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McCad is a geometry conversion tool developed at the Karlsruhe Institute of Technology (KIT) for the 

automatic conversion of CAD models into the semi-algebraic geometry representations which can then be used in 

Monte Carlo (MC) particle transport simulations applied in design analyses of fusion and fission reactors. A new 

algorithm for the decomposition of complex geometry models was designed and implemented in the McCad code. 

With this improvement, a weakness of the original McCad was mitigated which is due to the instability of the 

applied graphic kernel and the original decomposition algorithm. The improvements have been verified with some 

representative test models and a generic model of a DEMO fusion power reactor. The results show that the 

advanced McCad version with the new decomposition algorithm is more robust and provides more accurate and 

less complex conversion results. The decomposition process is efficient and produces correct results which are 

consistent with the original model. 
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1. Introduction 

McCad is a geometry conversion tool that enables the 

automatic conversion of CAD models into the semi-

algebraic geometry representations utilized in Monte 

Carlo (MC) particle transport simulations. McCad is 

entirely based on open-source software and libraries 

utilizing Open Cascade (OCC) as CAD kernel and the 

Qt4 and OpenGL libraries for the graphical user 

interface (GUI). With McCad, a CAD model can be 

processed, converted into MC geometry representation 

and output in the syntax of MC codes such as MCNP, 

TRIPOLI and Geant4 [1-3]. In addition, related 

visualization capabilities based on the coupling of 

McCad with the ParaView software allows the user to 

overlay mesh tally distributions on the CAD geometry. 

The kernel algorithms of McCad conversion include 

two significant processes: solid decomposition and void 

generation. An input CAD solid with complex geometry 

is decomposed into a collection of disjoint and simple 

convex solids which can be represented by Boolean 

forms of primitive solids or algebraic half-spaces. Then 

the void spaces in and around the decomposed solids are 

generated and exported as filling solids. The previous 

version of McCad has already included an improved 

void filling algorithm and function [4]. However, the 

decomposition function implemented previously in 

McCad is still not very efficient and stable when applied 

to large and complex geometry models resulting in 

frequent programme crashes, and fragmentized and 

irregular decomposed solids. Moreover, a lot of CPU 

time and memory are consumed. To overcome such 

difficulties and improve the capability of McCad, new 

decomposition algorithms and functions have been 

developed which employ some new techniques, e.g., the 

triangular collision detection, assistant splitting surfaces 

adding and the splitting surfaces sorting. In addition, the 

memory management system has also been optimized 

that decreases the CPU time and memory consumption 

and accelerate the decomposition process. 

The new decomposition algorithm and its 

implementation in McCad have been verified with some 

example models and components extracted from ITER 

device. Moreover, the EU DEMO generic model is 

adopted as an entire combination model to verify the 

complete CAD-MC conversion. 

2. Solid Decomposition 

2.1 Workflow 

The solid decomposition function of McCad reads 

and decomposes a complex CAD model recursively into 

a combination of convex solids with a number of 

splitting surfaces. Therefore, creating a sufficient and 

suitable set of splitting surfaces is the first step of the 

decomposition. Most splitting surfaces can be selected 

directly from the boundary surfaces which are traversed 

and the splitting surfaces will be detected and stored in 

the splitting surface list. However, if the solid contains 

curved boundary surfaces, e.g., cylinders, cones, spheres 

and torus, and they are also splitting surfaces, the 

original boundary surfaces are not sufficient to describe 

the geometry eventually and some auxiliary splitting 

surfaces must be added for separating these curved 

surfaces from the solid [4].  

When sufficient splitting surface set is ready, the next 

step is the practical decomposing process with Boolean 

operations. However, the sequence of the splitting 

surfaces utilized significantly affects the quality of the 

final result and the number of Boolean operations used. 

Fig.1 shows two different results of a simple solid 

decomposition with different splitting surfaces sequence. 

Here solution A needs only one Boolean operation and 2 



 

convex solids are generated. Solution B needs 3 Boolean 

operations and 4 solids are generated. Obviously, 

solution A is a better solution. 

 

Fig. 1.  Two different decomposition results employing a 

different sequence of splitting surfaces  

Therefore, optimizing the sequence of splitting 

surfaces as far as possible is the most important step for 

generating a less complex decomposition result with 

fewer Boolean operations. 

2.2 Requirements of improvements 

Theoretically speaking, when a sufficient set of 

splitting surfaces is constructed, a solid could always be 

decomposed eventually. However, the graphic kernel 

OCC employed in McCad is not very stable and robust 

in performing Boolean operations, especially when a 

complex geometry is processed. Therefore, McCad’s 

original algorithm has to be optimized for a minimum 

number of Boolean operations. For example, there is a 

simple method for detecting the splitting boundary 

surfaces which intersect a solid with the positive and 

negative half spaces of each boundary surface. If the 

solid has common parts with both half spaces, the 

boundary surface is recognized as splitting surface. 

However, with this method, a large number of Boolean 

operations are required.  

Furthermore, McCad’s original algorithm generates 

the auxiliary splitting surfaces simply with the boundary 

edges of the curved surface. When the radians of curved 

surfaces are small, this process might result in some 

irregular shapes of the decomposed solids, e.g., thin 

plates with sharp corners which are found to be one of 

the important reasons for causing subsequent Boolean 

operation errors [4]. So the second requirement is to 

refine the auxiliary splitting surfaces adding algorithm, 

avoiding the generation of irregular and error-prone 

solids. 

In addition, the original decomposition function of 

McCad didn’t sort the splitting surfaces but selects them 

randomly. This is the reason why previous 

decomposition results were fragmental and more CPU 

time was consumed. Therefore, a sorting function is 

required for generating a simpler and more regular result 

that has fewer decomposed solids and the boundary 

surfaces included. Another objective is to reduce the 

number of Boolean operations, as already noted above, 

and accelerate the decomposing process.  

In summary, the improvements of the decomposition 

function aim at decomposing a complicate CAD model 

into simple and regular sub-solids with fewer Boolean 

operations to ensure the process is stable and efficient. 

An optimized decomposition result also affects the 

subsequent simulation speed with MC codes. Along 

these guideline new decomposition functions have been 

developed as shown in the following. 

3. Improvements 

3.1 Detect splitting surfaces with triangles collision 

Instead of Boolean intersections, the triangles 

collision detecting algorithm is employed to classify the 

splitting boundary surfaces and non-splitting surfaces. 

The input CAD model is first meshed into a quantity of 

triangles and then the relative positions of the triangles 

and boundary surface are calculated. The boundary 

surface is a splitting surface if one of the triangles is 

colliding with it or the triangles are located at both sides 

of it, otherwise it is a non-splitting surface. The meshing 

function is a conventional base function of the geometry 

kernel for visualizing the geometries, which is fast and 

stable. In the meantime, coarse or fine triangles can be 

also controlled by given precisions. 

The relative positions between plane and triangles are 

easy to be calculated. If the three vertices of a triangle 

are located at both sides of the boundary surface there 

are collisions. Therefore, the complicate collision 

detecting is simplified and just an issue of the numerical 

calculation. However, it is not sufficient to calculate the 

relative position between triangles and curved surfaces 

only with the vertices. As shown on the example in 

Fig.2, Triangle A and B, two vertices of them locate on 

the surface S and one vertex at the outside. The triangle 

A has a collision with S, but triangle B is considered as 

having no collision with S because the collision area is 

too small. So the areas of collision are also important 

factors for detecting that a curved surface is a splitting 

surface or not, and a tolerance must to be given to the 

collision area. 

 

Fig. 2.  The relative positions between triangles and cylinder 

With the triangles collision detecting algorithm, the 

splitting boundary surfaces of a solid are selected 

without Boolean operations. In addition, the number of 

colliding boundary surfaces of each splitting surface is 

also counted as an important reference for calculating the 

weights of the splitting surfaces, which will be used for 

sorting splitting surfaces in next step. 

3.2 Add  Auxiliary Splitting Surfaces 

The second improvement is to optimize the auxiliary 

splitting surfaces adding algorithm. In order to avoid the 

generation of irregular and low-quality decomposed 

solids, the improved algorithm refines the addition of 

auxiliary surfaces according to different radians of 

curved surfaces. When the radian of a curved surface is 

larger than 90 ° , one splitting surface through its 

boundary edges will be generated directly. When the 



 

radian is smaller than 90 degree, two splitting surfaces 

are generated which not only go through its boundary 

edges but also through the rotated axis. Thus the 

generation of a solid with sharp corners is avoided [4]. 

Furthermore, the new algorithm has also been 

extended to separate connected curved surfaces as shown 

on the example in Fig.3. In Fig.3a shows a solid 

containing two cylinders S1 and S2 that have a common 

straight edge E12. Normally they have to be separated by 

a plane through E12. The new algorithm calculates the 

normal vector V1 and V2 of the cylinders and generates a 

plane P between the two vectors and through E12 as a 

splitting surface. If two cylinders connect with an ellipse, 

as shown in Fig3b, a splitting plane through the ellipse is 

generated directly. However, if the two cylinders are 

connected with an edge which is a space curve, normally 

it is unnecessary and impossible to create a splitting 

surface through the space curve. 

 

Fig. 3.  Auxiliary splitting surfaces of connected cylinders 

The intersections of curved surfaces are common 

geometric features in fusion reactor models, e.g., TF 

(Toroidal Field) coils and VV (Vacuum Vessel). The 

new algorithm analyzes the intersections of different 

curved surfaces, and generates different auxiliary 

surfaces according to the different connected edges, 

accordingly decomposes these models efficiently and 

generates more regular sub-solids. 

3.3 Sort splitting surfaces 

The splitting surfaces sorting algorithm employs the 

feature recognition technique and introduces some 

significant rules for calculating the weights of splitting 

surfaces, such as internal edge loops, and the numbers of 

concave edges passing through and the boundary 

surfaces colliding. 

The first step is to find the splitting surfaces with 

internal edge loops. Normally a complicate CAD model 

is composed of several independent parts and connected 

with the surfaces that have internal edge loops. As 

shown in Fig.4a, these surfaces should be selected as 

prior splitting surfaces. With these surfaces, a complicate 

solid could be decomposed into a number of primary 

independent parts, and then will be decomposed further 

in the next steps. 

In the second step, the concave edge in a solid is 

considered as an edge that connects two splitting 

boundary surfaces. So the number of concave edges that 

are passed through by splitting surface is another 

important factor for calculating the weights of splitting 

surfaces. If a selected splitting surface passes through 

more concave edges, it means that more splitting 

surfaces connected with these edges could be separated 

by this splitting surface. Thus fewer splitting processes, 

namely Boolean operations, are required to implement 

the final decomposition. In the model shown in Fig.4b, 

surfaces S1, S2, S3, S4 are all splitting surfaces, and E1, E2, 

E3 are three concave edges. S1 passes through E1, E2, E3 

three concave edges but S2, S3, S4 pass only one, 

therefore, S1 has high priority for its use as splitting 

surface. In effect, only one splitting process is required, 

otherwise more splitting processes would be necessary. 

 

Fig. 4.  Selection the priority of splitting surfaces 

In the third step, and the Boolean operation between 

solids are essentially face-face intersections. In order to 

avoid potential Boolean operations errors, the sorting 

algorithm also records the number and types of boundary 

surfaces which interfere with each splitting surface. 

First, if a splitting surface interferes with fewer boundary 

surfaces and fewer curved surfaces, it will be recognized 

as a prior splitting surface. Second, splitting of a solid 

with planes has priority since it is more robust than 

curved surfaces.  

However, although some rules are introduced for 

creating an optimal sequence of splitting surfaces, it is 

still difficult to generate a general rule which could be 

applied to all models, especially the models with 

extreme complexities. The current algorithm is 

applicable for most of the models with medium 

complexities, which are common in fusion and fission 

facilities and similar devices. 

4. Validations 

The improved decomposition algorithms and 

functions have been validated with example models. 

Fig.5a shows a simple model with the particular features 

such as internal loops and round corners. Fig.5b shows a 

representative part extracted from an ITER diagnose 

system model. With the new decomposition function, the 

models can be decomposed successfully. The volume 

comparison between the original and the decomposed 

model given in Table.1 indicates that the geometries 

after decomposition are consistent with the original 

geometries. 

 

Fig. 5. Decomposition results of example models 

 

 



 

Table 1.  The volumes comparison 

 Model a Model b 

Number of solids in original 

model 
1 1 

Number of solids in 
decomposed model 

11 43 

Volume of original model 

(mm3) 

1.58909e4 

 

1.34349e10 

 

Volume of decomposed 

model (mm3) 

1.58908e4 

 
1.34349e10 

 

Volume error -6.293e-4% 1.489e-5% 

CPU Time 1.68s 13.68s 

Applied PC configuration: 

CPU: Intel Xeon 2.4GHz 

RAM: 48,000M 

In addition, a generic model of a DEMO fusion 

power reactor, developed in the frame of the European 

Power Plant Physics and Technology (PPPT) programme 

has been employed for validation purposes. The model 

includes all relevant components in simplified 

representation. It has been decomposed and converted 

into a complete MCNP file. For the validation, not only 

the geometric shapes and volumes of solids are 

compared, but also the volumes of the cells of the 

MCNP model. Fig.6 shows the models with all 

components before and after decomposition, and the 

converted MCNP model generated with the MCNP 

plotter in a vertical cross section. Tables 2 compares the 

volumes before and after decomposition and those 

calculated with MCNP. There is good agreement 

showing that the models actually are consistent and can 

be used in application calculations with MCNP. 

 

Fig. 6. Decomposition result for the EU DEMO model and 

MCNP model (vertical cross section drawn with the MCNP 

plotter) 

Table 2.  Volumes comparison for the EU DEMO model 

Unit: mm3 
Original 

Model 

Decomposed 

Model 

MCNP 

Model 

Plasma 6.6577e10 6.6577e10 6.6588e10 

Blankets 5.0187e10 5.0186e10 5.0205e10 

Divertor 3.4098e9 3.4098e9 3.4127e9 

Vacuum Vessel 4.9632e10 4.9632e10 4.9622e10 

Ports 2.2038e10 2.2038e10 2.2043e10 

TF Coils & 

Cases 
3.9370e10 3.9369e10 3.9354e10 

CS Coils 2.1135e10 2.1135e10 2.1127e10 

Port Plugs 1.7910e10 1.7910e10 1.7912e10 

Thermal Shield 2.3043e9 2.3041e9 2.3015e9 

Conclusion 

A new algorithm for the decomposition of complex 

geometry model was designed and implemented in the 

McCad code. With this improvement, a weakness of the 

original McCad was mitigated which is due to the 

instability of the graphic kernel OCC and the applied 

original decomposition algorithm. The improvements 

have been validated with some representative test 

models and a generic model of a DEMO fusion power 

reactor. The results demonstrate that the new algorithm 

and function can be applied for the decomposition of 

models with medium complexity. The decomposition 

process is efficient and produces correct results which 

are consistent with the original model. 

Although the current decomposition function is still 

not capable of processing a model with extreme complex 

geometry, it helps the users to improve the accuracy and 

efficiency of the practical modeling work. McCad’s  

decomposition function will thus be further developed 

and extended in its capabilities. The improved function 

presented in this paper has been already integrated into 

McCad, verfsion 0.5.0, which is available on the source 

code hosting platform github: (https://github.com/inr-

kit/McCad-0.5).  
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