
EUROFUSION WPBB-CP(16) 15707

L Lu et al.

Improved Solid Decomposition
Algorithms for the CAD-to-MC

Conversion Tool McCad

Preprint of Paper to be submitted for publication in
Proceedings of 29th Symposium on Fusion Technology (SOFT

2016)

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.

This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked

author’s email: lei.lu@kit.edu

Improved Solid Decomposition Algorithms for the CAD-to-MC

Conversion Tool McCad

Lei Lu, Yuefeng Qiu, Ulrich Fischer

Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology.

Hermann-von-Helmholtz-Platz 1,76344, Eggenstein-Leopoldshafen, Germany

McCad is a geometry conversion tool developed at the Karlsruhe Institute of Technology (KIT) for the

automatic conversion of CAD models into the semi-algebraic geometry representations which can then be used in

Monte Carlo (MC) particle transport simulations applied in design analyses of fusion and fission reactors. A new

algorithm for the decomposition of complex geometry models was designed and implemented in the McCad code.

With this improvement, a weakness of the original McCad was mitigated which is due to the instability of the

applied graphic kernel and the original decomposition algorithm. The improvements have been verified with some

representative test models and a generic model of a DEMO fusion power reactor. The results show that the

advanced McCad version with the new decomposition algorithm is more robust and provides more accurate and

less complex conversion results. The decomposition process is efficient and produces correct results which are

consistent with the original model.

Keywords: McCad, MC modeling, BRep-CSG decomposition.

1. Introduction

McCad is a geometry conversion tool that enables the

automatic conversion of CAD models into the semi-

algebraic geometry representations utilized in Monte

Carlo (MC) particle transport simulations. McCad is

entirely based on open-source software and libraries

utilizing Open Cascade (OCC) as CAD kernel and the

Qt4 and OpenGL libraries for the graphical user

interface (GUI). With McCad, a CAD model can be

processed, converted into MC geometry representation

and output in the syntax of MC codes such as MCNP,

TRIPOLI and Geant4 [1-3]. In addition, related

visualization capabilities based on the coupling of

McCad with the ParaView software allows the user to

overlay mesh tally distributions on the CAD geometry.

The kernel algorithms of McCad conversion include

two significant processes: solid decomposition and void

generation. An input CAD solid with complex geometry

is decomposed into a collection of disjoint and simple

convex solids which can be represented by Boolean

forms of primitive solids or algebraic half-spaces. Then

the void spaces in and around the decomposed solids are

generated and exported as filling solids. The previous

version of McCad has already included an improved

void filling algorithm and function [4]. However, the

decomposition function implemented previously in

McCad is still not very efficient and stable when applied

to large and complex geometry models resulting in

frequent programme crashes, and fragmentized and

irregular decomposed solids. Moreover, a lot of CPU

time and memory are consumed. To overcome such

difficulties and improve the capability of McCad, new

decomposition algorithms and functions have been

developed which employ some new techniques, e.g., the

triangular collision detection, assistant splitting surfaces

adding and the splitting surfaces sorting. In addition, the

memory management system has also been optimized

that decreases the CPU time and memory consumption

and accelerate the decomposition process.

The new decomposition algorithm and its

implementation in McCad have been verified with some

example models and components extracted from ITER

device. Moreover, the EU DEMO generic model is

adopted as an entire combination model to verify the

complete CAD-MC conversion.

2. Solid Decomposition

2.1 Workflow

The solid decomposition function of McCad reads

and decomposes a complex CAD model recursively into

a combination of convex solids with a number of

splitting surfaces. Therefore, creating a sufficient and

suitable set of splitting surfaces is the first step of the

decomposition. Most splitting surfaces can be selected

directly from the boundary surfaces which are traversed

and the splitting surfaces will be detected and stored in

the splitting surface list. However, if the solid contains

curved boundary surfaces, e.g., cylinders, cones, spheres

and torus, and they are also splitting surfaces, the

original boundary surfaces are not sufficient to describe

the geometry eventually and some auxiliary splitting

surfaces must be added for separating these curved

surfaces from the solid [4].

When sufficient splitting surface set is ready, the next

step is the practical decomposing process with Boolean

operations. However, the sequence of the splitting

surfaces utilized significantly affects the quality of the

final result and the number of Boolean operations used.

Fig.1 shows two different results of a simple solid

decomposition with different splitting surfaces sequence.

Here solution A needs only one Boolean operation and 2

convex solids are generated. Solution B needs 3 Boolean

operations and 4 solids are generated. Obviously,

solution A is a better solution.

Fig. 1. Two different decomposition results employing a

different sequence of splitting surfaces

Therefore, optimizing the sequence of splitting

surfaces as far as possible is the most important step for

generating a less complex decomposition result with

fewer Boolean operations.

2.2 Requirements of improvements

Theoretically speaking, when a sufficient set of

splitting surfaces is constructed, a solid could always be

decomposed eventually. However, the graphic kernel

OCC employed in McCad is not very stable and robust

in performing Boolean operations, especially when a

complex geometry is processed. Therefore, McCad’s

original algorithm has to be optimized for a minimum

number of Boolean operations. For example, there is a

simple method for detecting the splitting boundary

surfaces which intersect a solid with the positive and

negative half spaces of each boundary surface. If the

solid has common parts with both half spaces, the

boundary surface is recognized as splitting surface.

However, with this method, a large number of Boolean

operations are required.

Furthermore, McCad’s original algorithm generates

the auxiliary splitting surfaces simply with the boundary

edges of the curved surface. When the radians of curved

surfaces are small, this process might result in some

irregular shapes of the decomposed solids, e.g., thin

plates with sharp corners which are found to be one of

the important reasons for causing subsequent Boolean

operation errors [4]. So the second requirement is to

refine the auxiliary splitting surfaces adding algorithm,

avoiding the generation of irregular and error-prone

solids.

In addition, the original decomposition function of

McCad didn’t sort the splitting surfaces but selects them

randomly. This is the reason why previous

decomposition results were fragmental and more CPU

time was consumed. Therefore, a sorting function is

required for generating a simpler and more regular result

that has fewer decomposed solids and the boundary

surfaces included. Another objective is to reduce the

number of Boolean operations, as already noted above,

and accelerate the decomposing process.

In summary, the improvements of the decomposition

function aim at decomposing a complicate CAD model

into simple and regular sub-solids with fewer Boolean

operations to ensure the process is stable and efficient.

An optimized decomposition result also affects the

subsequent simulation speed with MC codes. Along

these guideline new decomposition functions have been

developed as shown in the following.

3. Improvements

3.1 Detect splitting surfaces with triangles collision

Instead of Boolean intersections, the triangles

collision detecting algorithm is employed to classify the

splitting boundary surfaces and non-splitting surfaces.

The input CAD model is first meshed into a quantity of

triangles and then the relative positions of the triangles

and boundary surface are calculated. The boundary

surface is a splitting surface if one of the triangles is

colliding with it or the triangles are located at both sides

of it, otherwise it is a non-splitting surface. The meshing

function is a conventional base function of the geometry

kernel for visualizing the geometries, which is fast and

stable. In the meantime, coarse or fine triangles can be

also controlled by given precisions.

The relative positions between plane and triangles are

easy to be calculated. If the three vertices of a triangle

are located at both sides of the boundary surface there

are collisions. Therefore, the complicate collision

detecting is simplified and just an issue of the numerical

calculation. However, it is not sufficient to calculate the

relative position between triangles and curved surfaces

only with the vertices. As shown on the example in

Fig.2, Triangle A and B, two vertices of them locate on

the surface S and one vertex at the outside. The triangle

A has a collision with S, but triangle B is considered as

having no collision with S because the collision area is

too small. So the areas of collision are also important

factors for detecting that a curved surface is a splitting

surface or not, and a tolerance must to be given to the

collision area.

Fig. 2. The relative positions between triangles and cylinder

With the triangles collision detecting algorithm, the

splitting boundary surfaces of a solid are selected

without Boolean operations. In addition, the number of

colliding boundary surfaces of each splitting surface is

also counted as an important reference for calculating the

weights of the splitting surfaces, which will be used for

sorting splitting surfaces in next step.

3.2 Add Auxiliary Splitting Surfaces

The second improvement is to optimize the auxiliary

splitting surfaces adding algorithm. In order to avoid the

generation of irregular and low-quality decomposed

solids, the improved algorithm refines the addition of

auxiliary surfaces according to different radians of

curved surfaces. When the radian of a curved surface is

larger than 90 ° , one splitting surface through its

boundary edges will be generated directly. When the

radian is smaller than 90 degree, two splitting surfaces

are generated which not only go through its boundary

edges but also through the rotated axis. Thus the

generation of a solid with sharp corners is avoided [4].

Furthermore, the new algorithm has also been

extended to separate connected curved surfaces as shown

on the example in Fig.3. In Fig.3a shows a solid

containing two cylinders S1 and S2 that have a common

straight edge E12. Normally they have to be separated by

a plane through E12. The new algorithm calculates the

normal vector V1 and V2 of the cylinders and generates a

plane P between the two vectors and through E12 as a

splitting surface. If two cylinders connect with an ellipse,

as shown in Fig3b, a splitting plane through the ellipse is

generated directly. However, if the two cylinders are

connected with an edge which is a space curve, normally

it is unnecessary and impossible to create a splitting

surface through the space curve.

Fig. 3. Auxiliary splitting surfaces of connected cylinders

The intersections of curved surfaces are common

geometric features in fusion reactor models, e.g., TF

(Toroidal Field) coils and VV (Vacuum Vessel). The

new algorithm analyzes the intersections of different

curved surfaces, and generates different auxiliary

surfaces according to the different connected edges,

accordingly decomposes these models efficiently and

generates more regular sub-solids.

3.3 Sort splitting surfaces

The splitting surfaces sorting algorithm employs the

feature recognition technique and introduces some

significant rules for calculating the weights of splitting

surfaces, such as internal edge loops, and the numbers of

concave edges passing through and the boundary

surfaces colliding.

The first step is to find the splitting surfaces with

internal edge loops. Normally a complicate CAD model

is composed of several independent parts and connected

with the surfaces that have internal edge loops. As

shown in Fig.4a, these surfaces should be selected as

prior splitting surfaces. With these surfaces, a complicate

solid could be decomposed into a number of primary

independent parts, and then will be decomposed further

in the next steps.

In the second step, the concave edge in a solid is

considered as an edge that connects two splitting

boundary surfaces. So the number of concave edges that

are passed through by splitting surface is another

important factor for calculating the weights of splitting

surfaces. If a selected splitting surface passes through

more concave edges, it means that more splitting

surfaces connected with these edges could be separated

by this splitting surface. Thus fewer splitting processes,

namely Boolean operations, are required to implement

the final decomposition. In the model shown in Fig.4b,

surfaces S1, S2, S3, S4 are all splitting surfaces, and E1, E2,

E3 are three concave edges. S1 passes through E1, E2, E3

three concave edges but S2, S3, S4 pass only one,

therefore, S1 has high priority for its use as splitting

surface. In effect, only one splitting process is required,

otherwise more splitting processes would be necessary.

Fig. 4. Selection the priority of splitting surfaces

In the third step, and the Boolean operation between

solids are essentially face-face intersections. In order to

avoid potential Boolean operations errors, the sorting

algorithm also records the number and types of boundary

surfaces which interfere with each splitting surface.

First, if a splitting surface interferes with fewer boundary

surfaces and fewer curved surfaces, it will be recognized

as a prior splitting surface. Second, splitting of a solid

with planes has priority since it is more robust than

curved surfaces.

However, although some rules are introduced for

creating an optimal sequence of splitting surfaces, it is

still difficult to generate a general rule which could be

applied to all models, especially the models with

extreme complexities. The current algorithm is

applicable for most of the models with medium

complexities, which are common in fusion and fission

facilities and similar devices.

4. Validations

The improved decomposition algorithms and

functions have been validated with example models.

Fig.5a shows a simple model with the particular features

such as internal loops and round corners. Fig.5b shows a

representative part extracted from an ITER diagnose

system model. With the new decomposition function, the

models can be decomposed successfully. The volume

comparison between the original and the decomposed

model given in Table.1 indicates that the geometries

after decomposition are consistent with the original

geometries.

Fig. 5. Decomposition results of example models

Table 1. The volumes comparison

 Model a Model b

Number of solids in original

model
1 1

Number of solids in
decomposed model

11 43

Volume of original model

(mm3)

1.58909e4

1.34349e10

Volume of decomposed

model (mm3)

1.58908e4

1.34349e10

Volume error -6.293e-4% 1.489e-5%

CPU Time 1.68s 13.68s

Applied PC configuration:

CPU: Intel Xeon 2.4GHz

RAM: 48,000M

In addition, a generic model of a DEMO fusion

power reactor, developed in the frame of the European

Power Plant Physics and Technology (PPPT) programme

has been employed for validation purposes. The model

includes all relevant components in simplified

representation. It has been decomposed and converted

into a complete MCNP file. For the validation, not only

the geometric shapes and volumes of solids are

compared, but also the volumes of the cells of the

MCNP model. Fig.6 shows the models with all

components before and after decomposition, and the

converted MCNP model generated with the MCNP

plotter in a vertical cross section. Tables 2 compares the

volumes before and after decomposition and those

calculated with MCNP. There is good agreement

showing that the models actually are consistent and can

be used in application calculations with MCNP.

Fig. 6. Decomposition result for the EU DEMO model and

MCNP model (vertical cross section drawn with the MCNP

plotter)

Table 2. Volumes comparison for the EU DEMO model

Unit: mm3
Original

Model

Decomposed

Model

MCNP

Model

Plasma 6.6577e10 6.6577e10 6.6588e10

Blankets 5.0187e10 5.0186e10 5.0205e10

Divertor 3.4098e9 3.4098e9 3.4127e9

Vacuum Vessel 4.9632e10 4.9632e10 4.9622e10

Ports 2.2038e10 2.2038e10 2.2043e10

TF Coils &

Cases
3.9370e10 3.9369e10 3.9354e10

CS Coils 2.1135e10 2.1135e10 2.1127e10

Port Plugs 1.7910e10 1.7910e10 1.7912e10

Thermal Shield 2.3043e9 2.3041e9 2.3015e9

Conclusion

A new algorithm for the decomposition of complex

geometry model was designed and implemented in the

McCad code. With this improvement, a weakness of the

original McCad was mitigated which is due to the

instability of the graphic kernel OCC and the applied

original decomposition algorithm. The improvements

have been validated with some representative test

models and a generic model of a DEMO fusion power

reactor. The results demonstrate that the new algorithm

and function can be applied for the decomposition of

models with medium complexity. The decomposition

process is efficient and produces correct results which

are consistent with the original model.

Although the current decomposition function is still

not capable of processing a model with extreme complex

geometry, it helps the users to improve the accuracy and

efficiency of the practical modeling work. McCad’s

decomposition function will thus be further developed

and extended in its capabilities. The improved function

presented in this paper has been already integrated into

McCad, verfsion 0.5.0, which is available on the source

code hosting platform github: (https://github.com/inr-

kit/McCad-0.5).

Acknowledgments

This work has been carried out within the framework

of the EUROfusion Consortium and has received

funding from the Euratom research and training

programme 2014-2018 under grant agreement No

633053. The views and opinions expressed therein do

not necessarily reflect those of the European

Commission.

References

[1] J.F.Briesmeister, MCNP a general Monte Carlo N-

particle transport code, version 4C, Report LA-13709-M,

Los Alamos National Laboratory, USA, 2000.

[2] J.C.Nimal, T.Vergnaud, TRIPOLI: A general Monte

Carlo code, present state and future prospects. (1990)

Progress in Nuclear Energy, 24 (1-3), pp. 195-200.

[3] GEANT4 Collaboration, 2015. http://geant4.cern.ch/.

[4] L. Lu, U. Fischer, P. Pereslavtsev, Improved algorithms

and advanced features of the CAD to MC conversion tool

McCad, Fusion Engineering and Design, Volume 89,

Issues 9–10, October 2014, Pages 1885–1888.

https://github.com/inr-kit/McCad-0.5
https://github.com/inr-kit/McCad-0.5
http://www.sciencedirect.com/science/article/pii/0149197090900365
http://www.sciencedirect.com/science/article/pii/0149197090900365

