
EUROFUSION WPCD-PR(16) 14920

G Fogaccia et al.

Linear benchmarks between the hybrid
codes HYMAGYC and HMGC to study

energetic particle driven Alfvenic modes

Preprint of Paper to be submitted for publication in
Nuclear Fusion

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Linear benchmarks between the hybrid codes

HYMAGYC and HMGC to study energetic particle

driven Alfvénic modes
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Abstract. Resonant interaction between energetic particles (EPs) produced by

fusion reactions and/or additional heating systems can destabilize global Alfvénic

modes enhancing the EP transport. In order to investigate the EP transport in present

and next generation fusion devices, numerical simulations are recognized as a very

important tool. Among the various numerical models, the hybrid MHD gyrokinetic

one has shown to be a valid compromise between a sufficiently accurate wave-particle

interaction description and affordable computational resource requirements. This

paper presents a linear benchmark between the hybrid codes HYMAGYC and HMGC.

The HYMAGYC code solves the full, linear MHD equations in general curvilinear

geometry for the bulk plasma and describes the EP population by the nonlinear

gyrokinetic Vlasov equation. On the other side, HMGC solves the nonlinear, reduced

O(ε30), pressureless MHD equations (ε0 being the inverse aspect ratio) for the bulk

plasma and the drift kinetic Vlasov equation for the EPs. The results of the

HYMAGYC and HMGC codes have been compared both in the MHD limit and in

a wide range of the EP parameter space for two test cases (one of which being the

so-called TAE n = 6 ITPA Energetic Particle Group test case), both characterized by

ε0 � 1.

PACS numbers: 52.35.Bj, 52.35.Py, 52.55.Pi, 52.65.Ww, 52.30.Cv, 52.30.Cz, 52.55.Tn,

52.65.Rr
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1. Introduction

One of the major challenges to be met in the magnetic confinement thermonuclear fusion

research concerns the confinement, inside the reaction chamber of a burning plasma,

of the energetic particles (EPs) produced by fusion reactions (α particles). Fusion

α particles have velocities of the order of Alfvén velocity (the propagation velocity

of a shear Alfvén wave). Then, they can resonantly interact with the shear Alfvén

waves, driving global modes (e.g. TAE [1, 2], KTAE [3], EPM [4],...) which, in turn,

could enhance the EP transport toward the first wall and lead to a significant particle

and heat loading. In the present day experiments, resonant destabilization of global

Alfvén modes by EPs, produced by additional heating systems as Electron and Ion

Cyclotron Resonant Heating (ECRH and ICRH) and Neutral Beam Injection (NBI),

have been widely observed [5, 6, 7, 8]. In order to predict and, eventually, minimize

the EP transport in the next generation fusion devices, several numerical models

have been developed, based on different theoretical approaches: gyrofluid codes [9],

extended, kinetic MHD codes [10, 11, 12, 13, 14, 15, 16], hybrid MHD gyrokinetic

codes [17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and fully gyrokinetic codes [27, 28, 29].

Among them, the hybrid model has shown to be a valid compromise between a

sufficiently accurate wave-particle interaction description and affordable computational

resource requirements. The hybrid model describes some components of the plasma

using Magnetohydrodynamics (MHD) equations, treating the others through the

nonlinear gyrokinetic Vlasov equation (see [30] and references therein). In the

present paper, linear benchmarks between the two hybrid codes HYMAGYC [31] and

HMGC [18, 20] are presented. Both codes describe thermal (bulk) plasma as a single

fluid, by MHD equations; EPs are described in terms of their distribution function by

nonlinear gyrokinetic Vlasov equation. They are self-consistent codes: that is, at each

time step, the divergence of the EP pressure tensor is computed in the gyrokinetic

(GK) module and returned to the MHD one (the “field solver”), which computes the

new electromagnetic fields in which EPs will move in the next time step. The nonlinear

gyrokinetic Vlasov equation is solved for both codes in the GK module by particle-in-cell

(PIC) techniques.

The HYMAGYC code [31] is a recently developed HYbrid MAgnetohydrodynamics

GYrokinetic Code suitable to study EP driven Alfvénic modes in general high-β

axisymmetric equilibria, (with β being the ratio of the plasma pressure to the magnetic

pressure), with perturbed electromagnetic fields (electrostatic potential φ and vector

potential A) fully accounted for. The thermal plasma is described by linear full resistive

MHD equations in arbitrary axisymmetric equilibria. The MHD field solver relies

on equilibrium quantities computed by the equilibrium code CHEASE [32] (as, e.g.,

covariant and contravariant metric tensor coefficients, Jacobian, equilibrium magnetic

field, current density components and pressure). It is also fully interfaced with the

European Integrated Modelling Framework data structure [33] (formerly ITM, presently
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maintained by the EU-IM Team‡). Such field solver originates from the code MARS [34],

which has been transformed from an eigenvalue solver to an initial value one (see

Appendix A.2 in [35]). The MARS kernel uses Fourier decomposition in generalized

poloidal (χ) and toroidal (ϕ) angles and generalized finite element method along with

the Tunable Integration Method [36] for the discretization in the radial-like coordinate

s =
√
|ψeq − ψ0|/|ψedge − ψ0| (with ψeq the equilibrium poloidal flux function, and ψ0

and ψedge, respectively, the value of ψeq on the magnetic axis and at the last closed

magnetic surface). The EP population is described by the nonlinear gyrokinetic Vlasov

equation, expanded up to order O(ε2) and O(εεB), ε being the gyrokinetic ordering

parameter ε ∼ ρH/Ln and εB ∼ ρH/LB, with ρH the energetic (“hot”) particle Larmor

radius, Ln and LB the characteristic equilibrium plasma density and magnetic-field

nonuniformity length scales, respectively. As Ln/LB � 1, we neglect O(ε2B) terms.

The perturbed electromagnetic fields are assumed to be low-frequency fluctuations

characterized by short wavelengths perpendicular to the equilibrium magnetic field and

long wavelengths parallel to it. The following space-time ordering for the fluctuating

electromagnetic fields holds [37]: k⊥ρH = O(1), k‖ρH = O(ε), ω/ΩH = O(ε), being k⊥
the perpendicular (to the equilibrium magnetic field) wave vector of perturbed fields,

k‖ the parallel one, ω the characteristic fluctuation frequency and ΩH = qHB/mHc the

EP gyrofrequency, with qH , mH , B and c the EP charge, the EP mass, the equilibrium

magnetic field and the light velocity, respectively. Flux coordinates system (s, χ, ϕ) is

used.

On the other side, HMGC describes the thermal plasma by nonlinear reduced

O(ε30) visco-resistive MHD equations, being ε0 ≡ a/R0 the inverse of aspect ratio

(with a and R0 the minor and major radius of the torus, respectively) evolving the

fluctuating electrostatic field φ and the perturbed vector potential component, parallel

to the equilibrium magnetic field, A‖ (low-β limit), in the zero pressure limit. The EP

population is described by the nonlinear gyrokinetic Vlasov equation, in the k⊥ρH � 1

limit (drift-kinetic limit). Note that HMGC is restricted to simple geometry, considering

only equilibria with shifted circular magnetic surfaces. A toroidal coordinates system

(r, θ, ϕ), finite differences in the radial coordinate r and Fourier decomposition in the

poloidal θ and toroidal ϕ coordinates are used. The divergence of the EP pressure tensor

∇ ·ΠH to be fed in the MHD equations, in both codes, is treated as an explicit term in

the time discretization scheme.

For the purpose of this benchmark exercise, the gyrokinetic equations implemented

in HYMAGYC have been reduced to the drift-kinetic ones (k⊥ρH � 1); moreover,

δA⊥ has been neglected, and a pressureless equilibrium with ε0 � 1 and circular

poloidal cross section has been considered, in order to be consistent with the limits

adopted in HMGC. Furthermore, the EP pressure tensor Πi
j,H has been diagonalized

to reproduce that utilized in the HMGC model (here, i, j stand for s, χ, ϕ). Previous

tests [38] have compared the single particle orbits in equilibrium fields and the evolution

‡ See http://www.euro-fusionscipub.org/eu-im
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of the EP response of the GK modules of HYMAGYC and HMGC to a given perturbed

electromagnetic fields. Here, we consider the comparison between HYMAGYC and

HMGC for two test cases A and B, presented, respectively, in Sec.2 and Sec.3.

Simulation results obtained by HMGC and HYMAGYC are compared in the MHD

limit (Sec.2.1 and 3.1) and in the presence of EPs (Sec. 2.2 and 3.2), for both test cases.

2. Test case A

The first test case assumes a circular shifted magnetic-surface equilibrium characterized

by a large aspect ratio (ε0 = 0.1) and a parabolic safety factor profile q(r) =

q0 + (qa − q0)(r/a)2, q0 = 1.1, qa = 1.9, in the presence of a Maxwellian initial EP

population. A bulk ion density profile ni ∝ 1/q2 (such to have all the toroidal frequency

gaps aligned) and a zero bulk plasma pressure (HMGC limit) are assumed. In order

to ensure numerical stability in HMGC, a finite bulk plasma resistivity η is necessary:

in the following a value of resistivity corresponding to the inverse Lundquist number

S−1 = ηR0/(µ0a
2vA0) = 10−6 is considered (with vA0 ≡ B0/

√
4πmini0 the on-axis Alfvén

velocity, mi and ni0 the bulk ion mass and on-axis density). Equilibrium (initial) EP

distribution function has been considered to be an isotropic Maxwellian, with a radial

density profile nH = nH0 exp(−19.53s4), TH/TH0 = 1, ρH0/a = 0.01, vH0/vA0 = 1,

mH/mi = 2 (TH0, ρH0 and vH0 are the on-axis EP temperature, Larmor radius and

thermal velocity, respectively). In Fig.1 the safety factor q profile, the normalized bulk

ion density ni/ni0 and the normalized EP density nH/nH0 profiles, used in the HMGC

simulations, are plotted.
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Figure 1. Test case A: safety factor q profile (black curve) and normalized bulk ion

density (dashed blue curve) vs r/a; normalized EP density nH/nH0 (dashed red curve)

vs s.

The code HYMAGYC requires a high resolution Grad-Shafranov solver to compute

a proper MHD equilibrium; for this benchmark we rely on CHEASE [32], which
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Table 1. Test case A: MARS results (TAE and the first Upper and Lower Resistive

Periodic Shear Alfvén Modes, RPSAEs).

mode S−1 ω/ωA0 γ/ωA0

TAE 0 0.4404 < 10−13

TAE 10−6 0.4404 -0.000867

Upper

RPSAE 10−6 0.483 -0.00337

Lower

RPSAE 10−6 0.42205 -0.00803

requires as inputs, besides the shape of the last closed magnetic surface, the two

free functions p′(ψeq) and TT ′(ψeq) (here, p(ψeq) is the equilibrium plasma pressure,

T (ψeq) ≡ RBϕ denotes the poloidal current flux function, and prime denotes the

derivative with respect to ψeq). For the chosen equilibrium, p′ = 0, and TT ′(ψeq) has

been reconstructed from the Grad-Shafranov equation computing ∆∗ψeq,HMGC (here

∆∗ ≡ R ∂/∂R (1/R ∂/∂R) + ∂2/∂Z2 is the so-called Shafranov operator, and ψeq,HMGC

is the poloidal magnetic flux function as obtained by the equilibrium solver for HMGC,

which uses, as input, the radial profile of the safety factor q defined above, see Appendix

A.4 in [35]). A toroidal mode number n = 2, and poloidal harmonics m = 1 − 4 have

been considered.

2.1. MHD limit

The linear MHD stability of such equilibrium can be studied by the linear stability

eigenvalue code MARS [34] from which the MHD field solver of HYMAGYC originates.

Such equilibrium admits, in the ideal limit (S−1 = 0), a marginally stable TAE mode,

located in frequency inside the toroidal gap at ω/ωA0 ≈ 0.44 (ωA0 ≡ vA0/R0 being the

on-axis Alfvén frequency), and in radius at the position of the throats of the Alfvén

continua (principally at the internal one, at s ≈ 0.5, but also at the external one, at

s ≈ 0.9). In presence of finite resistivity the TAE mode becomes stable and global

discrete stable modes appear also in the upper and lower continua (RPSAE [1, 35]) (see

Table 1). The eigenfunctions determined by the MARS runs have been used as initial

conditions for the MHD module of HYMAGYC. During simulations the spatial structure

of each eigenfunction does not change, and only its amplitude decreases, because of the

damping (see Fig. 2 for the results of the three resistive Alfvénic modes, S−1 = 10−6). In

Fig. 3 the dependence of the damping rate from the time step dt used in the HYMAGYC

simulations is shown, for the ideal and resistive (S−1 = 10−6) TAE. Note that for dt→ 0

the damping rates tend to the values obtained by MARS (see the square symbols in Fig. 3

). Unfortunately, HMGC does not have a “companion” eigensolver code (as it is MARS

for HYMAGYC), and, thus, it is not easy to initialize a simulation to clearly follow

in time the evolution of a specific stable eigenmode. To overcome this difficulty, an

“antenna” like driving term has been added to HMGC in order to excite preferentially
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Figure 2. Test case A: frequency spectrum of the electrostatic potential φ (top)

and its Fourier components (bottom) for the first Lower RPSAE (left), resistive TAE

(center) and first Upper RPSAE (right), S−1 = 10−6; fill colors refer to different m’s

(1: red, 2: green, 3: blue, 4: yellow).
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Figure 3. Test case A: damping rate γd vs. dt for ideal (blue symbols) and resistive

(S−1 = 10−6, red symbols) TAE, using the MHD module of HYMAGYC for dt 6= 0

(circle symbols) and the eigenvalue code MARS for dt = 0 (square symbols).
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a specific eigenfrequency, and, then, use the corresponding eigenfunction to initialize

a “decay numerical experiment” case. The use of this procedure allows us to obtain

damping rates also for HMGC, at least for the TAE and the Upper RPSAE mode

(results for the Lower RPSAE are less clear, because of its larger damping, and, thus,

are not reported here). In Fig. 4 the eigenvalues (real frequency and damping rate)

so obtained by HMGC are compared with the ones obtained by HYMAGYC (vertical

dashed lines refer to the lower and upper accumulation points of the Alfvén continua).

From Fig. 4 it can be observed that the damping rates obtained by the MHD module
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Figure 4. Test case A: eigenvalues obtained by HMGC (red symbols) and HYMAGYC

(blue symbols), for ωA0dt = 0.02, S−1 = 10−6.

of HMGC are larger than the corresponding ones obtained by HYMAGYC. Then the

numerical scheme for time integration used in the MHD module of HMGC seems to

be, generally speaking, more dissipative than the one used in in the MHD module of

HYMAGYC.

In order to evaluate the effect of inserting in the MHD module of HYMAGYC the

EP drive treated explicitly in the time integration scheme, a term ∝ γvX (explicitly

treated in the time discretization scheme) has been added to the MHD equations both

for HYMAYGYC and for HMGC. Here, X is the full set of unknown fields, which, for

HYMAGYC are the perturbed contravariant components of the plasma velocity and

magnetic fields and the (scalar) pressure, and, in HMGC, the electrostatic potential

φ and the parallel component of the vector potential A‖; γv is a numerical coefficient

representing the drive intensity. Note that this term, being purely real, will not force

the system to a (externally) given real frequency, but will drive the less damped (or

most unstable) mode. Both codes behave similarly, being exited the same (TAE) mode

and showing a similar slope of the curve γ vs. γv (see Fig.5), with γ the growth rate of

the TAE mode.
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Figure 5. Test case A: growth rate of the TAE mode exited by an external drive vs.

the drive intensity, for HMGC (red symbols) and HYMAGYC (blue symbols).

2.2. Results with energetic particle drive

In the following, we compare the HYMAGYC code results w.r.t. the HMGC ones, in

the presence of the EP drive (nH0/ni0 6= 0), restricting, in this paper, the comparison

to the linear growth regime. Similar phenomenology is shown by the two codes. At

low EP density, a mode in the upper Alfvén continuum, close to the toroidal gap, is

destabilized (“Upper mode”, Fig. 6), while, at higher density values, the most unstable

mode lives deeply inside the lower Alfvén continuum (EPM mode, Fig. 7).

While the results of the two codes qualitatively compare fairly well w.r.t. real

frequencies (see Fig. 8, bottom left), eigenfunctions (see Fig. 6 and Fig. 7, centre) and

thresholds for the onset of the EPM (see Fig. 8, top left), some more quantitative

differences are observed concerning the growth rates, in particular for the strongly

driven EPM. Such consideration has suggested to test independently the GK module

of HYMAGYC in the presence of MHD fields self-consistently computed by the MHD

module used in HMGC (this “mixed” code version will be indicated, in the following, as

“hymagyc-hmgc”). Note that the substitution of the GK module requires a new interface

between the MHD module of HMGC and the GK module of HYMAGYC. Results for the

two modes described above as obtained using “hymagyc-hmgc” are shown in Figs. 6, 7

(bottom). The agreement, for the two modes considered, is quite satisfactory, w.r.t.

frequency spectra, radial profiles of the Fourier components of the eigenfunctions and

their poloidal structures.

The growth-rates and real frequencies of the destabilized modes have been

compared between HMGC, “hymagyc-hmgc” and HYMAGYC, varying independently

the normalized on-axis EP density value nH0/ni0 (Fig. 8, left); similar scans varying

the normalized on-axis EP thermal velocity vH0/vA0 and the normalized on-axis EP

Larmor radius ρH0/a as free parameters have also been done (Fig. 8, centre and right).
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Figure 6. Test case A: Upper mode (nH0/ni0 = 1.75 × 10−3). Results from

HYMAGYC (top), HMGC (centre) and “hymagyc-hmgc” (bottom). The frequency

spectrum of the fluctuating electrostatic potential φ (left), its poloidal Fourier

components (centre), and its structure in the poloidal plane (right), are shown.

Quantitatively, frequencies observed in the HYMAGYC simulations are lower by 10%

for the “Upper mode” and by 40% for the EPM, with respect to that obtained by

HMGC code, whereas the growth rates observed in the HYMAGYC simulations are

larger up to 50% than that obtained with the HMGC code. The “hymagyc-hmgc” code

shows results very similar to that obtained from the HMGC code for the ”Upper mode”,

while for the EPM mode it shows intermediate results between HYMAGYC and HMGC

ones. Figure 9 shows, for the “Upper mode” as obtained by HYMAGYC and HMGC,

the growth rate vs. vH0/vA0, varying accordingly ρH0/a w.r.t. the reference values,
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Figure 7. Test case A: EPM mode (nH0/ni0 = 3.75×10−3): results from HYMAGYC

(top), HMGC (centre) and “hymagyc-hmgc” (bottom). Frequency spectrum of the

fluctuating electrostatic potential φ (left), its poloidal Fourier components (centre),

and its structure in the poloidal plane (right), are shown.

while keeping fixed βH0 (at the value βH0 = 7.× 10−3, corresponding to the parameters

vH0/vA0 = 1., nH0/ni0 = 1.75×10−3): while the behaviour of the curves for HYMAGYC

and HMGC is qualitatively in agreement, the absolute values differ considerably. In

Fig. 9 it is also shown a point representing the EP drive γdrive, valued by algebraically

subtracting from the growth rate the γdamping estimated by extrapolating to nH0/ni0 = 0

the growth rates shown in Fig. 8, top left (vH0/vA0 = 1.). The discrepancy between the

drives is smaller, thus suggesting that the differences between HYMAGYC and HMGC

observed in the growth rates can be mainly traced back to the MHD damping (e.g.,
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Figure 8. Test case A: normalized growth rates (top) and frequencies (bottom)

versus: nH0/ni0 (left, with vH0/vA0 = 1. and ρH0/a = 0.01), vH0/vA0 (centre, with

nH0/ni0 = 0.002 and ρH0/a = 0.01) and ρH0/a (right, with nH0/ni0 = 0.002 and

vH0/vA0 = 1.). Results for HMGC (red symbols), HYMAGYC (blue symbols) and

“hymagyc-hmgc” (green symbols) simulations are shown.
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(red symbols) and HYMAGYC (blue symbols) simulations are shown; the triangles at

vH0/vA0 = 1. are the EP γdrive.
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continuum damping) and the numerical damping related to the discretization schemes.

3. Test case B

As a second benchmark for HYMAGYC, we have considered the case analyzed by the

ITPA Energetic Particle Group, the so-called TAE, n = 6 case [39]. As before, the

safety factor profile is parabolic, with q0 = 1.714, qa = 1.87 (i.e. with very small

magnetic shear), R0 = 10m, a = 1m (thus, ε0 = 0.1), on-axis magnetic field B0 = 3T ,

bulk plasma characterized by flat ion (Hydrogen) density ni0 = 2 × 1019m−3, but still

considering zero beta bulk plasma. EP (Deuterium) distribution function is Maxwellian,

with TH = TH0 = 400keV , nH(s) = nH0 c3 exp (− c2
c1

tanh s−c0
c2

), with c0 = 0.49123,

c1 = 0.298228, c2 = 0.198739, and c3 = 0.521298. The profiles of safety factor,

normalized ion bulk and EP densities, used in the HMGC simulations, are shown in

Fig.10.
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Figure 10. Test case B: safety factor q profile (black curve) and normalized bulk ion

density (dashed blue curve) vs r/a; normalized EP density nH/nH0 (dashed red curve)

vs s.

Moreover, the nominal value used in the ITPA benchmark for the on-axis EP

density is nH0 = 1.44131× 1017m−3, corresponding to nH0/ni0 = 7.20655× 10−3. These

parameters yield vH0/vA0 ' 0.3 and ρH0/a ' 0.03. Simulations for toroidal mode

number n = 6 and poloidal harmonics m = 8− 13 have been performed.

3.1. MHD limit

A rich MHD spectrum (see Fig.11) has been found for this equilibrium around the

toroidal frequency gap, by running at first the MHD linear stability eigenvalue code

MARS, in the ideal and resistive cases. For S−1 = 0, two marginally stable TAE

modes with ω/ωA0 ≈ 0.281 and ω/ωA0 ≈ 0.302 have been found (full blue circles);
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Figure 11. Test case B: eigenvalues obtained by MARS for S−1 = 0 (full blue circles)

and S−1 = 10−6 (full red circles, green and orange triangles), by HYMAGYC (empty

red circle) and HMGC (empty red square) for S−1 = 10−6.

for S−1 = 10−6 such modes become stable (full red circles), with the TAE mode near

the lower Alfvén continuum (left vertical dashed line in Fig.11) the less damped one,

with γ/ωA0 ≈ −0.000645. Stable Lower and Upper RPSAE modes also appear (green

and orange triangles, respectively). HYMAGYC and HMGC simulations have been

performed in the MHD limit with S−1 = 10−6; for HYMAGYC, mode structure has

been initialized to the eigenfunction found by MARS for the TAE mode near the lower

Alfvén continuum. Both codes show a more stable TAE (the total damping being due

to the resistivity and to the numerical time integration scheme used from each code),

characterized by ω/ωA0 ≈ 0.281 and γ/ωA0 ≈ −1.4354 × 10−3 for HYMAGYC (empty

red circle), and ω/ωA0 ≈ 0.286, γ/ωA0 ≈ −1.8894×10−3 for HMGC (empty red square).

3.2. Results with energetic particle drive

In order to test the linear growth phase of HMGC and HYMAGYC codes, the EP density

has been varied (see Fig. 12) while keeping fixed vH0/vA0 and ρH0/a: at low values of

nH0/ni0 (w.r.t. nH0/ni0 ≈ 7.2 × 10−3, the reference ITPA benchmark case value),

frequencies and growth-rates obtained by the two codes are very similar, corresponding

to a mode localized in the toroidal gap, i.e., a TAE (see Fig. 12, right, circle symbols);

for higher values of nH0/ni0, on the contrary, the most unstable mode obtained by

HYMAGYC is clearly a mode emerging from the lower Alfvén continuum, i.e., a lower

KTAE (see Fig. 12, right, triangle symbols) which exhibits a stronger growth rate, w.r.t.

the most unstable mode observed by HMGC, which is still a TAE. The different nature

of the two modes are clearly observed in Fig. 13 and Fig. 14 which refer to HYMAGYC

and HMGC simulations, for nH0/ni0 = 2× 10−3 and nH0/ni0 ≈ 7.2× 10−3, respectively.

Note that also in the lower density case some differences regarding the symmetry
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Figure 12. Test case B: normalized growth rates (left) and frequencies (right)

versus nH0/ni0. Results for HMGC (red symbols) and HYMAGYC (blue symbols)

simulations are shown, for the ITPA benchmark case. The dashed horizontal line in
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Figure 13. Test case B: results from HYMAGYC (top) and HMGC (bottom) for

nH0/ni0 = 2 × 10−3 (TAE). The frequency spectrum of the fluctuating electrostatic

potential φ (left), its poloidal Fourier components (centre), and its structure in the

poloidal plane (right), are shown.
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Figure 14. Test case B: results from HYMAGYC (top) and HMGC (bottom) for

nH0/ni0 ≈ 7.2×10−3. The frequency spectrum of the fluctuating electrostatic potential

φ (left), its poloidal Fourier components (centre), and its structure in the poloidal plane

(right), are shown.

of the mode in the poloidal plane is clearly observed (see Fig. 13, right top and bottom

frames). Simulations performed with the mixed “hmgc-hymagyc” code show results

very similar to the ones obtained with HMGC, and here are not shown. In the spirit

of the ITPA benchmark, a set of simulations varying TH has been performed, changing,

accordingly, vH0/vA0 and ρH0/a; to perform this exercise, we have chosen a lower value

of nH0/ni0 (w.r.t. the reference ITPA benchmark case), in order to compare the two

codes in a regime were both observe the same mode, i.e., the TAE, as the most unstable

mode (nH0/ni0 = 2.× 10−3). Figure 15 shows the growth rate vs. TH0 for HYMAGYC

and HMGC, and, also, for the value TH0 = 400 keV, the EP drive γdrive, as obtained by

algebraically subtracting from the growth rate the damping estimated by extrapolating

to nH0/ni0 = 0 the growth rates from Fig. 12, left (similarly to what was shown in Fig. 1

of Ref. [39]): the relative difference between the γdrive as obtained by HYMAGYC and

HMGC is, indeed, reduced w.r.t. the one of the growth rates, as already found for

the benchmark case A. Taking into account that simulations performed with the mixed

“hmgc-hymagyc” code show results very similar to the ones obtained by HMGC, we

can infer that the observed differences between HMGC and HYMAGYC simulations

(namely, the symmetry in the poloidal plane of the TAE mode (Fig. 13) and the

quantitative discrepancy of the growth rates (Fig. 15) at low-density EP values; and the

different most unstable mode observed at high-density EP values - a TAE by HMGC
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and a KTAE by HYMAGYC) could be ascribed to the differences of the MHD modules

used in the two codes.
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Figure 15. Test case B: normalized growth rates versus TH0 at nH0/ni0 = 2.× 10−3.

Results for HMGC (red symbols) and HYMAGYC (blue symbols) simulations are

shown; the triangles at TH0 = 400 keV are the EP γdrive.

4. Conclusions

In summary, an extensive linear benchmark exercise has been performed between the

hybrid MHD gyrokinetic codes HYMAGYC and HMGC in the limit of validity of the

HMGC code (small aspect ratio, circular cross section, k⊥ρH � 1, zero bulk pressure).

Two equilibria have been considered (one of them, the test case B, being the so-called

ITPA-TAE test case) and the two codes have been compared both in the MHD limit and

in a wide range of the EP parameter space. In particular, in the test case A, frequencies,

growth rates, spatial structures of the unstable modes (“Upper mode” and/or EPM)

have been compared varying independently the EP density, thermal velocity and Larmor

radius. The two codes manifest the same trends w.r.t. the variation of the parameters

and to the occurrence of the EPM to become dominant. Some quantitative differences

regarding the growth rates have been observed; nevertheless, by extracting the damping

contribution from the growth rates, the EP drives, γdrive, have been obtained and the

agreement between HYMAGYC and HMGC improves considerably. Regarding the test

case B, a rich MHD spectrum obtained by the eigensolver MARS has been presented.

In the presence of EP drive, the two codes behave similarly for small values of EP

density, showing a TAE as the most unstable mode. For higher values of EP density,

HYMAGYC shows a stronger mode emerging from the lower Alfvén continuum as the

most unstable one, whereas HMGC still observes a TAE. In the range of EP density

where both codes observe the TAE, the trend of the growth rate w.r.t. TH , as found
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by HYMAGYC and HMGC, is similar, and the agreement improves when considering

the contribution of the EP drive to the growth rate, γdrive. The main discrepancies

observed can be traced back to the different response of the MHD solvers, e.g., w.r.t.

continuum damping and discretization schemes. In particular these differences can be

more relevant for the test case B, which is characterized by a very low magnetic shear

equilibrium.

In order to fully exploit the HYMAGYC potentialities, we plan for the near future

to relax the constraints used in the present paper, investigating the finite Larmor radius

and magnetic compression effects in realistic (e.g., shaped) equilibria, both in linear and

nonlinear regimes.
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