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The paper presents two new approaches for solving the Current Diffusion Equation (CDE) which governs 

current diffusion through the conductive plasma inside a tokamak and compares them to CRONOS tokamak 

simulation suite, as well. Namely, CDE is solved via Finite Element Method (FEM) and analytical technique, 

respectively, and the obtained results are subsequently compared with the solution obtained from the state-of-

the-art CRONOS suite with finite difference calculations. The FEM solution is carried out featuring the use of 

linear and Hermite type shape functions, respectively, while the analytical solution is obtained by applying 

certain approximations to the CDE. The trade-off between different approaches has been undertaken. Thus, the 

results obtained via FEM approach (with Hermite basis function, in particular) show very good agreement with 

the CRONOS results, while also providing the stability of the solution. On the other hand, the results obtained 

via the analytical solution clearly demonstrate a good agreement with the numerical results in the edge region, 

which makes it very useful for various applications, e.g. for benchmarking purposes. Contents 
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I. INTRODUCTION 

Given the complexity of phenomena occurring in tokamak plasma, an integrated approach is 

often adopted for simulating the global behavior of a tokamak discharge [1]. In particular, 

taking into account the axisymmetry of a tokamak and relevant temporal and spatial scales 

orderings, time evolution equations for the transport of macroscopic plasma quantities, such 

as current density, pressure, density, etc., can be casted in time and a single space coordinate. 

The space coordinate arises from flux surface averaging, which is possible due to the much 

faster transport along the magnetic field lines compared to the perpendicular transport. 

Typically, this coordinate is the (normalized) toroidal magnetic flux. The flux surface 

topology is determined by the MHD equilibrium, described by the Grad-Shafranov equation 

(GSE) [2]. Rigorous derivation of the transport equations, which starts from the kinetic 

description and involves gyromotion averaging, fluid and MHD equations and flux surface 

averaging, is reviewed in [3]. 

The so-called Current Diffusion Equation (CDE) describes the current (or, equivalently, the 

magnetic field) diffusion through the plasma as a conductive medium. CDE is derived by 

flux-averaging the Ohm’s law. It is this transport equation that is most tightly coupled with 

the equilibrium (the Grad-Shafranov equation). In view of improving this coupling by 

employing higher-order numerical schemes, this present paper assesses Finite Element 

Method (FEM) using Hermite basis functions and an analytical solution of CDE. The results 

obtained via different approaches agree satisfactorily. 

 

II. CURRENT DIFFUSION AND EQUILIBRIUM IN TOKAMAKS 

The evolution of the magnetic field configuration in axisymmetric tokamak devices can be 

described by a coupled system of the so-called Current Diffusion Equation (CDE) and the 
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Grad-Shafranov equation (GSE) [4]. The coupling considered here is the adiabatic evolution 

of the equilibrium, which is a so-called generalized (or queer) differential equation problem, 

as described by Grad, Hogan et al. [5, 6]. The Grad-Shafranov equation follows from the 

radial force equilibrium of the tokamak and the magnetic field geometry: 
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where ( ),R Zψ  is the poloidal magnetic flux per radian, ( ),j R Zφ  is the toroidal current 

density, ( )p ψ  is the plasma pressure, ( )F RBφψ =  is the diamagnetic function, 

( ), ,R ZB B Bφ=B  is the magnetic field, 0µ  is the vacuum permeability and ( ), ,R Zφ  are 

toroidal coordinates, as shown in FIG. 1. . 

 
FIG. 1. The toroidally symmetric geometry of a tokamak plasma in a poloidal cut. The solid bold line depicts the 

plasma boundary (the last closed magnetic surface), dashed lines represent several flux surfaces, on which the 

magnetic flux is constant. The magnetic axis position is marked by the cross. 
 

The current diffusion equation is derived by flux-averaging the parallel Ohm’s law and can be 

casted in the following form [7]: 
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Here, Φ  is the toroidal magnetic flux, 0B  the vacuum magnetic field at a given 0R , σP  the 

parallel conductivity, V  the plasma volume enclosed by a flux surface, d / dV V ρ′ =  and nij  

is the non-inductive current density. The flux coordinate 1/x ρ ρ= , 0/ Bρ π= Φ  with 1ρ  its 

value at the plasma boundary (the last closed flux surface) and Φ  the toroidal magnetic field 

flux in a given flux surface. The flux surface averaging operator is defined as 

/ d
V

A V A V≡ ∂ ∂ ∫  [8]. 

The following substitutions can be introduced 

 2
11 R g=  (3) 

 
2 2

2R gρ∇ =  (4) 

and expression (2) becomes 

 
2

0 02 2 2 1
2 2 2

0 1 1 0 1 1 1 0 1

ln
2 ni

dB Bg g V g dx x j
t g x g x F dt B dt x Fg

ρψ ψ ψ
µ σ ρ µ σ ρ ρ σ

 ′∂ ∂ ∂ ∂ − − + + =  ∂ ∂ ∂ ∂   P P P

 (5) 

A. Coupling of current diffusion and equilibrium 
In the Grad-Hogan coupling scheme [6], which is considered in this paper as well as in 

CRONOS [7] and ASTRA [9] transport suites or in the European Transport Simulator (ETS) 

[10], the current diffusion (as well as other transport equations) is advanced in time using the 

geometry from the last GSE solution. GSE is then solved using the resulting ( )p ψ′  and 

( )FF ψ′  profiles. The two equations are iterated until they yield consistent results in terms of 

the magnetic flux and the plasma current profiles. Here, ( ) ( )0 1 0/ψ ψ ψ ψ ψ= − −  is the 

normalized poloidal flux with 0ψ =  on the magnetic axis and 1ψ =  on the plasma boundary. 

While p′  can be calculated directly from the transport equations results, FF ′  must be solved 

for using the averaged Grad-Shafranov equation (AGSE): 

 0

1

 = 
j

FF p
g R

φµ  
′ ′− 

 
  (6) 

The average current term can be calculated as  
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Since the current density must be continuous, it follows that  

 2 1 1
2, ,C g C V Cψ ′∈ ∈ ∈  (8) 

The iteration between CDE and GSE via AGSE is prone to numerical instabilities, as 

discussed recently in [9] and the references therein. It is thus of great importance to employ a 

stable, high-accuracy numerical solver for the diffusion equation(s) that inherently yields 

smooth solutions. 

B. Boundary conditions 
On the magnetic axis, the geometry of the problem yields  

 
0

0
xx

ψ

=

∂
=

∂
. (9) 

The most common boundary condition on the plasma boundary is related to a prescribed total 

plasma current (see e.g. [4]) 

 p 2
0 1

1
2 x

I V g ψ
πµ ρ

=

∂′= −
∂

 (10) 

However, if the plasma current is not prescribed, we have to consider a different boundary 

condition. This is often the case with free boundary equilibrium (FBE) simulations. As the 

magnetic flux is required to be consistent in the transport and equilibrium equations, the 

natural boundary condition at the last closed flux surface ( 1x = ) would be defined by the 

equality of the boundary magnetic flux, i.e. 

 diff equiψ ψ=   (11) 

where diffψ  and equiψ  come, respectively, from the solutions of the current diffusion equation 

and the equilibrium equation. This is similar to prescribing the loop voltage in fixed boundary 

simulation, which is known to be prone to numerical errors. For this reason, we can use an 

plasma current predictor *
pI , derived from (11) using i p 0 1L I ψ ψ= − . Here, the subscripts 0 

and 1 denote the values on the magnetic axis ( 0x = ) and the plasma boundary ( 1x = ) and iL  

is the internal inductance of the plasma. Then 
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diff equi

* 1 1
p p equi equi
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. (12) 

III. FINITE ELEMENT SOLUTION METHOD 

If it can be assumed that 0d / d 0B t = , as it is defined in [11], the current diffusion equation (5) 

can be written in the following form 
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The derivation of the ln term is carried out analytically 
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Taking the scalar product of CDE with test functions Wj over the calculation domain is yields 
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In order to avoid the second order differentiation of the unknown function, the integration by 

parts is applied to the first term on the right hand side 
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1

0

x

j
x

W
x
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=
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∂

 represents the Neumman boundary conditions given with (9) and (10) and 

can be directly included into matrix equation. 

Than the weak form of the current diffusion equation can be written as follows 
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According to the standard finite element procedure, the unknown magnetic flux ψ is 

expressed in terms of linearly independent basis functions { }iN  with unknown complex 

coefficients ψi, i.e. 

 ( ) ( )i i
i

t N xψ ψ= ∑ . (18) 

Choosing the same basis functions as test functions j jW N=  the Gallerkin-Bubnov procedure 

is introduced to the weak formulation of the current diffusion equation 
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which can, for the sake of simplicity, be written in the form of matrix equation 
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According to the time domain discretization procedure [9], the solution for the magnetic flux 

at n+1 time instant is calculated using the solution for the n-th time instant given with 

 ( ) 1n nM tD M tKψ ψ+− ∆ = + ∆ . (24) 

A. Linear shape functions 
Linear shape functions chosen for the basis functions are given with 
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and matrices M, D and vector K, according to finite elements procedure, are assembled from 

the local matrices as follows 
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Integrals in (26), (27) and (28) are calculated using the Gaussian four point quadrature rule. 

The values of the coefficients g1, g2, F, V’ at the Gaussian points over the element are 

obtained using linear interpolation. First and second derivative of the resulting poloidal flux 

are obtained using the smooth noise-robust differentiators described in [12]. 

B. Hermite shape functions 

Hermite interpolation on [-1;1] involves choosing a set of ordered nodes [ ]1,..., 1;1nx x ∈ −  and 

approximating a smooth function f(x) using its values and derivatives on the nodal set 

 ( ) ( ) ( ) ( ) ( )0 1

1

n

k k k k
k

p x f x l x f x l x
=

′= +∑ , (29) 

where 0
kl  and 1

kl  are the Hermite interpolating polynomials and they satisfy conditions 

 ( ) ( ) ( ) ( )
0 1

0 1, , 0 0k k
k j jk j jk k j j

dl dll x x l x x
dx dx

δ δ= = = = . (30) 

After solving the equation (19) with Hermite shape functions, the results comprise both 

poloidal flux and its first derivative. The second derivative is obtained using smooth robust 

differentiators [12]. 
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IV. ANALYTICAL SOLUTION PROCEDURE 

In order to obtain fundamental analytical solution of (5), time derivative of ρ1 is neglected and 

current density driven by non-inductive sources is equal to zero. Taking this into account (5) 

becomes 
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If following expressions are introduced 
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equation (31) can be written as 
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The particular solution of (34) can be obtained in the form [13] 
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where A is an arbitrary constant and auxiliary functions F(x) and Φ(x) are given with 
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Undertaking additional mathematical manipulation, the expression for the space-time 

dependent poloidal flux is obtained 
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and is given with 
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2
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π
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The functions that appear under the integral (F, V’, g1, g2) are obtained as an input in the form 

of discrete data sets which are transformed into polynomial of arbitrary order in a least 

squares sense. 

The first derivative is easily obtained from (37) and is given with 

 ( ) 12
0 1

2 2

,
' '

g Vx t F FA t dxdx
x V g F V g

σψ
µ ρ
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= + ∂  

∫ ∫P . (40) 

Second derivative of the poloidal flux is obtained in a straightforward manner as 
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0 12
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,
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It is important to point out that this second derivative does not suffer from numerical 

instabilities. 

 

V. COMPUTATIONAL EXAMPLES 

Methods described in previous chapters are applied to an ITER hybrid scenario CRONOS 

simulation from [14] and obtained results are subsequently compared. It is worth emphasizing 

that in CRONOS the average current term is computed using cubic spline interpolation which 

is used for all derivatives with the default tension of the function. The edge value is 

constrained using AGSE since only fist derivative enters the formula. Diamagnetic function 

and geometrical coefficients are provided by the equilibrium code. 

In particular, three time slices (905 s, 1000 s and 1095 s) from the late flat-top phase, where 

the current is almost fully diffused and thus all profiles tend to be stationary, are computed. 
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FIG. 2. Geometrical coefficients and conductivity from the CRONOS ITER hybrid mode simulation, times 905 

s, 1000 s and 1095 s. The curves for all time slices tend to overlap. 
 

A. Without non inductive current sources 
As a first set of computational examples, a case without non inductive current sources (jni=0) 

is assumed. The results obtained with three proposed approaches (FEM – Linear, FEM – 

Hermite, Analytical) are compared. In Figure 3, a comparison of poloidal magnetic flux is 

shown in time instance t=905 s. 

 
FIG. 3. Poloidal magnetic flux for t=905 s. 
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As it can be seen from the Fig. 3, results obtained with different basis functions (Linear and 

Hermite) agree perfectly. On the other hand, analytical approach differs in the middle of 

plasma. However, since maximum discrepancy of the results is less than 2%, overall 

agreement of the results is more than satisfactory considering the limitations of the analytical 

approach. 

In Figures 4 and 5 the poloidal flux in time instances t=1000 s and 1095 s is shown with a 

comparison between Hermite and linear numerical approximation as well as analytical 

approach. 

 
FIG. 4. Poloidal magnetic flux for t=1000 s. 
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FIG. 5. Poloidal magnetic flux for t=1095 s. 

 

The following set of results takes into account first and second derivative of poloidal flux 

calculated using Hermite, linear elements and analytical approach. In Fig. 6, the calculation of 

the first derivative for time instance t=1095 s is shown. 

 
FIG. 6. First derivative of the poloidal magnetic flux for t=1095 s. 

 

The results show good agreement at the edge of plasma, as well as overall agreement in the 

waveform, with some discrepancy shown in the middle. In Fig. 7 the second derivative of the 
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poloidal flux is shown for t=1095 s, calculated using numerical (linear and Hermite basis 

functions) and analytical approach. 

 
FIG. 7. Second derivative of the poloidal magnetic flux for t=1095 s. 

 

It is shown that Hermite basis functions are better suited to calculate second derivative at the 

beginning of the domain, since they don’t produce non-physical oscillations. It can be 

observed that analytical solution shows no oscillations and has generally good agreement with 

the numerical one. 

B. With non-inductive current source 
In this section, a case with the presence of non-inductive current sources is studied. The 

results obtained with the proposed numerical approaches (Linear and Hermite) and are 

compared with the results obtained via CRONOS calculations. Additional comparison with 

the results obtained with analytical approach is also given in order to compare it to the 

realistic case. 

In Figure 8, a comparison of poloidal magnetic flux is shown for time instance t=905 s. 
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FIG. 8. Poloidal magnetic flux for t=905 s with non-inductive current sources. 

 

As it can be seen from the Fig. 8, results obtained with numerical solution agree perfectly 

with the results from CRONOS calculations. The analytical approach shows similar behavior 

as in previous example. 

In Figures 9 and 10 the poloidal flux for time instances t=1000 s and 1095 s is shown with a 

comparison between CRONOS, Hermite and linear numerical approximation as well as 

analytical approach. 

 
FIG. 9. Poloidal magnetic flux for t=1000 s with non-inductive current sources. 
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FIG. 10. Poloidal magnetic flux for t=1095 s with non-inductive current sources. 

 

The following set of results takes into account first and second derivative of poloidal flux 

calculated using CRONOS, Hermite, linear elements and analytical approach. In Fig. 11, the 

calculation of the first derivative for time instance t=1095 s is shown. 

 
FIG. 11. First derivative of the poloidal magnetic flux for t=1095 s with non-inductive current sources. 
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The results show good agreement between results obtained with CRONOS and the numerical 

approach. Analytical results show the same discrepancy as in the previous case. In Fig. 12 the 

second derivative of the poloidal flux is shown for t=1095 s, calculated using CRONOS, 

numerical (linear and Hermite basis functions) and analytical approach. 

 
FIG. 12. Second derivative of the poloidal magnetic flux for t=1095 s with non-inductive current sources. 

 

Again, it is shown that Hermite basis functions are better suited to calculate second derivative 

at the beginning of the domain, since they don’t produce non-physical oscillations. 

C. Average current 
Average current is calculated using the data obtained for the first derivative of flux 

according to (7). Both cases (with and without non-inductive current sources) are taken into 

account and are shown in Figures 13. and 14. Similar to the results for the second derivative 

of flux, FEM solution using Hermite basis functions shows very good agreement with the 

results obtained with CRONOS. Analytical solution shows acceptable behavior for 

benchmarking purposes. 
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FIG. 13. Average current for t=1095 s without non-inductive current sources. 

 

 
FIG. 14. Average current for t=1095 s with non-inductive current sources. 

 

 

VI. CONCLUSION 

The paper deals with two different approaches for the solution of the Current Diffusion 

Equation (CDE); Finite Element Method (FEM) and the analytical solution. The obtained 
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results are compared to the CRONOS tokamak transport suite calculations and the trade-off 

between different approaches has been carried out. The FEM solution is undertaken featuring 

the use of linear and Hermite type shape functions, respectively, while the analytical solution 

features the implementation of a specific procedure for the solution of space-time differential 

equations. The FEM solution shows excellent agreement with the results arising from 

CRONOS calculations, while providing stability inherent with the use of FEM scheme and 

Hermit basis functions, especially for the first and second derivative. The results obtained via 

analytical approach show rather satisfactory agreement with other methods, and therefore, due 

to its simplicity, makes it very suitable for benchmarking purposes. Also, it is important to 

emphasize that both numerical and analytical solutions for the derivative of flux agree in the 

edge region which is crucial for Grad-Shafranov Equation – Current Diffusion Equation 

(GSE-CDE) coupling. 
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