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Abstract:

The GRILLIX code is employed to study effects of geometry on turbulent structures. Based
on the flux-coordinate independent approach (FCI), GRILLIX is highly flexible with re-
spect to geometry and allows especially simulations across the separatrix with X-point(s)
in diverted magnetic fusion devices. In contrast to the usually employed field/flux-aligned
coordinates, there are no coordinate singularities at the separatrix/X-point(s) in the FCI
approach, where parallel operators are discretised via a field line map. Being a paradigm
for plasma turbulence and due to its simplicity, the Hasegawa-Wakatani model with inclu-
sion of curvature is used for studies of basic behaviour of turbulent structures around the
separatrix. We compare results obtained in geometries with closed magnetic flux surfaces,
single null and double null configuration. In analogy to the resistive X-point mode, the
results confirm that the strong magnetic shear around the X-point(s) leads to enhanced
dissipation disconnecting the low field side with its unfavourable curvature from the high
field side with favourable curvature.

1 Introduction

The flux-coordinate independent approach (FCI) [1, 2, 3, 4] has emerged as a promis-
ing and computationally efficient way to deal with geometrical problems related with a
separatrix with X-point(s). The usually employed field/flux-aligned coordinates become
singular at the separatrix/X-point(s) [5] and codes based on these coordinates have to
provide some workaround or special treatment to resolve these coordinate singularities.
Results from such codes concerning specifically the role of X-point(s) might therefore be
debatable. The FCI approach is based on a cylindrical grid (Ri, Zj, ϕk), i.e. Cartesian
within poloidal planes, where discretisation of perpendicular operators is straight for-
ward and simple. In order to computationally exploit the strong anisotropy of structures(
k‖ � k⊥

)
the grid is coarsened in the toroidal direction and a field line map is used

for the discretisation of parallel operators: For each grid point corresponding map points
at the adjacent poloidal planes are computed via tracing along magnetic field lines, and
discrete analogues of parallel operators are then constructed by employing a finite differ-
ence along magnetic field lines. An interpolation is thereby required to obtain values at
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the map points. Finally, the FCI allows a natural treatment of regions where field/flux-
aligned coordinates exhibit singularities, i.e. magnetic axis and separatrix with X-point(s)
are not special but treated like any other grid point. The FCI has been applied success-
fully to hyperbolic [2] and parabolic [3, 6] problems, where especially the critical issue
of numerical perpendicular diffusion was addressed which could be reduced drastically
via application of conservative finite difference methods. Further subtle issues concern
the effects of a distorted map and the treatment of boundary conditions within the FCI,
which is discussed in [4, 7]. Furthermore, the FCI has already been applied to an ITG
turbulence model in magnetic island geometry [8]. Finally the FCI approach has been
proven to be a viable numerical approach and is currently employed or pursued in several
codes like FENICIA [2], GRILLIX [3], FELTOR [9] and BOUT++ [10].

The code GRILLIX is adopted to the Hasegawa-Wakatani model [11] with inclusion
of magnetic curvature (HWC). Though some assumptions of HWC are certainly not valid
for typical edge/scrape-off layer (SOL) conditions, the simple HWC, being a aradigm
for plasma turbulence, is suitable for a basic investigation about effects of geometry on
turbulent structures. To elucidate the effect of the X-point we compare simulations with
closed magnetic flux surfaces, a single null configuration with one X-point and a double
null configuration with two X-points. We confirm a similar picture as described within the
framework of the resistive X-point mode [12, 13]. Field aligned structures become strongly
distorted near the X-point, which causes strong dissipation in this region. Ultimately the
X-point acts like a barrier and tends to disconnect the outboard low field side, i.e. the
region of unfavourable curvature, from the stabilizing high field side.

In section 2 we present the physical model and its implementation in GRILLIX. In
section 3 we discuss the effect of an X-point on a field aligned turbulent structure and
confirm this picture with simulations in section 4.

2 Model and its implementation in GRILLIX

2.1 Hasegawa-Wakatani model with curvature

Low temperatures in the scrape-off layer (SOL) justify the use of a fluid model. Moreover,
structures are usually strongly anisotropic k‖ � k⊥ and frequencies of interest ω are very
slow compared to ion gyro motion of with frequency Ωi = eB/(mic), which satisfies the
requirements for a drift reduced fluid model [14]. However, the Hasegawa-Wakatani model
is based on further simplifications which might certainly become questionable for typi-
cal edge/SOL conditions, i.e. magnetic induction, electron inertia and parallel streaming
are neglected. Ions are assumed to be cold and electrons are assumed to be isothermal
of constant temperature Te. The remaining quantities are split into a background and
fluctuation, e.g. for the density ne = n0 + ñ obeying the ordering ñ� n0, ∇⊥n0 ∼ ∇⊥ñ.
Moreover, the assumption of a strong toroidal field against poloidal field allows to approxi-
mate perpendicular operators to act purely within poloidal planes, i.e.∇⊥ = eR∂R+eZ∂Z .
The HWC equations describe finally the evolution of the perturbed density, the electro-
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static potential and the parallel current in normalised form as:

∂tn+
1

B
[φ, n+ wnρ] =wbC(φ− n) +∇ ·

[
bJ‖
]

+ νnD⊥(n) + Sn, (1)

∂tΩ +
1

B
[φ,Ω] =− wbC(n) +∇ ·

[
bJ‖
]

+ νvD⊥(Ω) (2)

J‖ =σ∗‖∇‖ (n− φ) , (3)

where time is measured in units of L⊥/cs with cs =
√
Te/mi the sound speed and L⊥ a

characteristic background gradient length. Perpendicular scales are measured in units of
ion sound radius ρs = cs/Ωi and parallel scales in units of major radius R0. The magnetic
field strength B is normalised against the magnetic field strength on axis and b is the
magnetic field unit vector. We introduce the dimensionless parameter δ = ρs/L⊥ and
normalise the density fluctuation according to n := δ−1ñ/n0, the electrostatic potential
according to φ := δ−1eφ̃/Te with the vorticity defined as Ω := ∇2

⊥φ, and the parallel
current according to J‖ = δ−1J̃‖/(en0cs). The Jacobi brackets [φ, f ] := ∂Rφ∂Zf −∂Zφ∂Rf
represent advection with E × B velocity and C := 2∂Z represents curvature terms. Per-
pendicular dissipation is modelled via high order diffusion D⊥ := ∇6

⊥ which shall strongly
dissipate structures on the grid scale but leave larger structures unaffected. The back-
ground density is assumed to be constant on flux surfaces with ρ a normalized flux la-
bel. The parameter wn controls the strength of the background density gradient and
wb := L⊥/R0 the strength of curvature. The dimensionless parallel conductivity is de-
fined as σ∗‖ := csmiL⊥/(0.51νemeR

2
0), where νe is the collision frequency. Finally the

parameters νn and νv control the strength of perpendicular dissipation. Since turbulence
tends to remove its drive, i.e. the density gradient, we introduce a source/sink terms Sn
acting in buffer zones near the inner and outer limiting flux surfaces which damps the
zonal averaged density fluctuations and the zonal averaged potential.

At the intersection of magnetic field lines with divertor plates the parallel current
is assumed to vanish, so the divertor plates can be regarded as perfect insulators, and
homogeneous Neumann boundary conditions are applied for the remaining quantities in
the direction normal to the divertor. Homogeneous Dirichlet boundary conditions are
applied for n, φ,Ω at the inner and outer limiting flux surfaces.

The Hasegawa-Wakatani model (originally formulated without curvature terms [11])
describes resistive drift-ballooning turbulence. It is a very well established paradigm for
plasma turbulence and is therefore often used for basic studies on plasma turbulence.

2.2 Implementation

A cylindrical grid is employed in GRILLIX, where only those points are retained in mem-
ory which lie in between two limiting flux surfaces ψmin and ψmax. The Arakawa scheme
[15] is used for discretisation of the Jacobi bracket and standard second order finite dif-
ference methods for the discretisation of the remaining perpendicular operators. By in-
serting Ohm’s law, i.e. eq. (3), into eqs. (1) and (2) the parallel terms appear only as
σ∗‖∇ ·

[
b∇‖ (n− φ)

]
. The discretisation of the parallel diffusion operator via a conserva-

tive finite difference scheme, which exhibits very low numerical perpendicular diffusion,
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is discussed and benchmarked isolatedly in detail in [3, 4] and we use the S-3X2 scheme
from [4] which employs a third order bipolynomial interpolation. The treatment of the
boundary conditions is discussed in [4] as well. A third order stiffly-stable splitting method
is used for time advance [16], where the parallel current terms are treated fully implicitly
in order to ensure numerical stability. We refer to [17] for further material on verification
and benchmarks of the HWC model within GRILLIX.

GRILLIX is MPI-parallelized over the toroidal direction and within each poloidal
plane OpenMP parallelisation, respectively multithreaded libraries are employed. The
implicitely treated parallel dynamics is treated via a parallel GMRES solver and the
polarisation, i.e. the elliptic problem Ω = ∇2

⊥φ, via a parallel sparse direct solver.

3 Theoretical picture for X-point

a) b)

z

zx

y

x z = 0

z ≈ zx

FIG. 1: a) Distortion of flux box around
reference magnetic field line approaching X-
point at z → ∞. z = 0 is identified with
outboard midplane region and at z = zx X-
point region is entered. b) Schematic view
of flux box in poloidal projection in tokamak
geometry.

To illustrate the effect of an X-point on a
field aligned structure, we consider a sim-
ple model geometry as illustrated in fig. 1,
where z is a coordinate along a reference
magnetic field which approaches the X-
point in the limit z → ∞. With z = 0
we identify the outboard midplane region,
where the strongest drive for the turbu-
lence is located. x and y are coordinates
perpendicular to the reference magnetic
field line. We assume that the outboard
midplane region is shearless and separated
sharply from the X-point region at z = zx.
The (normalized) magnetic field is:

B = ez + α [xex − yey] Θ(z − zx), (4)

with α a parameter expressing the shear
around the X-point and Θ the Heavyside
step function. Field lines can easily be traced and the perpendicular components of the
wave vector of a field aligned structure

(
k‖ ≈ 0

)
obeys along z [18]:

kx(z) = kx0 exp(αξ(z)), ky0(z) = ky0 exp(−αξ(z)), (5)

where ξ(z) = (z − zx) Θ (z − zx) and kx0, ky0 are the perpendicular wave vector compo-
nents at z = 0. Eqs. (5) imply that a field aligned structure becomes strongly distorted
around the X-point and the absolute value of its perpendicular wave vector component
grows strongly as it approaches closer to the X-point, i.e. k2⊥(z) −→

ξ(z)�α
k20x exp(2αξ(z)). We

therefore expect operators with the highest k⊥ dependence to be dominant in the vicinity
of X-point(s) and within the employed HWC model perpendicular dissipation scales with
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k6⊥. Even if the strong k6⊥ dependence arises here from an ad-hoc introduced hyperdiffusion
model the perpendicular dissipation would still be dominant for a k2⊥ dependence.

Turbulence is mainly driven at in the outboard midplane region and via parallel cur-
rents field aligned structures are established. However, around the X-point these struc-
tures become strongly distorted and perpendicular dissipation becomes at some point
dominant over the parallel dynamics. Finally the X-point disconnects structures at the
outboard midplane region from the stabilizing high field side [12, 13].

4 Simulations

We try to confirm the picture given in the previous section by carrying out simulations with
GRILLIX. The normalized magnetic field is given in terms of an axisymmetric poloidal
flux function as B = ∇ϕ + ∇ϕ × ∇ψ/I0, for which we consider an up-down symmetric
and asymmetric configuration with the constant I0 = 2π · 3.50 [19]:

ψS(R,Z) =1.56− 1.14R2 − 0.15RJ1(3.30R)− 3.70RY1(3.30R)

− 2.56RJ1(2.64R) cos(1.98Z) + 2.00RJ1(1.98R) cos(2.64Z)

+ 1.21RJ1(0.33R) cos(3.28Z)− 2.13RJ1(3.86R) cosh(2.00Z)

ψA(R,Z) =ΨS(R,Z) + 0.65RZJ1(3.30R) + 1.32RJ1(2.64R) sin(1.98Z)− 0.91 sin(3.30Z),
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FIG. 2: Time trace of aver-
age radial particle transport Γn =∫
nvρ dV/V . Due to computational

cost only the case 1 could yet be car-
ried to a saturated state

where the coefficients are given with two signif-
icant digits and Jn, Yn are Bessel functions of the
first respectively second kind. The magnetic axis
and X-points for the symmetric configuration are
at the positions (1.75, 0) respectively (0.86,±0.42).
For the asymmetric equilibrium the magnetic axis
is at (1.77,−0.23) and an X-point at (0.84,-0.37).
The normalised flux label is introduced as ρ :=√

(ψ − ψ0) / (ψX − ψ0), with ψ0, ψX the magnetic
flux on the magnetic axis respectively on the sepa-
ratrix.

As parameters for the simulations we choose
ρs/R0 = 3.13 · 10−4. We set the background density
gradient length at the outboard midplane side as the
normalisation length, i.e. L⊥/R0 = wb = 0.022 with
wn = −700. Finally, we set the parameter σ∗‖ = 1.
We employ Npol = 20 poloidal planes with a per-
pendicular resolution of h = 0.66 and set the dissipation coefficients to νn = νv = 1 ·10−3.
The buffer zones near the inner and outer limiting flux surfaces have a radial extension
of 10% with a Gaussian envelope. Due to computational costs it was not possible to
perform convergence checks for the particular cases discussed here, but these parameters
were proven to yield converged results for computationally less expensive smaller cases
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FIG. 3: Snapshots of density fluctuations n at plane ϕ = 0. a) Case 1 at t = 300, b) case
2 with single X-point at t = 260 and c) case 3 with two X-points at t = 135. Insets show
outboard midplane region and X-point region enlarged.

with circular flux surfaces [17]. Moreover, our studies here focus on qualitative but not
yet quantitative effects arising from X-point(s).

We investigate three cases: A simulation in the asymmetric configuration on closed
field lines with ρ ∈ [0.75, 0.85] (case 1), a simulation in the asymmetric configuration in
the range ρ ∈ [0.94, 1.03] with a single X-point in the domain (case2), and a simulation
in the symmetric configuration in the range ρ ∈ [0.94, 1.03] with two X-points in the
domain (case 3). The simulations were initialized with small random noise in the density
perturbation and in fig. 2 we show time traces for the volume averaged radial particle
transport. Due to limitations arising from long runtimes we were only able to carry out
case 1 to a fully saturated state. However, since we are yet only interested in a qualitative
picture it is sufficient to consider in the following the timepoints where the transition to
a non-linear state occurs, i.e. t = 300 for case 1, t = 270 for case 2 and t = 135 for case 3.
Snapshots of density fluctuations at these time points are shown in fig. 3. The strongest
drive and therefore the largest fluctuations are in the outboard midplane region. For case
1 these fluctuations are mediated via parallel currents to the stabilizing high field side. In
case 3 the two X-points completely disconnect in the parallel direction the high field side
from the low field side and no fluctuations can be observed on the high field side. Due to
the presence of only one X-point there is only a partial disconnection of the high and low
field side in case 2.

In order to get an impression on the parallel structure of the fluctuations we show the
non-adiabaticity n− φ on flux surfaces for the three cases in fig. 2. In case 1 the parallel
extension of fluctuations is very long and inboard and outboard side are connected. In case
3 the two X-points act like a barrier and disconnect the outboard side, where fluctuations
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a) b) c)

FIG. 4: Nonadiabiticity n − φ (zonal component has been removed) on flux surface for
a) case 1 at ρ = 0.8, b) case 2 at ρ = 0.98 and c) case 3 at ρ = 0.98. Y-axis denotes
toroidal angle ϕ and x-axis denotes geometric poloidal angle tan θ = (Z − Z0) /(R−R0),
i.e. outboard midplane is at θ = 0, 2π, top at θ = π/2 inboard midplane at θ = π and
bottom at θ = 3π/2. In the neighbourhood of the X-point(s), i.e. θ ∼ 4.5 in b) and
θ ∼ 1.8, 4.5 in c), field lines are strongly bent and run nearly toroidally.

are located, from the stabilizing inboard side. In case 2 the X-point also acts like a
barrier in the bottom region, but fluctuations can reach the inboard side via the top.
These results confirm the theoretical picture from the previous section very well.

5 Discussion

We employed the code GRILLIX to study the role of the X-point on turbulent structures.
Since GRILLIX is based on the flux-coordinate independent approach, the separatrix and
X-point(s) are numerically not special but treated like any other grid point. Being a
paradigm for plasma turbulence, the Hasegawa-Wakatani equations served as a physical
model. Due to the strong magnetic shear, dissipation becomes dominant in the vicinity
of the X-point. The X-point ultimately tends to disconnect structures along the parallel
direction, and fluctuations remain located to the outboard plane where the curvature is
unfavourable. Simulations carried out with GRILLIX confirmed this picture, which has
also been found in experiment [20, 21].
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