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Abstract

The flux-coordinate independent approach (FCI) offers a promising solution to deal with a separatrix and X-point(s) in diverted
tokamaks. Whereas the discretisation of perpendicular operators (with respect to magnetic field) is straight forward, the major
complexity lies in the discretisation of parallel operators, for which field line tracing and interpolation is employed. A discrete
version for the parallel diffusion operator was proposed in [1], which maintains the self-adjointness property on the discrete level
and exhibits only very low numerical perpendicular diffusion/pollution. However, in situations where the field line map is strongly
distorted this scheme revealed its limits. Moreover, the appearance of small scale corrugations deteriorated the convergence order
with respect to spatial resolution [2]. In this paper we present an extension to the scheme where the parallel gradient is reformulated
via a combination of integration and interpolation. It is shown that the resultant scheme finally combines many good numerical
properties, i.e. it is self-adjoint on the discrete level, it has very low numerical perpendicular diffusion, it can cope with strongly
distorted maps and exhibits optimal convergence. Another subtle issue in the FCI approach is the treatment of boundary conditions,
especially where magnetic field lines intersect with material plates. We present a solution based on ghost points, whose value can
be set in a flexible way according to Taylor expansion around the boundary.

Keywords: Flux-coordinate independent approach, field line map, support operator method

1. Introduction

The geometry of diverted magnetic fusion devices poses
a challenge to the numerical treatment of the plasma edge
and scrape-off layer (SOL). Dynamics in tokamaks is usually
strongly anisotropic leading to structures which are strongly
elongated along magnetic field lines (k‖ � k⊥). This flute mode
character is usually exploited computationally in numerical
codes via employing field-aligned coordinate systems [3] and
sparsifying the computational grid along the resulting paral-
lel coordinate. However, field/flux-aligned coordinates become
singular on the separatrix/X-point(s) and therefore codes based
on these coordinates cannot span a simulation domain across
the separatrix. The flux-coordinate independent approach (FCI)
[4, 5, 6, 1] offers a solution to this dilemma: The simulation do-
main is spanned with a cylindrical grid, which is well defined
everywhere in the region of interest, and the discretisation of
perpendicular operators turns out to be straight forward. For
the discretisation of parallel operators a field line map is used:
Parallel operators are discretised via a finite difference along
magnetic field lines, for which field line tracing towards neigh-
bouring poloidal planes is performed and required values on the
field line are obtained by interpolation. Finally, the flute mode
character can be exploited computationally by sparsifying the
grid along the toroidal direction. The FCI approach allows a
high flexibility in geometry and is used in few codes, like FENI-
CIA [5], GRILLIX [1], FELTOR [2], BOUT++ [7]. It has been
successfully applied to hyperbolic and parabolic problems.

Email address: Andreas.Stegmeir@ipp.mpg.de (Andreas Stegmeir)

The main complexity of the approach lies in the discretisa-
tion of parallel operators, and a major critical issue is numer-
ical perpendicular diffusion/pollution caused by the interpola-
tion which couples distinct magnetic field lines. The highly
anisotropic dynamics, e.g. the ratio of parallel to perpendicular
heat conductivity may reach levels of χ‖/χ⊥ ∼ 1010, implies
that even a small directional error of discrete parallel operators
may overwhelm the real slow perpendicular dynamics. Follow-
ing the method of support operators [8, 9] numerical schemes
for the parallel diffusion operator were derived in [1, 10], which
conserve the self-adjointness property on the discrete level and
exhibit a highly reduced level of numerical diffusion as com-
pared to a naive discretisation. Two types of schemes, one
based on interpolation and another one based on integration
were derived. However, it turned out that the schemes which
are based on interpolation exhibit erroneous corrugations, espe-
cially in situations where the field line map is strongly distorted,
i.e. at low toroidal resolutions and in presence of strong mag-
netic shear. Moreover, a deteriorated convergence behaviour
was recently found from numerical tests in complicated geome-
tries with ∇ · b , 0 [2], with b the magnetic field unit vector.
In this paper we present an extension to these schemes, where
the underlying parallel gradient is reformulated via a combina-
tion of interpolation and integration. We show that the resultant
scheme combines many good numerical properties: It is self
adjoint the discrete level, it has very low numerical perpendicu-
lar diffusion/pollution, it can cope even with strongly distorted
field line maps and it exhibits the expected second order con-
vergence with respect to toroidal resolution. Moreover, it is also
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very practical as it does not require substantial additional effort
in implementation and it does not increase the computational
cost.

Furthermore, we discuss the treatment of boundaries within
the FCI approach. Especially at the intersection of magnetic
field lines with material surfaces (limiter, divertor) subtle nu-
merical problems may arise, as e.g. also information from out-
side the boundary is required for interpolation and the distances
from grid points to the boundary may vary strongly. We present
in this paper a solution which is based on ghost points, whose
values are set according to a Taylor expansion along magnetic
field lines around the boundary. This offers a simple and flexi-
ble way to deal with different kinds of boundary conditions.

All developed methods were implemented in the code GRIL-
LIX, with which the presented numerical tests were carried out.

2. Parallel operators within FCI approach

A general introduction into the FCI approach, which is re-
viewed here only shortly, can be found e.g. in [4, 5, 6, 1] and
we focus on the discretisation of parallel operators. We consider
in the following an axisymmetric tokamak configuration which
is spanned by a cylindrical grid (Ri,Z j, ϕk), which is Cartesian
with grid spacing h within poloidal planes k. Based on the as-
sumption of a strong toroidal field (Btor � Bpol) perpendicu-
lar operators can be approximated with a stencil which remains
within these Cartesian poloidal planes, and their discretisation
is straight forward as e.g. standard finite difference methods
could be used. In order to exploit the flute mode character
(k‖ � k⊥) the resolution in the toroidal direction is sparsified
and a field line following discretisation for parallel operators is
used. For each grid point (Ri,Z j) a field line tracing towards
the neighbouring poloidal planes k± 1 is performed yielding its
map points (R±i, j,Z

±
i, j) and the corresponding arc lengths along

the field line ∆s±i, j. Due to axisymmetry this information is in-
dependent on the toroidal grid index k.

2.1. Parallel gradient

A finite difference along magnetic field lines can be used to
obtain a discrete version for the parallel gradient. The value for
some quantity u at the map points, i.e u±i, j,k := u(R±i, j,Z

±
i, j, k ± 1),

are computed thereby via interpolation as the map points do
not in general coincide with grid points. The forward/backward
finite difference Q± of the parallel gradient follows as [1] (see
fig. 1):

(
Q±u

)
i, j,k := ±

u±i, j,k − ui, j,k

∆s±i, j
. (1)

For evaluation of the parallel gradient at the grid point itself
(Ri,Z j, ϕk) a linear interpolation of the forward/backward ex-
pression along magnetic field lines is proposed:

(Qu)i, j,k :=
(Q+u)i, j,k ∆s−i, j + (Q−u)i, j,k ∆s+

i, j

∆s+
i, j + ∆s−i, j

(2)
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Figure 1: Scheme for computation of parallel gradient based on interpolation
within FCI approach.

The interpolation couples distinct field lines, which causes nu-
merical perpendicular diffusion/pollution, which can be con-
trolled by the order of interpolation. A higher order interpo-
lation exhibits less numerical perpendicular diffusion but has a
larger stencil and might be more prone to oscillations (Runge’s
phenomenon).

Especially around the X-point and at low toroidal resolutions
the field line map can be strongly distorted, i.e. field lines of two
neighbouring grid points spread apart such that the distance be-
tween neighbouring map points is large (> h). A sketch of this
situation (reduced to two dimensions) is shown in fig. 2a. In
reality any parallel dynamics would spread information across
many grid points in between neighbouring map points in a
smooth way. However, the discrete parallel gradient accord-
ing to definition (1) only connects the considered grid point to
those points which are actually involved in the interpolation. It
was shown in [1] that this may cause erroneous corrugations if
adjacent map points are far apart. Two remedies to this were
also suggested in [1]: The first one is simply to require enough
toroidal resolution to bring the map distortion below a quan-
tifiable threshold and the second one is to change the parallel
gradient to account for the map distortion via using the integral
formulation of the parallel gradient, i.e.:

∇‖u = lim
V→0

1
BV

∫
∂V

uB · dS, (3)

On the discrete level we use toroidally limited flux boxes as
illustrated in fig. 2b, where the only contribution to the surface
integral stems from the toroidal ends of the flux box volume.

(
Q±u

)
i, j,k := ±

1
(VB)±i, j


∫
A±i, j

uBtordA −
∫
A0

i, j

uBtordA

 , (4)

where A0
i, j is the base square of lateral length h around grid

point i, j and A±i, j its mapped area. The prefactor can be ob-
tained with high accuracy from the field line tracing procedure
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Figure 2: a) Sketch for map distortion (illustration reduced to two dimensions).
b) Scheme for computation of parallel gradient based on integration. Finite flux
box volume is plotted in blue

utilizing conservation of toroidal magnetic flux:

(VB)±i, j = h2Btor(Ri,Z j)

±∆ϕ∫
0

B(γ(ϕ))
Btor(γ(ϕ))

Rdϕ = h2Btor(Ri,Z j)∆s±i, j,

(5)

where γ(ϕ) is the curve traced along magnetic field line with
γ(0) =

(
Ri,Z j

)
.

It was proposed in [1] to express the surface integrals on
the discrete level via computing overlaps of the mapped quad
with the base squares, and it was shown that problems caused
by map distortion can be resolved by this in principle. How-
ever, since with this approach the representation of quanti-
ties in the perpendicular direction is of low order – quanti-
ties are assumed to be piecewise constant within base squares
[Ri−

h
2 ,Ri+

h
2 ]×[Z j−

h
2 ,Z j+

h
2 ] – the numerical diffusion/pollution

is high in comparison to a high order interpolation method.
Moreover, the computation of the surface overlaps is cumber-
some and for strongly distorted maps the overlap of not only
quads but general polygons might have to be considered.

For a new improved scheme we propose to combine interpo-
lation and integration. We split the two integrals of eq. (4) into
2X×2X , X ∈ N0 subcells, and express them on the discrete level
as (see fig. 3):

∫
A0

i, j

uBtordA =
h2

2X2X

2X∑
s,t=1

u(Ri js ,Zi jt , ϕk)Btor(Ri js ,Zi jt ) (6)

∫
A±i, j

uBtordA =
h2

2X2X

2X∑
s,t=1

u(R±i js
,Z±i jt , ϕk±1)Btor(Ri js ,Zi jt ), (7)

where

Ri js :=Ri −
h
2

+
h

2X

(
s −

1
2

)
, Zi jt :=Z j −

h
2

+
h

2X

(
t −

1
2

)
(8)

and R±i js
,Z±i jt

the corresponding map points. Again conservation
of magnetic flux has been utilized to express the toroidal mag-
netic flux in the mapped area via the toroidal magnetic flux in
the base area. The values u(Ri js ,Zi jt , ϕk) and u(R±i js

,Z±i jt
, ϕk±1)

are obtained via interpolation.
We make a few comments to the new scheme. If we consider

the case X = 0, i.e. no splitting into subcells, the new scheme

a)
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Figure 3: Sketch of integration-interpolation scheme for a) X = 1, i.e. splitting
into four subcells, and b) X = 2, i.e. splitting into 16 subcells.

is identical to the pure interpolation scheme given in eq. (1).
If the parameter X is increased the mapped area is traced out
more precisely and stronger map distortions can be resolved.
Provided that a field line tracing routine and an interpolation
routine are already available, only very little additional effort
in implementation is required as compared to the pure inter-
polation scheme. The computational effort for establishing the
parallel gradients is of orderO

(
22X

)
as compared to the pure in-

terpolation scheme. However, the discrete parallel gradients Q±
usually have to be established only once at the beginning of a
simulation and remain then fixed in time. Concerning computa-
tional performance the critical part is finally the often repeated
application of parallel operators. As the size of the final stencil
is very similar to the pure interpolation scheme and not strongly
dependent on X there is no significant increase in computational
cost.

2.2. Parallel diffusion
We consider the parallel diffusion operator:

D‖u := ∇ ·
[
b∇‖u

]
, (9)

with b the unit vector of the magnetic field. Two different dis-
crete versions for the parallel diffusion operator were suggested
in [1, 10] which are reviewed here shortly.

For the first (naive) discretisation we rewrite D‖u = ∇2
‖
u +

(∇ · b)∇‖u and apply a further finite difference on the discrete
parallel gradient to obtain:(

DNu
)

i, j,k
:=

(Q+u)i, j,k − (Q−u)i, j,k

(∆s+
i, j + ∆s−i, j)/2

+ (∇ · b)i, j (Qu)i, j,k (10)

Note that in contrast to [1, 10] the scheme is extended by the
second term, whereby (∇ · b)i, j can be computed directly from
a given equilibrium.
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The second scheme in [1, 10] followed the method of support
operators [8, 9]. For simplicity we consider only real valued
scalar fields which vanish at the boundary. Then the integral
equality that we want to conserve on the discrete level is:∫

V

uD‖vdV = −

∫
V

∇‖u∇‖vdV, (11)

which implies ∇ · [b◦] = −∇
†

‖
and D‖ = D

†

‖
. On the left hand

side of eq. (11) is an integration over scalars and on the right
hand side over fluxes, which are identified on the discrete level
with distinct spaces. S G is the space of discrete scalar fields,
which are collocated on the basic cylindrical grid (Ri,Z j, ϕk),
and FG± are the spaces of discrete fluxes which are collo-
cated half way along magnetic field lines between neighbour-
ing poloidal planes, i.e. on a staggered grid in the parallel sense
(see fig. 1). Due to the ’±’ choice of the parallel gradient we
have also two distinct spaces for the discrete fluxes. We define
inner products in these discrete spaces:

〈u, v〉S G :=
∑
λ

uλvλ∆Vλ,
〈
q±, p±

〉
FG± :=

∑
µ

q±µ p±µ∆V±µ ,

(12)

where Greek indices denote summation over all grid points.
∆Vλ and ∆V±µ are flux box volumes corresponding to the
toroidal intervals

[
ϕk −

∆ϕ
2 , ϕk +

∆ϕ
2

]
respectively

[
ϕk, ϕk ± ∆ϕ

]
.

The mapping of the discrete operators between these spaces is:

D‖ :S G → S G, Q± :S G → FG±, Q̃± : FG± → S G, (13)

where D‖ is the discrete analogue of the parallel diffusion op-
erator and Q̃± the discrete analogue of the parallel divergence
∇ · [b◦], which we mention here for completeness although it is
not needed explicitly in the following.

The discrete version for the parallel diffusion operator is de-
rived from the discrete parallel gradient and by the requirement
that the integral equality (11) holds on the discrete level:

Dsupp
‖λσ

= −
1
2

∑
µ

Q+
µλQ+

µσ

∆V+
µ

∆Vλ
+

∑
µ

Q−µλQ−µσ
∆V−µ

∆Vλ

 . (14)

The first ’+’ term alone is already a consistent version in itself
as well as the second ’−’ term. However, to obtain a scheme
which is independent of this arbitrary choice and therefore sym-
metric with respect to ϕ the average of both schemes is taken.

3. Numerical tests

For the following tests and examples a 3rd order bipolyno-
mial interpolation was used to obtain values at points which do
not coincide with grid points (e.g. map points). Therefore, 4×4
grid points centered around the considered point are used to
obtain the interpolating polynomial. The following numerical
schemes were investigated:

• D-3: Naive scheme for the parallel diffusion operator ac-
cording to eq. (10). The discrete parallel gradient is
thereby computed by pure interpolation (X = 0 or eq. (1)).

• S-3XX: Support scheme according to eq. (14) and paral-
lel gradient according to eqs. (4), with terms therein given
by eqs. (5) to (7). The parameter X, which controls the
splitting into subcells is denoted by the number X.

We note that we found the naive method with the parallel
gradient computed via interpolation-integration technique with
X > 0 to be numerically unstable in some cases so we do not
consider it here any further. This is another advantage of the
support scheme as it guarantees a strict decrease of the L2 norm
and ensures therefore numerical stability [1].

3.1. Consistency
We investigate the convergence behaviour of the new

schemes with a test case which was proposed in [2]. The mag-
netic field is axisymmetric:

B =I0∇ϕ + ∇ψ × ∇ϕ, (15)

with the poloidal magnetic field given in terms of the flux func-
tion.

ψ(R,Z) = cos
(R0π

2
(R − 1)

)
cos

(R0π

2
Z
)
, (16)

which has ∇·b , 0. We use as parameters R0 = 10 and I0 = 20,
limit the simulation domain to R ∈ [0.9, 1.1], Z ∈ [−0.1, 0.1]
and measure the numerical error of the discrete parallel diffu-
sion operator in the L2 and L∞ norm:

εn =

∣∣∣D‖u − (
D‖u

)
h

∣∣∣
n∣∣∣(D‖u)h

∣∣∣
n

, n = 2,∞, (17)

where
(
D‖u

)
h is the analytic result collocated to grid points.

The L2 norm on the discrete level is induced by the discrete
scalar product from eq. (12) (SG). We consider two test func-
tions

u1 = − ψ(R,Z) cosϕ = − cos (5π (R − 1)) cos (5πZ) cosϕ,
(18)

u2 = − cos(10π(R − 1)) cos(10πZ) cosϕ, (19)

In contrast to u1, which has also been considered in [2], u2
is more general as it is not aligned to flux surfaces within
poloidal planes. For a convergence test we adapt the reso-
lution in all three dimensions according to ∆ϕ = 2π · 2−i,

h = min
{
10−2, h0

(
∆ϕ
2π

)2/3
}
, with h0 = 0.05. This resolution

sequence, i.e. a slightly slower grid refinement in the perpendic-
ular direction than in the toroidal direction, was also employed
in [2].

The numerical error for the test with function u1 is shown in
fig. 4 and the difference between the numeric and analytic re-
sult at resolution ∆ϕ = 2π/64 in fig. 5. As already shown in
[2] the naive scheme D-3 converges with second order with re-
spect to toroidal resolution, whereas the support scheme which
is purely based on interpolation, i.e. S-3X0, exhibits an irreg-
ular and deteriorated convergence behaviour. As can be seen
from fig. 5 this is due to few strong corrugations which appear
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Figure 4: Numerical error in a) L2 and b) L∞ norm for test function u1.

Corresponding perpendicular resolution was h = min
{
10−2, h0

(
∆ϕ
2π

)2/3
}
, with

h0 = 0.05.

if map points of two neighbouring grid points land in the same
cell respectively jump across a grid cell (see appendix in [1]
for a detailed example in a simplified setup). As the parameter
X is increased these corrugations gradually vanish and a con-
vergence order which is close to second order with respect to
toroidal resolution is obtained. The same behaviour is also ob-
tained for the more general function u2 (see fig. 6). However, a
strict second order convergence even with the S-3X6 scheme is
not obtained at the highest resolutions. This could possibly be
resolved by taking into account the subcell structure also at the
computation of the prefactors (VB)±i, j (see eq. (5)).

3.2. Flute modes

The tests from the previous section constitute unusual and
extreme cases to the aligned schemes D-3 and S-3X, since
their true strength, especially of the support schemes, is finally
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Figure 5: Difference between analytic and numeric parallel diffusion operator
after action on u1 at plane ϕ = 0 for resolution of ∆ϕ/2π = 1/64, h = 3 · 10−3.
a) D-3, b) S-3X0 c) S-3X2 and d) S-3X6.
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Figure 6: Numerical error in L2 norm (solid) and L∞ norm (dashed) for test
function u2.
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Figure 7: Temporal evolution of numerical error. A parallel diffusion equation
was evolved in time with zonal mode u(t = 0) = sin

(
3
2πψ

)
as initial state.

The numerical errors δ2 (solid) and δ∞ (dashed) are here defined as δ2,∞ =

|u(t) − u(t = 0)|2,∞ / |u(t = 0)|2,∞. The curves for the S-3X2 (red) and S-3X4
(cyan) practically overlap.

deployed for flute modes, i.e. structures which are strongly
elongated along magnetic field lines (k‖ � k⊥). The aligned
schemes allow an accurate treatment of flute modes already
at very low toroidal resolutions, whereas with non-aligned
schemes a dense resolution in all three spatial dimensions is
required [2].

The simplest example of a flute mode is a zonal structure,
i.e. u = u(ψ) for which k‖ = 0. We consider in the following the
time dependent parallel diffusion equation:

∂

∂t
u = D‖u, (20)

and initialize the simulation as u(t = 0) = sin
(

3
2πψ

)
, which is

a steady state. Therefore, any temporal evolution is due to nu-
merical error, i.e. numerical perpendicular diffusion/pollution.
In fig. 7 an example for the temporal evolution is shown. It is
evident that the numerical diffusion/pollution is orders of mag-
nitude lower for the support schemes than for the naive scheme.
Whereas this has already been shown in [1, 10] it also holds true
for the new scheme based on integration-interpolation. More-
over, we observe even less numerical diffusion than with the
pure interpolation scheme.

At low toroidal resolution and strong magnetic shear the
map might become strongly distorted (see again section 2.1 and
fig. 2). It was shown in [1] that this was causing corrugations for
the support scheme based on pure interpolation (S-3X0). As the
new scheme based firstly on integration maps areas, problems
arising from map distortion are easily resolved by increasing
the parameter X. Fig. 8 illustrates an example for this, where
an equilibrium from [11] was employed representing ASDEX
Upgrade. The parallel diffusion equation (20) was evolved in
time with a blob, i.e a Gaussian on a single poloidal plane, as
initial state. A very low toroidal resolution of only two poloidal
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Figure 8: Example for distortion of map at low toroidal resolution ∆ϕ = 2π/2.
Perpendicular resolution was h = 1 ·10−3. Initial state was u(Ri,Z j, ϕk , t = 0) =

exp
(
−

(Ri−0.88)2+(Z j+0.29)2

0.0082

) (
2π
∆ϕ δk0

)
. Result on plane ϕ = π and time t = 10 for

a) S-3X0 and b) S-3X2 scheme. Insets show top right region enlarged.

planes was used and a region of strong magnetic shear close to
the separatrix was considered. The blob extends along magnetic
field lines yielding a flute mode. With the S-3X0 scheme erro-
neous corrugations arise, whereas the solution obtained with
the S-3X2 scheme is obviously smooth. We note that a non-
aligned scheme would probably fail at such low toroidal res-
olutions (see also [2]), since the magnetic geometry sampled
by the resolutions would not be resolved well. In contrast the
aligned schemes (D-3, S-3X) resolve the geometry accurately
due to tracing field lines.

3.3. Role of perpendicular resolution

The perpendicular resolution h determines the accuracy of
the interpolation. During diffusion of a structure along mag-
netic field lines, magnetic shear gradually deforms its poloidal
cross section, i.e. stretching it into one direction and compress-
ing it into the other. In fig. 9 the poloidal cross section of a
Gaussian blob after parallel diffusion to time t = 5 is shown,
where the result of the 32 employed poloidal planes is super-
imposed. The blob was initialized on the outboard midplane
and the deformation of its cross section towards the inside of
the torus is clearly visible. Eventually the width of the structure
goes below the perpendicular resolution h, where the interpola-
tion becomes inaccurate. At this point either the perpendicular
resolution has to be increased or some perpendicular dynamics,
e.g. perpendicular dissipation, takes over.

In fig. 10 a view of the structure and its parallel derivative
along the field line passing through the center of the blob is
shown. At low perpendicular resolution (h = 5 · 10−4) corru-
gations are visible especially after passing a region of strong
shear in the vicinity of the X-point (x‖/R0 . −3). The cor-
rugations decrease as the perpendicular resolution is increased.
Alternatively a perpendicular hyper-diffusion, e.g. of the type
ν∇6
⊥u also reduces corrugations without affecting the global re-

sult significantly.
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Figure 9: Result of diffusion of Gaussian blob(
u(Ri,Z j, ϕk , t = 0) = exp

(
−

(Ri−1.203)2+Z2
j

0.0072

) (
2π
∆ϕ δk0

))
computed with S-

3X2 scheme. Superposition of 32 poloidal planes at t = 5 is shown. Numbers
refer to length measured along field line starting from outboard midplane (As
reference for fig. 10). Perpendicular resolution was h = 5 · 10−5.
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Figure 10: a) Quantity u and b) corresponding parallel gradient ∇‖u illustrated
along field line passing through center of blob from simulation of fig. 9 at t =

5. Simulations with low (blue), high (green) perpendicular resolution and a
simulation with additionally hyperdiffusion of ν∇6

⊥u (red) were performed.

X creation time [s] evaluation time [s] fill density of Q± [%]
0 13.03 4.71 5.97 · 10−3

1 27.24 5.71 8.23 · 10−3

2 80.17 5.91 8.85 · 10−3

4 1156.14 6.01 9.35 · 10−3

Table 1: Time required for creation and evaluation of parallel operators in de-
pendence on parameter X. Also the average fill density of the matrices Q± is
given.

3.4. Computational costs

The simulation from the previous section 3.3
(
h = 5 · 10−4

)
serve as test case to compare the computational cost of the
new scheme in dependence on the parameter X. We profiled
separately the creation of the parallel operators, i.e. the ma-
trices Q± which remained fixed in time, and the evaluation of
Dsupp
‖

averaged over ≈ 400 applications. GRILLIX is MPI par-
allelized over the toroidal direction and OpenMp parallelized
within poloidal planes, and the results were obtained on a paral-
lel computing cluster with 32 MPI processes and one OpenMp
thread per process (poloidal plane). The results are summarized
in table 1. Whereas the time required for the creation increases
strongly with the parameter X (towards O

(
22X

)
), the time for

the evaluation does not increase substantially as also the size of
the stencil which is represented by the fill density of the matri-
ces Q±. The creation is usually done only once at the beginning
of a simulation and the critical part concerning the performance
is the evaluation, which is executed subsequently very often.
Therefore, the overall computational cost does not increase sig-
nificantly with X.

4. Boundaries within FCI

A subtle issue within the FCI approach is the treatment of
boundaries, especially where magnetic field lines intersect with
material plates, since these may have an immediate effect on
the whole simulation domain. In general the intersection of
field lines with boundaries can be identified during the field line
tracing procedure.

An obvious problem arises if a map point is close to the
boundary such that the standard interpolation stamp, (e.g. 4× 4
centered around the map point for third order bipolynomial in-
terpolation), extends across the boundary. Adapting the interpo-
lation technique for such special cases can be cumbersome and
the quality of interpolation might degrade. A simple and flexi-
ble approach consists of extending the domain by ghost points.
Assuming that some reasonable extension for the magnetic field
exists outside the domain, which is usually the case in practice,
also an extension of parallel operators to ghost points is possi-
ble and fits very well into the established framework. Finally,
just suitable values have to be assigned to ghost points. We dis-
cuss in the following only ghost points that are actually relevant
for the parallel boundary conditions at the intersection of mag-
netic field lines with material surfaces, i.e. limiter or divertor
plates. For other ghost points near the limiting flux surfaces
where magnetic field lines are tangential to the boundary, we
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Figure 11: Scheme for treatment of boundary conditions. Crosses are grid
points and open circles ghost points. a) For the case of Neumann boundary
conditions a Taylor expansion along magnetic field lines around the intersection
point is performed. b) For Dirichlet boundary conditions one may consider
ghost points to be actually located on the boundary projected (black dashed)
along magnetic field lines. Finite distances and volumes are adapted close to
boundary (red).

assume that some suitable perpendicular boundary condition is
available. In the following values on those ghost points are set
to zero.

4.1. Neumann and Robin boundary conditions
A sketch for the treatment of Neumann boundary conditions

is illustrated in fig. 11a. The computational grid is extended by
ghost points located within poloidal planes. No adaption is re-
quired for the extension of discrete parallel operators to ghost
points: The standard interpolation-integration procedure ac-
cording to eqs. (6) and (7) is used, and the finite distances

(
∆s±i, j

)
and volumes

(
∆Vi, j,∆V

±
i, j

)
are computed without respecting the

boundary. Neumann boundary conditions at the intersection of
the magnetic field line with the boundary are enforced by as-
signing values to the ghost points according to a second order
Taylor expansion along magnetic field lines around the inter-
section point:

ug =
s2

1 − s2
3

s2
2 − s2

3

u+
g +

s2
2 − s2

1

s2
2 − s2

3

u2+
g −

(s1 + s2) (s1 + s3)
s2 + s3

u′b, (21)

where u+
g is the value of the quantity at the mapped position

from the considered ghost point at the next plane and u2+
g the

value at the next but one poloidal plane. Here s1, s2 and s3 are
the distances from these points to the boundary and u′b is the
prescribed parallel gradient at the intersection of the magnetic
field line with the boundary. The expression for the ′−′ direc-
tion follows analogously. The expansion up to second order
takes into account a variation in the distance to the boundary,
which may range from approximately s1 ≈ 0 to s1 ≈ R∆ϕ.
We want to note that Neumann boundary conditions are usu-
ally treated by imposing the prescribed flux directly to the dis-
crete flux at the boundary (see section 4.3, first item, for such
an approach with its deficiencies). However, by assigning val-
ues to ghost points according to eq. (21) the discrete fluxes at
the boundary do not necessarily coincide exactly with the pre-
scribed flux, but only converge to it with increasing resolution.

As an example we consider the parallel diffusion equation
with a Robin-like boundary condition:

∇‖u
∣∣∣
b = ∓αu|b (22)

at the divertor plates, with α a positive constant and the
negative/positive sign corresponds to field lines directed to-
wards/away from the divertor plates. Considering the boundary
condition (22) was motivated from sheath boundary conditions
[12]. Required values at the intersection with the divertor plates
u|b are computed via linear extrapolation from the interior do-
main, such that:

u′b = ∓α
s3u+

g − s2u2+
g

s3 − s2
. (23)

As initial state we consider again a blob located at the outboard
midplane in the scrape-off layer, where a horizontal divertor
at Z = −0.42 is present. Fig. 12 shows a snapshot on the 32
employed poloidal planes superimposed for the case α = 1.
The setting of the ghost points according to eq. (21) results in
a structure which is obviously smooth across the boundary, and
in order to show that the desired boundary condition is actually
fulfilled we show in fig. 13 the representation of the structure
along the field line passing through the center of the blob. The
curves for the quantity and its parallel derivative intersect at the
outer divertor, and therefore fulfill the desired boundary condi-
tion (∇‖u

∣∣∣
b = u|b at the outer divertor for the case α = 1).

In fig. 14a the result at t = 2 for different values of α is
illustrated. The general trend that with decreasing α the par-
allel gradient at the outer divertor decreases fulfills the expec-
tations. However, especially for the case α = 0 the value for
the parallel gradient is overestimated as the values on ghost
points drop spuriously. This behaviour appears to be due to
an insufficient perpendicular resolution. As can be seen from
the snapshot (fig. 12) the structure becomes strongly distorted
due to magnetic shear caused in the vicinity of the X-point [13]
and its width becomes very small towards the outer divertor.
The values u+

g and u2+
g , which determine the value at the ghost

points, are obtained from interpolation which becomes inaccu-
rate. Fig. 14b compares the result for the case α = 0 simulated
with high and low perpendicular resolution. At higher perpen-
dicular resolution the result converges towards the prescribed
boundary condition.

4.2. Dirichlet boundary conditions

It is advantageous to treat Dirichlet boundary conditions
slightly differently from Neumann or Robin boundary condi-
tions. Discrete parallel operators are adapted near the boundary,
i.e. the interpolation-integration procedure is still carried out ac-
cording to eqs. (6) and (7), but the boundary is now respected
at the computation of finite distances and volumes, i.e. there is
no contributions from behind the boundary to ∆s±i, j, ∆Vi, j and
∆V±i, j. One may thus consider ghost points to be, projected
along magnetic field lines, located directly on the boundary as
illustrated in fig. 11b. In this way the integration-interpolation
procedure has not to be adapted and the desired value on the
boundary can be set explicitly without need for extrapolation,
which might cause numerical instabilities (see section 4.3).

As an example we initialize a simulation with u = 0 in the
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Figure 12: Snapshot of diffusion of Gaussian blob(
u(Ri,Z j, ϕk , t = 0) = exp

(
−

(Ri−1.233)2+Z2
j

0.0072

) (
2π
∆ϕ δk0

))
at t = 2 for the case

α = 1. Result of Npol = 32 poloidal planes is shown superimposed with inset
showing the region around the boundary enlarged. Points below divertor,
located horizontally at Z = −0.42 and indicated with thick black line, are
ghost points, whose values are determined according to eq. (21). Perpendicular
resolution was h = 5 · 10−4.
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Figure 13: Representation of structure along magnetic field line passing through
center of blob for the case α = 1 at various times t. The quantity (solid) and its
parallel derivative (dashed) are shown. At the inner divertor the quantity and its
derivative intersect fulfilling the requested boundary condition ∇‖u
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b = u|b.
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Figure 14: a) Quantity (solid) and its parallel derivative (dashed) along mag-
netic field line passing through center of blob at time t = 2 for different values
of α. Especially for the case α = 0 a spurious drop in the ghost point region
of the outer divertor is obvious which leads to an overestimation of the parallel
gradient. b) Comparison of simulation performed with low (h = 5 · 10−4) per-
pendicular resolution and high (h = 2.5 · 10−4) perpendicular resolution for the
case α = 0.
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Figure 15: Snapshots of simulation with Dirichlet boundary condition u|b =

sin
(
2π ψ−ψinner

ψouter−ψinner

)
at divertor for time a) t = 1 and b) t = 10. 32 poloidal

planes were employed with a perpendicular resolution of h = 5 · 10−4.

interior domain with the boundary condition:

u|b = sin
(
2π

ψ − ψinner

ψouter − ψinner

)
, (24)

where ψinner, ψouter are the flux surface labels of the inner and
outer limiting flux surfaces. From the snapshots, shown in
fig. 15 it is obvious that the simulation approaches the final
steady state u = sin

(
2π ψ−ψinner

ψouter−ψinner

)
.

4.3. Further remarks

Finally, we want to note that among several different methods
that we tried for the treatment of the boundaries, the one that we
presented here turned out to be most robust and practical. We
pass on a quantitative comparison but just list other approaches
that we tried with its deficiencies.

• In an approach without ghost points a special treatment is
applied to grid points which are connected to the bound-
ary. On the corresponding side no interpolation is car-
ried out but the desired boundary condition is set directly.
The major drawback of the method is that if one wants to
keep the interpolation stencil centered around map points,
information from outside the domain is still required for
those grid points whose map points are still in the inte-
rior domain but close to the boundary. So one either has
to fall back to ghost points anyway in order to obtain the
missing information, or one has to adapt the interpolation
which is cumbersome and introduced other spurious nu-
merical artefacts. Moreover, we found that the ’special’
treatment of some points was causing corrugations within
the poloidal plane.

• In analogy to Neumann boundary conditions we tried a
treatment of Dirichlet boundary conditions according to
fig. 11a, where the discrete parallel operator close to the
boundary is not adapted, but the values on ghost points

are also obtained via extrapolation according to (compare
eq. (21)):

ug =
s1 (s1 + s3)
s2 (s2 − s3)

u+
g −

s1 (s1 + s2)
s3 (s2 − s3)

u2+
g

+

1 +
s2

1 + s1s2 + s1s3

s2s3

 ub, (25)

where ub is the prescribed value at the intersection of the
magnetic field line with the boundary. However, we ob-
served numerical instabilities in certain cases with this ap-
proach.

• On the other hand we tried to treat Neumann boundary
conditions in analogy to Dirichlet boundary conditions ac-
cording to fig. 11b, where ghost points are considered to be
located on the boundary with the Taylor expansion adapted
accordingly, such that

ug = −
s2

3(
s2

2 − s2
3

)u+
g +

s2
2(

s2
2 − s2

3

)u2+
g −

s2s3

(s2 + s3)
u′b. (26)

However, also in this approach we observed numerical in-
stabilities in certain cases.

• A setting of ghost points according to a first order Taylor
expansion might not account for a variation of the distance
to the boundary and corrugations within the poloidal plane
were observed.

5. Conclusions

The flux-coordinate independent approach offers a viable so-
lution to deal with complex geometries of magnetic fusion de-
vices, especially a separatrix and X-point(s). The main chal-
lenge thereby is the discretisation of parallel operators as the
numerical grid is not aligned with magnetic field lines.

We presented a new scheme for the parallel gradient which is
based on a combination of interpolation and integration, where
the degree of integration is controlled by a single parameter X.
With respect to the pure interpolation scheme, which is also
contained in the new scheme with X = 0, the additional effort
required for implementation is very little and the increase in
computational costs is practically negligible in the electrostatic
case where the field line map does not evolve in time. In anal-
ogy to [1] the discrete parallel diffusion operator follows from
the method of support operators. Whereas the pure interpola-
tion scheme S-3X0 exhibits erroneous corrugations which lead
to a degradation of convergence, the new schemes approach a
second order converge with toroidal resolution as the parameter
X is gradually increased. Moreover, it was shown that the new
scheme can even cope with strongly distorted maps. In contrast
to non-aligned schemes, the presented aligned schemes allow
an accurate treatment of flute modes at already very low toroidal
resolutions. Thereby, the parallel diffusion operator discretised
according to the support operator method S-3XX exhibits a nu-
merical perpendicular diffusion which is orders of magnitudes
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lower than the naive discretisation method D-3. In conclusion
the new S-3XX schemes are the methods of choice as they were
shown to be consistent, self-adjoint on the discrete level and
therefore conserve energy, exhibit only very low numerical per-
pendicular diffusion, are computationally efficient and easy to
implement. The scheme is implemented in the code GRILLIX,
with which the benchmarks and examples for this paper have
been produced, and has recently also been succesfully adopted
in the code FELTOR, which is based on discontinuous Galerkin
methods [2].

The accuracy of the interpolation is determined by perpen-
dicular resolution. Structures that try to align along magnetic
field lines might get a very small extent in the perpendicu-
lar direction due to magnetic shear. At some point they can-
not be resolved by the perpendicular resolution any more, and
the interpolation becomes inaccurate. However, at such small
scales some perpendicular dynamics, i.e. perpendicular dissipa-
tion has to take over.

We also addressed the subtle issue of boundaries within the
FCI approach, and presented a solution based on ghost points.
The intersections of field lines with boundaries are identified
during the field line tracing procedure. For Neumann bound-
ary conditions values on ghost points are assigned according
to a second order Taylor expansion along magnetic field lines
around the intersection points, whereas in the case of Dirich-
let boundary conditions the prescribed values are assigned di-
rectly. The extension of operators to ghost points is straight
forward and fits very well into the established framework as
the interpolation near the boundary has not to be adapted. We
showed that with this solution the requested boundary condi-
tions could be fulfilled provided that the perpendicular resolu-
tion is sufficient to resolve the structures, which might become
strongly distorted due to the strong magnetic shear caused be
the X-point.

All developed methods were implemented in the code GRIL-
LIX and the application to a drift reduced Braginskii model [14]
is aimed for the future in order to study edge/SOL turbulence
around the separatrix.
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