖∇uε2
e ‖L2 + Cp‖fe‖H−1

)
‖∇ve‖L2 ,
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yielding
‖Φε2‖L2 ≤ 1

β

(
(νe + C2

p‖B‖L∞)‖∇uε2
e ‖L2 + Cp‖fe‖H−1

)
where we can use the uniform bound for ‖uε2

e ‖L∞(0,T ;H1
0)

. Hence, for ε2 → 0, the following limits exist:
uε2 w−→ u, uε2

e
w−→ ue in L2(0, T ;H1

0), Φε2 w−→ Φ in L2(0, T ;L2∫
=0

) and (uε2)′
w−→ u′ in L2(0, T ;H−1). Let

us now fix (vc,ve,c, qc) in (34)–(36) such that qc ∈ C∞
c (Ω)∩L2∫

=0
, while vc,ve,c are arbitrary. Observe now

that
ε2(∇Φε2 ,∇qc) = −ε2(Φε2 ,∆qc) ≤ ε2‖Φε2‖L2‖∆qc‖L2

so that, considering the uniform bound for ‖Φε2‖L2 and the fact that qc is fixed, this term vanishes for
ε2 → 0. Passing to the limit in (34)–(36) we conclude that the limit solution satisfies

〈u′,vc〉+ ν(∇u,∇vc)− (Φ,∇ · vc)− (u×B,vc) = 〈f ,vc〉 , (37)
νe(∇ue,∇ve,c) + (Φ,∇ · ve,c) + (ue ×B,ve,c) = 〈fe,ve,c〉 , (38)

(∇ · (u− ue), qc) = 0. (39)

In fact, thanks to the density of C∞
c (Ω)∩L2∫

=0
in L2∫

=0
, (37)–(39) hold for every (v,ve, q) ∈ H1

0×H1
0×L2∫

=0
,153

thus concluding the proof.154

We now turn our attention to the existence of a strong solution of (16)–(18). A weak solution will be
strong if

u ∈ L∞(0, T ;H1
0) ∩ L2(0, T ;H2 ∩H1

0), u′ ∈ L2(0, T ;L2),

ue ∈ L2(0, T ;H2 ∩H1
0),

and
Φ ∈ L2(0, T ;H1∫

=0).

Theorem 2. Let Ω be an open bounded set either of class C1,1 or Lipschitz continuous and convex. Assume155

f ,fe ∈ L2(0, T ;L2) and u0 ∈ H1
0. Then (16)–(18) has a unique strong solution on [0, T ].156

Proof. Let us first consider the regularized problem (34)–(36). Upon rewriting (36) as

ε2(∇Φε2 ,∇q) = (hΦ
ε2
, q),

with hΦε2
= −∇· (uε2 −uε2

e ), using the fact that uε2 ,uε2
e ∈ H1

0 and standard regularity results [29, § 6.3.2]
(see also [30] for the case with minimal domain regularity), we conlcude that Φε2 ∈ H2∫

=0
for a.e. t ∈ (0, T ),

and also Φε2 ∈ L2(0, T ;H2∫
=0

). By the same argument we can rewrite (35) as

νe(∇uε2
e ,∇ve) = (hu

ε2
e ,ve)

with hu
ε2
e = ∇Φε2 − uε2

e ×B + fe and conclude that uε2
e ∈ L2(0, T ;H2). Finally, regarding (34) as a heat

equation
〈(uε2)′,v〉+ ν(∇uε2 ,∇v) = (huε2

,v)

with huε2
= −∇Φε2 + uε2 ×B + f , using again standard regularity results [29, § 7.1.3], we conclude that

uε2 ∈ L2(0, T ;H2) and (uε2)′ ∈ L2(0, T ;L2). These results imply that (34)–(36) hold in a strong sense, i.e.

(uε2)′ +∇Φε2 − uε2 ×B − ν∆uε2 = f , (40)
−∇Φε2 + uε2

e ×B − νe∆uε2
e = fe, (41)

−ε2∆Φε2 +∇ · (uε2 − uε2
e ) = 0 (42)
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with uε2 = uε2
e = 0 and n · ∇Φε2 = 0 on ∂Ω. We can thus multiply each equation by −∆uε2 , −∆uε2

e ,
−∆Φε2 , respectively, integrate and add obtaining

1

2

d

dt
‖∇uε2‖2L2 + ν‖∆uε2‖2L2 + νe‖∆uε2

e ‖2L2 + ε2‖∆Φε2‖2L2

= −(f + uε2 ×B,∆uε2)− (fe − uε2
e ×B,∆uε2

e ).
(43)

Then we have
(f + uε2 ×B,∆uε2) ≤ ν

2
‖∆uε2‖2L2 +

1

ν

(
‖f‖2L2 + ‖B‖2L∞‖uε2‖2L2

)
and an analogous relation for uε2

e . Using these realtions in (43) and integrating in time we conclude, thanks
to the uniform bounds for ‖uε2‖L2 , ‖uε2

e ‖L2 and ‖uε2
0 ‖H1

0
, that u,ue ∈ L2(0, T ;H2) and u ∈ L∞(0, T ;H1

0).
Let us now rewrite (17), (18) as a generalized Stokes problem

νe(∇ue,∇ve) + (Φ,∇ · ve) = (hue ,ve),

(∇ · ue, q) = (hΦ, q)

with hue = fe −ue ×B and hΦ = ∇·u. Standard regularity results [31], proposition 2.2 of chapter 1, imply
that Φ ∈ H1∫

=0
for a.e. t ∈ (0, T ) and, integrating in time, Φ ∈ L2(0, T ;H1∫

=0
). Finally, multiplying (40) by

(uε2)′ yields
‖(uε2)′‖2L2 + ν

d

dt
‖∇uε2‖2L2 ≤ 2‖f −∇Φε2 + uε2 ×B‖2L2 .

Integrating in time and passing to the limit using the previous results provides u′ ∈ L2(0, T ;L2), thus157

completing the proof.158

5. Finite element discretization159

In this section, we consider the spatial discretization of (16)–(18). Throughout this section, we assume160

the following hypothesis.161

(H1) Let Ω be a convex polyhedral domain and let Th be a regular tessellations of Ω such that Ω = ∪K∈Th
K.162

Moreover, let f ,fe ∈ L2(0, T ;L2) and u0 ∈ H1
0.163

(H2) Let Vh, Qh be two conforming finite-dimensional spaces on Th such that Vh ⊂ H1
0, and Qh ⊂ L2∫

=0
.164

(H3) The pairs Vh, Qh are assumed to be uniformly compatible, i.e. there exists β > 0 independent of h
such that

inf
0 6=qh∈Qh

sup
0 6=vh∈Vh

(qh,∇ · vh)
‖vh‖H1

0
‖qh‖L2

≥ β. (44)

(H4) The spaces Vh, Qh are endowed with interpolation properties, i.e. there exists Capp > 0 independent
of h such that, for every v ∈ H2, q ∈ L2,

inf
vh∈Vh

{‖v − vh‖L2 + h‖v − vh‖H1} ≤ Capph
2‖v‖H2 ,

and
inf

qh∈Qh

‖q − qh‖L2 ≤ Capph‖q‖H1 .

The finite element discretization of (16)–(18) reads: find uh,ue h,Φh such that, for each t ∈ (0, T ],
uh,ue h ∈ Vh, Φh ∈ Qh and

d

dt
(uh,vh) + ν(∇uh,∇vh)− (Φh,∇ · vh)− (uh ×B,vh) = (f ,vh), (45)

νe(∇ue h,∇ve h) + (Φh,∇ · ve h) + (ue h ×B,ve h) = (fe,ve h), (46)
(∇ · (uh − ue h), qh) = 0 (47)
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for all (vh,ve h, qh) ∈ Vh × Vh ×Qh, with

uh(t = 0) = uh 0,

where uh 0 ∈ Vh is an approximation of u0. Well-posedness of this finite element formulation is ensured by165

the following result.166

Theorem 3. There exists a unique solution (uh,ue h,Φh) of (45)–(47).167

Proof. (45)–(47) define a system of ordinary differential equations; the existence and uniqueness of a168

solution on [0, T ] is ensured by Picard’s theorem.169

Before stating our main result concerning the convergence of the discrete solution, we introduce the170

following result.171

Lemma 4. The finite element solution verifies u′
h ∈ L2(0, T ;L2).172

Proof. From (45) with vh = u′
h we arrive at

‖u′
h‖2L2 + ν

d

dt
‖∇uh‖2L2 ≤ 2‖f −∇Φh + uh ×B‖2L2 .

The result follows upon integrating in time and considering that the discrete solution belongs to L∞(0, T ;Vh).173

Convergence of the finite element solution to the analytic one is proven in the following result.174

Theorem 5. Let u,ue,Φ be the unique strong solution of (16)–(18) and let uh,ue h,Φh be the finite element
solution of (45)–(47). Then there exist a constant C, depending on the problem coefficients and ‖u‖H2 ,
‖ue‖H2 and ‖Φ‖H1∫

=0
, such that

‖u− uh‖L2(0,T ;H1
0)
+ ‖ue − ue h‖L2(0,T ;H1

0)
+ ‖Φ− Φh‖L2(0,T ;L2∫

=0
) ≤ Ch. (48)

Proof. The proof is similar to the one described in [32, Prop. 11.2.1]. Combining (16)–(18) and (45)–(47)
we obtain

〈(eu)′,vh〉+ ν(∇eu,∇vh)− (eΦ,∇ · vh)− (eu ×B,vh) = 0, (49)
νe(∇eue ,∇ve h) + (eΦ,∇ · ve h) + (eue ×B,ve h) = 0, (50)

(∇ · (eu − eue), qh) = 0. (51)

with eu = u − uh, with eue = ue − ue h and eΦ = Φ − Φh. Observe now that, thanks to hypothesis (H1),
u,ue,Φ is a strong solution and thus it is possible to choose uh I ∈ Vh such that the approximation error
ηu = u − uh I satisfies the estimates of hypothesis (H4). Take then vh = ξu = uh I − uh in (49) and
similarly for ve h and qh, obtaining

〈(eu)′, eu〉+ ν(∇eu,∇eu)− (eΦ,∇ · eu)
= 〈(eu)′,ηu〉+ ν(∇eu,∇ηu)− (eΦ,∇ · ηu)− (eu ×B,ηu),

νe(∇eue ,∇eue) + (eΦ,∇ · eue)

= νe(∇eue ,∇ηve) + (eΦ,∇ · ηve) + (eue ×B,ηve),

(∇ · (eu − eue), eΦ) = (∇ · (eu − eue), ηΦ),

and adding these equations
1

2

d

dt
‖eu‖2L2+ν‖∇eu‖2L2 + νe‖∇eue‖2L2 (52)

= 〈(eu)′,ηu〉+ ν(∇eu,∇ηu)− (eΦ,∇ · ηu)− (eu ×B,ηu),

+ νe(∇eue ,∇ηve) + (eΦ,∇ · ηve) + (eue ×B,ηve),

+ (∇ · (eu − eue), ηΦ).
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The first step to estimate the right-hand-side of this relation is now using the discrete compatibility condi-
tion (44) to estimate ‖ξΦ‖L2 from the error equation (50). Indeed, (44) implies

β‖ξΦ‖L2 ≤ sup
0 6=vh∈Vh

(ξΦ,∇ · vh)
‖vh‖H1

0

≤ sup
0 6=vh∈Vh

(eΦ,∇ · vh)− (ηΦ,∇ · vh)
‖vh‖H1

0

≤ ‖ηΦ‖L2 + sup
0 6=vh∈Vh

(eΦ,∇ · vh)
‖vh‖H1

0

and from (50)
(eΦ,∇ · vh) = −νe(∇eue ,∇vh)− (eue ×B,vh)

≤
(
νe + ‖B‖L∞C2

P

)
‖∇eue‖L2‖∇vh‖L2 ,

so that
β‖ξΦ‖L2 ≤ ‖ηΦ‖L2 +

(
νe + ‖B‖L∞C2

P

)
‖∇eue‖L2 . (53)

Let us now proceed to estimate the right-hand-side of (52). We have
ν(∇eu,∇ηu)− (eu ×B,ηu) + (∇ · eu, ηΦ)

≤ 3

2
ε1‖∇eu‖2L2 +

ν2

2ε1
‖∇ηu‖2L2 +

C2
P ‖B‖2L∞

2ε1
‖ηu‖2L2 +

1

2ε1
‖ηΦ‖2L2

for an arbitrary constant ε1 to be fixed later; a similar estimate holds for the corresponding terms in ue, for
another arbitrary constant ε2. Also,

(eΦ,∇ · ηu) = (ηΦ + ξΦ,∇ · ηu)

≤ (‖ηΦ‖L2 + ‖ξΦ‖L2) ‖∇ηu‖L2

≤ ε3
2
‖ξΦ‖2L2 +

1

2

(
1 +

1

ε3

)
‖∇ηu‖2L2 +

1

2
‖ηΦ‖2L2 ;

an analogous result holds for (eΦ,∇ · ηue). Combing these estimates, and using (53), yields form (52)
d

dt
‖eu‖2L2 + ν‖∇eu‖2L2 + νe‖∇eue‖2L2 (54)

≤ 2‖(eu)′‖2L2‖ηu‖2L2 + C1‖∇ηu‖2L2 + C2‖∇ηue‖
2
L2 + C3‖ηΦ‖2L2 ,

where
C1 = 1 +

ν2 + ‖B‖2L∞C4
P

ε1
+

1

ε3
, C2 = 1 +

ν2e + ‖B‖2L∞C4
P

ε2
+

1

ε3
,

and
C3 = 2 +

1

ε1
+

1

ε1
+

4ε3
β2

,

with
ε1 =

ν

6
, ε2 =

νe
6
, ε3 =

νeβ
2

8

(
νe + ‖B‖L∞C2

P

)−2
.

Integrating (54) in time, considering the approximation properties (H4) and observing that∫ T

0

‖(eu)′‖2L2dt ≤ ‖u′‖2L2(0,T ;L2) + ‖u′
h‖2L2(0,T ;L2) ≤ C

thanks to theorem 2 and lemma 4 now yields
‖eu(t)‖2L2 + ν‖∇eu‖2L2(0,T ;L2) + νe‖∇eue‖2L2(0,T ;L2) ≤ ‖eu(0)‖2L2 + Ch2, (55)

where C is a function of the problem coefficients and ‖u‖H2 , ‖ue‖H2 and ‖Φ‖H1∫
=0

. The thesis follows175

from (55) and (53).176
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6. Computational aspects177

The previous sections § 4 and § 5 consider the continuous and the discrete problems, respectively, in178

their general form. In the present section, the finite element formulation is specialized in a way that suites179

the problem under investigation. In particular, this amounts to specifying: the computational grid, the180

finite element spaces, the complete space-time discretization and a solution procedure for the linear system.181

While the previous sections address both the two and the three-dimensional cases, we restrict our attention182

here to the two-dimensional one.183

6.1. Computational grid and finite element spaces184

As discussed in § 3, the magnetic field defines the parallel and perpendicular directions. Since the Lorentz185

force, which is the dominating term, only acts in the perpendicular direction, the presence of B results in186

a strong anisotropy. Such anisotropy is relevant for the numerical discretization for two reasons: first of187

all the computational grid should not introduce any artificial coupling between parallel and perpendicular188

gradients and second the representation of the vector fields should not introduce any artificial coupling189

between parallel and perpendicular components. A common practice is addressing both of these issues190

at the same time by introducing a curvilinear coordinate system in the poloidal plane where one axis is191

directed along the magnetic surfaces. In fact, this implies that a Cartesian grid in the coordinate space is192

aligned with the flux surfaces, addressing the first issue, while at the same time the contravariant vector193

representation induced by the coordinates naturally decouples the parallel and perpendicular directions,194

hence addressing the second issue. The difficulty in this approach is the choice of the curvilinear coordinate195

system: aligning one axis with the parallel direction typically can not be done globally and multiple patches196

must be introduced; another drawback is that both local grid refinement and resolving the boundary of the197

domain become nontrivial problems.198

Here, we consider an alternative approach where the two issues mentioned above are dealt with sepa-199

rately: grid alignment in the sense of [10] (see also § 7) is made possible by the use of a fully unstructured200

grid composed of both triangles and quadrilaterals; at the same time, spurious coupling of parallel and201

perpendicular vector components is avoided through a careful construction of the vector finite element space202

Vh. This combination avoids the difficulty of the multipatch approach, and in particular allows local grid203

refinement, good overall grid regularity and accurate representation of the domain boundaries.204

Given thus Ω̃ ∈ R2 as described in § 3, let T̃h be a regular tessellation of Ω̃ composed of triangular and
quadrilateral elements such that Ω̃ = ∪K̃∈T̃h

K̃. The finite element space for the electrostatic potential is
now

Qh =
{
qh ∈ H1∫

=0(Ω̃) | qh|K̃ ∈ X1(K̃), ∀K̃ ∈ T̃h
}
,

where X1(K̃) is the space of affine and bilinear functions on K̃ for triangular and quadrilateral elements,
respectively. To define the vector space Vh, let us first introduce

Vh =
{
vh ∈ H1

0 (Ω̃) | vh|K̃ ∈ Y1-iso-2(K̃), ∀K̃ ∈ T̃h
}
,

where Y1-iso-2(K̃) is the space of the P1-iso-P2 piecewise affine and Q1-iso-Q2 piecewise bilinear functions on
K̃ for triangular and quadrilateral elements, respectively [33, 32]. Then let us assume that at each point of Ω̃
three linearly independent unit vectors of class C1 are prescribed {ei}3i=1, ei ∈ R3, such that e1, e2 ⊥ B and
e3 = b ‖ B; such vectors can be obtained, for instance, by applying the Gram–Schmidt orthogonalization
procedure to {b, eR, ez} (see also § 7). Notice that, in general, the ei are not induced by any coordinate
system. The vector finite element space can now be defined as

Vh =
{
vh ∈ H1

0(Ω̃) | vh = v1he1 + v2he2 + v
‖
hb, v1h, v

2
h, v

‖
h ∈ Vh

}
.

The main advantage of this representation is that, contrary to the standard Cartesian or cylindrical ones,
it allows separating the parallel and perpendicular components of the discrete fields, letting

vh = v⊥
h + v

‖
h, v⊥

h = v1he1 + v2he2, v
‖
h = v

‖
hb.
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Hence, v1h = v2h = 0 yields a purely parallel field, while v‖h = 0 yields a purely perpendicular one. Representing205

such fields within a standard Cartesian or cylindrical setting would not be possible, in general, because206

the components of the unit vectors ei are arbitrary functions and thus the Cartesian and the cylindrical207

components of v⊥
h and v

‖
h do not belong to any standard finite element space. Thanks to the regularity of208

ei, the finite element pair Vh, Qh satisfies both hypothesis (H3) and (H4) (see [33, § 4.2.6]).209

In the following, for a generic finite element space Xh, Ñh(Xh) denotes the set of nodes ã of Xh and
φã denotes the Lagrangian basis function associated with ã. The nodal degrees of freedom of xh ∈ Xh are
indicated by xã. The metric tensor defined by the local base is

gij = ei · ej

which, taking into account the orthogonality of such vectors, can be expressed as

g =

 g⊥ 0
0

0 0 1

 . (56)

The Einstein summation convention is understood for co- and contravariant indexes.210

6.2. Complete space-time discretization211

Having defined the finite element spaces, the spatial discretization is readily obtained from (13)–(15).
Before stating it, however, it is convenient to introduce a mass lumping approximation for the zero-order
terms. This amounts to integrating such terms with a numerical quadrature formula using the finite element
nodes as quadrature nodes, i.e. we introduce∫

Ω̃

f Rdx̃ ≈
∑

ã∈Ñh(Vh)

wãf(ã) = Ih,Ω̃(f)

where the quadrature weights are
wã =

∫
Ω̃

φã Rãdx̃.

The finite element discretization then reads: find ũh, ũe h, Φ̃h such that, for each t ∈ (0, T ], ũh, ũe h ∈ Vh,
Φ̃h ∈ Qh and

d
dt (ũh, ṽh)∼,h + ν(∇ũh,∇ṽh)∼ − (Φ̃h,∇ · ṽh)∼ − (ũh ×B, ṽh)∼,h = (f , ṽh)∼,h, (57)

νe(∇ũe h,∇ṽe h)∼ + (Φ̃h,∇ · ṽe h)∼ + (ũe h ×B, ṽe h)∼,h = (fe, ṽe h)∼,h, (58)
(∇ · (ũh − ũe h), q̃h)∼ = 0 (59)

for all (ṽh, ṽe h, q̃h) ∈ Vh × Vh ×Qh and with a suitable initial condition for ũh, having defined the discrete
scalar product

(f, g)∼,h = Ih,Ω̃(fg).

It is now useful to compute the local matrices corresponding to (57)–(59). Besides being required for the
implementation of the scheme, such matrices clarify that the projection of the vector equations along the
parallel and perpendicular directions, which is the typical starting point of the numerical discretizations for
the SOL discussed in the literature, is indeed present also in our approach and corresponds to testing (57)
and (58) with test functions such that ṽ1h = ṽ2h = 0 for the parallel direction and ṽ‖h = 0 for the perpendicular
one. Specifically, let us take ṽh =

∑
ã∈Ñh(Vh)

vi
ãφãei in (57); for the time derivative this yields

d
dt (ũh, ṽh)∼,h =

∑
ã∈Ñh(Vh)

vi
ã [wã gij(ã)] u̇j

ã.
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Hence, the mass matrix is block diagonal, and by virtue of (56) each block can be further subdivided into
a two-by-two block for the time derivative of ũ⊥

h and a scalar equation for the time derivative of ũ‖
h. The

Lorentz force term has a similar structure:

(ũh ×B, ṽh)∼,h =
∑

ã∈Ñh(Vh)

vi
ã [wã B(ã) (ei × ej · b)] uj

ã,

where ei × ej · b defines a three-by-three block with two nonvanishing entries for (i, j) = (1, 2) and (i, j) =
(2, 1), which of course corresponds to the fact that the Lorentz force has no component in the parallel
direction. The gradient of the electrostatic potential appears in both parallel and perpendicular directions,
and couples all the vector components and the finite element nodes; in fact we have

(Φ̃h,∇ · ṽh)∼ =
∑

ã∈Ñh(Vh)

∑
d̃∈Ñh(Qh)

vi
ã

[∫
Ω̃

φd̃ (∇φã · ei + φã∇ · ei)Rdx̃
]
Φd̃.

The diffusion term results in a similar matrix contribution, namely

ν(∇ũh,∇ṽh)∼ =
∑

ã∈Ñh(Vh)

∑
b̃∈Ñh(Vh)

vi
ã

[
ν

∫
Ω̃

Dij,ãb̃ Rdx̃
]

uj

b̃

with
Dij,ãb̃ = gij∇φã · ∇φb̃ + φãej · ∇ei ∇φb̃ + φb̃ei · ∇ej ∇φã + φãφb̃∇ei : ∇ej .

The remaining terms in (58) and (59) can be expressed in terms of the same matrices derived for the first212

equation.213

Concerning the time discretization, we follow the standard method of lines, i.e. we regard (57)–(59) as an214

ordinary differential equation and integrate it using a discrete time integrator. Since the ũh×B term is the215

stiff one, and since we are not interested in resolving the associated fast dynamics, it is natural to choose an216

implicit time discretization; in this work, we consider the simplest option represented by the implicit Euler217

method. This suppresses the fast gyration motion resulting from the ũh ×B term and provides a solution218

where the leading order terms −∇Φ̃h + ũh × B are in very close balance. The outcome of this setting is219

that the E cross B drift velocity (8) emerges from the solution of the discretized problem rather than being220

postulated a priori in the derivation of the model equation, as it is done in the drift-reduced class of models.221

6.3. Iterative solution of the linear system222

The discretized problem illustrated in section 6.2 leads to a linear system coupling two vector unknown,223

namely ũh and ũe h, and one scalar unknown, namely Φ̃h. It is highly desirable to avoid solving this224

system with a fully coupled approach (also called “monolithic” approach), which would result in a very225

large, indefinite matrix. Moreover, a fully coupled approach would not scale when considering multiple ion226

species, as it is required for practical applications, since each ion species introduces an additional vector227

unknown in the problem. The goal of this section is discussing how it is possible to solve separate linear228

systems for the electric potential and each vector unknown using a variation of the classical Uzawa algorithm229

for the Stokes problem [34, 35, 36, 33].230

Discretizing (57)–(59) with the implicit Euler scheme results in the linear system

a(ũn+1
h , ṽh) + b(ṽh, Φ̃

n+1
h ) = f(ṽh) (60)

ae(ũ
n+1
e h , ṽe h)− b(ṽe h, Φ̃

n+1
h ) = fe(ṽe h) (61)

b(ũn+1
h − ũn+1

e h , q̃h) = 0 (62)

where

a(ũh, ṽh) =
1

∆t
(ũh, ṽh)∼,h + ν(∇ũh,∇ṽh)∼ − (ũh ×B, ṽh)∼,h,

ae(ũe h, ṽe h) = νe(∇ũe h,∇ṽe h)∼ + (ũe h ×B, ṽh)∼,h,

b(ṽh, q̃h) = −(∇ · ṽh, q̃h)∼
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and
f(ṽh) =

1

∆t
(ũn

h, ṽh)∼,h + (f , ṽh)∼,h, fe(ṽe h) = (fe, ṽe h)∼,h.

Define now ũf
h , ũ

fe
e h ∈ Vh by

a(ũf
h , ṽh) = f(ṽh), ae(ũ

fe
e h, ṽe h) = fe(ṽe h)

as well as two linear operators U ,Ue : Qh → Vh such that, for q̃h ∈ Qh,

a(U q̃h, ṽh) = −b(ṽh, q̃h), ae(Ueq̃h, ṽe h) = b(ṽe h, q̃h) (63)

for every ṽh, ṽe h ∈ Vh (such operators are well defined since both a and ae are positive definite). The
solution of (60)–(62) is uniquely characterized by

−b(U Φ̃n+1
h −UeΦ̃

n+1
h , q̃h) = b(ũf

h − ũ
fe
e h, q̃h) (64)

for every q̃h ∈ Qh; the main idea is applying an iterative algorithm for such problem.231

It can be verified that the left-hand-side of (64) defines a positive definite operator, which however is not
symmetric. Indeed, for p̃h, q̃h ∈ Qh, we have

−b(U p̃h −Uep̃h, q̃h) = a(U q̃h,U p̃h) + ae(Ueq̃h,Uep̃h).

For this reason, the GMRES method [37] is used to solve (64). To summarize the resulting procedure, let
us first rewrite (63) and (64) in matrix form as

AUq = −BT q, AeUe q = BT q (65)

and
B(A−1 +A−1

e )BTΦ = B(uf − ufee ), (66)

where q, Uq, Ue q are the arrays of the nodal degrees of freedom of q̃h,U q̃h,Ueq̃h and Φ, uf , ufee those of
Φ̃n+1

h , ũf
h , ũ

fe
e h. The matrix-free versions of the GMRES solver relies on two methods to compute, given an

arbitrary Φ(k), the matrix-vector product and the residual of (66). Concerning the matrix-vector product,
we have

B(A−1 +A−1
e )BTΦ(k) = −B(UΦ(k) − Ue Φ(k)), (67)

resulting in the following steps:232

• compute UΦ(k) , Ue Φ(k) solving (65) for q = Φ(k) with a direct method233

• evaluate the right-hand-side of (67) substituting the corresponding finite element functions in −b(U Φ̃
(k)
h −234

UeΦ̃
(k)
h , q̃h).235

Concerning the residual, we have

B(uf − ufee )−B(A−1 +A−1
e )BTΦ(k) = B((uf + UΦ(k))− (ufee + Ue Φ(k))), (68)

resulting in the following steps:236

• compute uf + UΦ(k) = A−1(f − BTΦ(k)) as well as ufee + Ue Φ(k) = A−1
e (fe + BTΦ(k)) with a direct237

method238

• evaluate the right-hand-side of (68) substituting the corresponding finite element functions in b((ũf
h +239

U Φ̃
(k)
h )− (ũ

fe
e h +UeΦ̃

(k)
h ), q̃h).240
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Remark 1. The proposed algorithm requires a direct method for the solution of (65). This seems a viable241

option for the considered problem, since these linear systems, which correspond to two-dimensional problems,242

are not expected to be extremely large. At the same time, this algorithm scales well in presence of multiple243

ion species, since each ion species would result in a separate linear system. However, if one wants to adopt244

an iterative solver also for (65), adopting an inexact Uzawa scheme, the methods proposed in [36] can be245

considered.246

Remark 2. To leading order, the two operators U ,Ue yield the E cross B drift velocity (8), i.e.

U Φ̃h ≈ UeΦ̃h ≈ −∇Φ̃h ×B

B2
.

This term, being ambipolar, does not contribute to the current U Φ̃h − UeΦ̃h appearing in (64). So, the247

presence of the ion inertia and of the diffusion terms, despite contributing only a small perturbation to the248

operators U ,Ue, is essential in determining their difference, and thus the solution of (64).249

6.3.1. Left-preconditioned GMRES iterations250

To improve the convergence of the GMRES iterations, a preconditioned version of the algorithm can be
considered. In this work, we restrict ourselves to a simple left-preconditioned version of (66), where both
sides of the equation are multiplied by

P ≈ B(A−1 +A−1
e )BT .

The matrix P is constructed as
P = B(A−1

0 +A−1
0,e)B

T ,

where A0 and A0,e include only the 3 × 3 diagonal blocks of A and Ae, respectively. Due to the lumping251

of the mass matrix and the Lorentz force terms, this implies that the only difference between P and the252

complete matrix of (66) is due to the diffusion terms. It can be verified that P is a positive definite matrix,253

and since its dimension is dim(Qh) and it is sparse it can be computed explicitly and a direct solver can be254

used for the associated linear system.255

7. Numerical experiments256

To test the proposed numerical scheme, we consider in this section two cases: the first one involves simpli-257

fied geometry and coefficients and has a known analytic solution, which allows us to perform a convergence258

test, while the second one uses a more realistic set-up, including an X point.259

Following a standard representation (see Eq. (6.2.13) in [3]), the magnetic field is prescribed as

B =
1

R
(Ie−ϕ +∇ψ × e−ϕ) ,

where I = B0R0 is a constant and ψ = ψ(R, z). This representation separates the toroidal and the poloidal
components of B; it also provides an immediate expression for the flux surfaces and the poloidal flux, namely
ψ = Const and 2πψ. The computational grids are built so that, on most of the domain, they are aligned
in the sense of [10], which can be rephrased for both triangular and quadrilateral elements as follows: if a
contour line c = {x̃ ∈ Ω̃ | ψ(x̃) = Const} passes through a vertex of T̃h, then for each element K̃ connected
to that vertex either the intersection with c reduces to the vertex itself, or one side of K̃ has both vertexes
belonging to c. The alignment, however, can be violated in selected regions where it would result in a too
strong constraint, such as close to the domain boundaries, around the X point or in transition regions around
patches of local refinement. Examples of such grids are shown in figures 3 and 4. Concerning the choice of
{ei}3i=1, as noted in § 6.1 we have e3 = b while there is freedom in the choice of e1 and e2. We take

e1 = (I − b⊗ b)eR
∧

, e2 = (I − b⊗ b)ez
∧

,

where ·
∧

denotes normalization. An alternative choice would be substituting eR and ez in the above expres-260

sion with ∇ψ and e−ϕ×∇ψ (at least where ∇ψ does not vanish), yielding a radial and poloidal decomposition261

analogous to [12]. Notice that e1 and e2 do not need to be mutually orthogonal.262
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7.1. Convergence test263

We consider Ω̃ = (R0 − a,R0 + a)× (−a, a) and

I = B0R0, ψ = aR0Bp
(R−R0)

2 + z2

2a2
;

the resulting magnetic field has an O point at (R0, 0), closed magnetic surfaces for (R−R0)
2 + z2 < a2 and

open magnetic surfaces for (R−R0)
2 + z2 > a2. The forcing terms are f = ν$ and fe = νe$, with

$ =

[
0, α

R0 − 4R

aR0R
− β

Bp

B0

R2
0

aR3
, 0

]T
,

and constant in time, nonhomogeneous Dirichlet boundary conditions for u,ue are enforced so that, after
an initial transient, the analytic steady state solution is

ũ = ũe = α
R

aR0

 −z
R−R0

0

+ β
Bp

B0

R0

aR

 z
−(R−R0)

B0

Bp
a


and

Φ̃ =
1

2
aB0α

(
(R−R0)

2 + z2

a2
− 2

3

)
.

The numerical values of the coefficients are R0 = 2, a = 1, B0 = 10, Bp = 12.5, ν = 1, νe = 0.01, α = 0.1264

and β = 1.265

Six unstructured grids are considered, halving the mesh size h, two of which are shown in figure 3. It can

1.0 1.5 2.0 2.5 3.0

1.0

0.5

0.0

0.5

1.0

1.0 1.5 2.0 2.5 3.0

1.0

0.5

0.0
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1.0

Figure 3: Unstructured grids for the convergence test using 32 triangles and 68 quadrilaterals (left) and 64 triangles and 304
quadrilaterals (right). The number of degrees of freedom of Qh in the two cases is 97 and 361.

266

be observed that most of the elements are aligned to the ψ = Const circular contours, while such alignment267

is not respected in the four corners, where it would lead to very distorted elements. Also, mixing triangular268

and quadrilateral elements allows to achieve a good overall regularity of the grid.269

The numerical computations are performed until T = 4000, which is much larger than the relaxation time270

of the system, using the implicit Euler scheme with time-step ∆t = 1, and the resulting numerical solution271
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is compared with the steady state analytic solution. To avoid errors associated with the inexact solution of272

the linear problem, a directed solver is used for the complete linear system (60)–(62). The resulting error273

norms are shown in tables 2 and 3, where the expected second order convergence can be observed. Similar

Table 2: Computed error norms for the electrostatic potential Φ̃− Φ̃h. The numerical convergence rates are also reported.

dim(Qh) ‖Φ̃− Φ̃h‖L2

31 4.2 · 10−2 –
97 1.1 · 10−2 1.98

361 2.8 · 10−3 1.92
1393 7.2 · 10−4 1.97
5473 1.8 · 10−4 2.00

21697 4.5 · 10−5 2.00

Table 3: Computed error norms ũ− ũh and ũe − ũe h. The numerical convergence rates are also reported.

dim(Vh) ‖ũ− ũh‖L2 ‖ũe − ũe h‖L2 ‖ũ− ũh‖H1 ‖ũe − ũe h‖H1

109 2.8 · 10−2 – 7.4 · 10−2 – 5.6 · 10−1 – 9.5 · 10−1 –
361 7.1 · 10−3 2.0 1.1 · 10−2 2.8 2.9 · 10−1 1.0 3.4 · 10−1 1.5

1393 1.8 · 10−3 2.0 2.2 · 10−3 2.3 1.4 · 10−1 1.0 1.5 · 10−1 1.1
5473 4.5 · 10−4 2.0 5.0 · 10−4 2.2 7.1 · 10−2 1.0 7.3 · 10−2 1.1

21697 1.1 · 10−4 2.0 1.2 · 10−4 2.1 3.6 · 10−2 1.0 3.6 · 10−2 1.0
86401 2.8 · 10−5 2.0 3.0 · 10−5 2.0 1.8 · 10−2 1.0 1.8 · 10−2 1.0

274

results, not included here, have been observed using structured grids composed entirely of quadrilaterals275

or triangular elements. This is expected, since in this case the solution is very smooth. Indeed, the use276

of unstructured, aligned grids for this test is motivated by testing the numerical formulation in the most277

general case, rather than by the strong anisotropy of the solution.278

7.2. Test with a more realistic geometry279

In this case, we consider the domain Ω̃ depicted in figure 4, left, which includes all the main components
illustrated by the schematic representation of figure 1, right, namely: a separatrix with an X point, closed
and open field lines, a wall and two divertor plates. The central region, containing the plasma core, has
been omitted, mimicking what is typically done for SOL computations. The magnetic field is specified by

I = B0R0, ψ = aR0Bp

(
(R−R0)

2 + z2

2a2
− z3

3a2z0

)
,

while no forcing terms are present: f = fe = 0. Homogeneous Dirichlet boundary conditions are enforced280

for u and ue on most of the domain boundary with the following exceptions: on the boundary towards the281

plasma core we set ũ = ũe = 0.1[R − R0, z, 0]
T , on the left divertor plate we set ũ = ũe = 0.1[−2,−1, 0]282

and on the right divertor plate we set ũ = ũe = 0.1[−2, 1, 0]. The numerical values of the coefficients are283

R0 = 165, a = 60, z0 = −90, B0 = 2.5 · 104, Bp = 0.2B0, ν = 105, νe = 102.284

Two different grids are considered, obtained refining uniformly the grid shown in figure 4 once and285

twice, respectively. The resulting numbers of degrees of freedom are dim(Vh) = 34384, dim(Qh) = 8680286

and dim(Vh) = 136864, dim(Qh) = 34384. Such grids are aligned in most of the domain and are nearly287

structured around the separatrix, where quadrilateral elements allow good regularity and higher resolution288

in the radial direction. Few triangular elements are inserted to obtain a uniform resolution on each flux289
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Figure 4: Domain Ω̃ including a plasma facing wall (blue), left and right divertor plates (magenta and brown) and a private
region (green). The plasma core has been excluded from the computational domain, resulting in an additional boundary
(purple). The separatrix is marked in red. The whole grid (left) is composed of 120 triangular and 2068 quadrilateral elements;
a detail view of the X point is also shown (right).

surface; moreover unstructured, not aligned patches are used to resolve the X point and close to the domain290

boundary.291

Computations are carried out starting from ũ = ũe = 0 and Φ = 0 until T = 0.01, a time after which no292

significant changes are observed. For these tests, a directed solver is used for the complete linear system (60)–293

(62). The time-step is ∆t = 6.25 · 10−5. The time evolution of the L2 norms of the numerical solution is294

shown in figure 5 for the coarsest grid. For the same computation, figure 6 shows the toroidal component295

of the ion and electron velocities ũ · e−ϕ and ũe · e−ϕ. It can be seen that such components do not vanish,296

despite the absence of toroidal components both in the boundary conditions and in the forcing terms. This297

is indeed a consequence of Bp 6= 0, which couples the toroidal velocity components with the forcing terms298

in the poloidal plane. The corresponding electrostatic potential is shown in figure 7, left. Here, it can be299

seen that the Φ̃ = Const contours tend to coincide with the magnetic surfaces. This is a consequence of the300

parallel velocity equation for the electrons, as noted in § 2. An analogous result is obtained using the more301

refined grid, as shown in figure 7, right. Finally, the importance of using a stable finite element pair for302

Vh and Qh is verified repeating the computations with Vh = Qh and reporting the computed electrostatic303

potential in figure 8. Here, it can be seen that the unstable pair results in severe grid-scale oscillations in304

Φ̃, which can not be cured by refining the computational grid.305

7.3. Iterative solution of the linear system306

To test the iterative solution strategy discussed in § 6.3, we consider now a single time-step from ta =307

1.25 · 10−4 to tb = 1.875 · 10−4 of the coarse grid computation of § 7.2 and solve it iteratively using the308

solution at ta as initial guess for the linear iterations. This specific time-step is chosen since the solution has309
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Figure 5: Left: time evolution of ‖ũ‖L2 (black) and ‖ũe‖L2 (gray). Right: time evolution of ‖Φ̃‖L2 .

not reached the steady state condition. Figure 9 shows the residual of the linear iterations, together with310

the L2 error norms of the ion and electron velocities and of the electrostatic potential, computed using the311

solution of the monolithic approach as a reference. All the values are normalized with the respective values312

for the initial iterations so that the four curves start from 1. It can be seen that the plane GMRES iteration313

indeed do result in a convergent algorithm, the convergence rate however is slow for the first 300 iterations.314

The preconditioned version shows a much higher convergence rates for the first 100 iterations and is a viable315

option if an O(100) reduction of the residual is considered to be satisfactory. For higher accuracy however316

a more effective strategy would be required.317

A detailed investigation of alternative preconditioning strategies is nevertheless outside the scope of the318

present work, since in order to be useful for the target applications it should also take into account the319

effects of the terms neglected isolating our model problem (5)–(7) from the complete system (1)–(4). Such320

an investigation is left for future work.321

8. Conclusions322

In this paper, we have considered a subset of the equations modeling the SOL layer which captures two323

key aspects of the complete system: the role of the electrostatic potential as a Lagrange multiplier associated324

with the quasi-neutrality condition and the geometrical complexity of the system itself. The well-posedness325

of the reduced problem has been demonstrated and a suitable discretization framework has been proposed,326

paying attention to avoiding computational solutions that would not generalize to the complete model.327

The proposed approach has been verified in various numerical experiments. Virtually every aspect of the328

present work offers room for extensions and improvements: higher order methods can be considered, the329

error analysis could be refined, possibly taking into account the anisotropy of the problem, more efficient330

algorithms for the iterative solution of the linear system should be investigated and, most importantly, more331

terms of the complete model should be included in the analysis. We hope, nevertheless, that the present work332

can serve as a solid starting point for the development of reliable computational models for the simulation333

of the SOL layer in fusion devices.334
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Figure 8: Same as in figure 7 but using the unstable finite element pair Vh = Qh.
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Figure 9: Residual (black solid line) and L2 error norms for the GMRES iterations advancing the solution from ta = 1.25 ·10−4

to tb = 1.875·10−4: ‖ũh−ũ
(k)
h ‖L2 (gray dashed line), ‖ũe h−ũ

(k)
e h ‖L2 (gray dash-dot line) and ‖Φ̃h−Φ̃

(k)
h ‖L2 (gray solid line).

All the quantities are normalized with the respective value for the initial iteration. Results for the plane GMRES method (left)
and for the preconditioned GMRES method (right). Notice that, one the one hand, the residuals are not directly comparable,
since they are computed for the plane and the left-preconditioned method, while, on the other hand, the error norms are
comparable since they refer to the same quantities and use the same normalization.
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