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Abstract

Poloidal asymmetries of impurities are commonly observed experimentally. Density asym-
metry is already known to impact significantly neoclassical prediction of impurity flux. In this
article, the effect of impurity pressure asymmetry and anisotropy on the neoclassical flux of
impurity is derived analytically. This prediction is compared with results coming from a simu-
lation performed with the gyrokinetic code GYSELA, featuring both turbulent and neoclassical
transports. A fair agreement is found between the analytical prediction and the result of the
simulation. On the special case which is considered, the effect of impurity pressure asymmetry
and anisotropy are shown to play a predominant role on the neoclassical impurity transport.

1 Introduction

Impurity transport is an issue of utmost importance for fusion. One reason is the choice of tungsten
for the ITER divertor. Indeed high-Z materials are only partially ionized in the plasma core, so that
they may lead to prohibitive radiative losses even at low concentrations, and impact dramatically
plasma performance and stability. On-axis accumulation of tungsten has been widely observed in
tokamaks [1, 2]. In current tokamaks, neoclassical transport is dominant for heavy impurities due
to a large collisionality of these ions and the presence of poloidal asymmetry of the impurity density
induced by ICRH and NBI sources [3]. These asymmetries are known to modify significantly (up to an
order of magnitude) neoclassical flux of impurity [4]. ITER is expected to use ECRH heating system
which should reduce the externally imposed poloidal asymmetry of impurity density. In this context,
one may wonder whether poloidal asymmetries induced by turbulence [5] play an important role in
impurity transport. Up to recently, first principles simulations of turbulent and neoclassical fluxes
were performed with different dedicated codes, implicitly assuming that both transport channels are
separable and therefore additive. One of the key questions is whether this assumption is valid.

Preliminary simulations obtained with the gyrokinetic code GYSELA [6] have shown evidence of a
neoclassical-turbulence synergy for impurity transport [7]. However no clear theoretical explanation
was given, although poloidal asymmetries were pointed out as critical players. New simulations have
been done using a new and more accurate collision operator [8] and improved boundary conditions
[9]. The new collision operator allows in particular the isotropisation of the pressure thanks to the
inclusion of derivatives with respect to the adiabatic invariant µ. This version of GYSELA has been
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successfully benchmarked against neoclassical theory. In particular, analytical predictions of the
pinch velocity and screening factor are recovered.

The new simulations confirm the neoclassical-turbulence synergy and allow identification of a
mechanism that underlie this synergy. The new simulations have indeed shown strong poloidal
asymmetries attributed to the presence of turbulence. Poloidal asymmetries of the impurity density
is known to impact significantly the neoclassical flux of impurity [4, 10, 11]. In this article a gen-
eralization of this approach is performed by including the effect of pressure anisotropy and poloidal
asymmetries in the neoclassical prediction of impurity flux. This new prediction is then convincingly
compared to results coming from the GYSELA code. It is stressed that pressure asymmetries can
lead to a significant modification of the neoclassical flux of impurities.

2 Neoclassical impurity flux in presence of large poloidal

asymmetries and pressure anisotropy

In current tokamaks, heavy impurities like tungsten are in the Pfirsch-Schlüter regime. But on
larger devices, like ITER, heavy impurities should be closer to the plateau regime due to higher
temperatures. The banana-plateau contribution of the impurity flux is expected to be linked to the
pressure anisotropy. Moreover, the poloidal asymmetry of the impurity density is known to modify
significantly (up to an order of magnitude) neoclassical flux of impurity in the Pfirsch-Schlüter regime
[4]. It is therefore natural to take into account both pressure anisotropy and poloidal asymmetries
of the impurity for the computation of the neoclassical flux of impurities.

The computation of the neoclassical impurity flux in this framework is done in three steps. First,
the perpendicular flow is expressed. An unknown function Kz (ψ, θ), related to the impurity poloidal
velocity, is then determined using the incompressibility of the flow and parallel force balance. It
leads to the expression of the impurity flux.

2.1 Structure of the impurity flow in presence of poloidal asymmetries

For the main ion species, it is assumed that there are no changes compared with the standard
neoclassical theory. In other words, poloidal asymmetries and anisotropy of the main ion species are
at their neoclassical level which is small [12, 13]. On the other hand, large poloidal asymmetries and
anisotropy are allowed for the impurity.

The parallel velocity of the impurity is required to compute the neoclassical flux. Its computation
is made in two steps. First the perpendicular flux of the impurity is computed. It is then link to the
parallel flux using the incompressibility of the flow which is imposed by the stationarity assumption.

To compute the perpendicular flux of impurity, the idea is to derive a vectorial expressions of
particle and heat fluxes. This is not obvious because of the scalar form of the gyrokinetic equation,
i.e.

∂tF̄z +
1

B∗||z
∇z ·

(
żB∗||zF̄z

)
= C

(
F̄z
)

(1)

where F̄z is the distribution function of the impurity which is considered, C is the collision operator
and B∗||z = B + mz

Ze
v‖b · (∇× b), with b = B

B
, corresponds to the Jacobian of the gyrocenter system

of coordinates. It must be kept in mind that the actual trajectories of particles differ from those
of gyrocenters by a cyclotron motion. The limit of large scale flows is now considered. It is well
described by the drift kinetic limit k⊥ρz → 0 of the gyrokinetic equation Eq.(1). At first order in
ρ?z = ρz

a
the particle velocity is of the form v = v‖b + vE + vD, where vE is the E ×B drift velocity

and vD is the sum of curvature and ∇B drift velocities. Taking the first moment of Eq.(1), one gets
∇·Γz = 0 in steady-state, where Γz = Γ‖zb+Γ⊥z. Note however that this is a flux of guiding centers.
One needs the particle flux. This is done by adding the magnetization flux, whose divergence is zero
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and does not change the conservative form ∇ · Γz = 0. Hence

Γ⊥z = NzvE +Nz 〈vD〉v −∇×
[
Nz

〈 µ

Ze
b
〉
v

]
(2)

where µ =
mzv2⊥

2B
is the adiabatic invariant and the bracket is an average over the distribution function.

〈...〉v =
1

Nz

ˆ
d3vF̄z...

The perpendicular flow associated with the curvature drift plus magnetization term is

ΓD
⊥ = Nz 〈vD〉v =

b

ZeB
×
[
∇P⊥z + Π‖zκ

]
where κ = −b× (∇× b) is the field curvature, Π‖z = P‖z − P⊥z represents the pressure anisotropy,
with P‖z =

´
d3vF̄zmzv

2
‖ and P⊥z =

´
d3vF̄zµB . This perpendicular flux ΓD

⊥ can be reexpressed as
the divergence of a CGL stress tensor

Πz,ij =

ˆ
d3vF̄zmzvivj = P‖zbibj + P⊥z (δij − bibj)

by noting that

∇ ·Πz = ∇P⊥z + Π‖zκ+

[
(B · ∇)

(
Π‖z
B

)]
b (3)

so that

Γz = Γ‖zb +Nz
b

B
×∇φ+

b

ZeB
×∇ ·Πz (4)

Noting that for an axisymmetric problem, ∇φ = ∂φ
∂ψ
∇ψ+ ∂φ

∂θ
∇θ and ∇P⊥z = ∂P⊥z

∂ψ
∇ψ+ ∂P⊥z

∂θ
∇θ, and

using the identity
b

B
×∇ψ = I

b

B
−R2∇ϕ

where I is the current and R the major radius, one can express the impurity flux as follow

Γz = KzB−NzΩzR
2∇ϕ+

Π‖z
ZeB

(b× κ) +

(
Nz

∂φ

∂θ
+

1

Ze

∂P⊥z
∂θ

)
b

B
×∇θ

All quantities depend on (ψ, θ) and the following definitions have been introduced

Ωz =
∂φ

∂ψ
+

1

NzZe

∂P⊥z
∂ψ

Kz =
Γ‖z
B

+
I

B2
NzΩz

2.2 Determination of the poloidal variation of Kz

The poloidal variation of Kz(ψ, θ) is constrained by the incompressibility of the flow ∇ · Γz = 0,
which reads

B · ∇Kz +∇ · Γ̃z = 0 (5)

where

Γ̃z =
Π‖z
ZeB

(b× κ) +

(
Nz

∂φ

∂θ
+

1

Ze

∂P⊥z
∂θ

)
b

B
×∇θ
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The expression of the divergence of a vector V that does not depend on ϕ is

∇ · V
B · ∇θ

=
∂

∂ψ

(
V · ∇ψ
B · ∇θ

)
+

∂

∂θ

(
V · ∇θ
B · ∇θ

)
Using the following relations

(b× κ) · ∇ψ = IB · ∇θ ∂
∂θ

(
1

B

)
(b× κ) · ∇θ = −IB · ∇θ ∂

∂ψ

(
1

B

)
(B×∇θ) · ∇ψ = −IB · ∇θ

one then obtains

∇ · Γ̃z

B · ∇θ
=

∂

∂θ

[
1

B

∂

∂ψ

(
IΠ‖z
ZeB

)]
− ∂

∂ψ

{
I

ZeB2

[
NzZe

∂φ

∂θ
+
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]}
(6)

At this stage, one can note that in the absence of poloidal asymmetries (∂θ = 0) and pressure
anisotropy

(
Π‖z = 0

)
, ∇ · Γ̃z = 0. Therefore Kz depends on ψ only as in the literature [4]. For

low Mach number, the parallel force balance reads

B · ∇θ
[
NzZe

∂φ

∂θ
+
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]
= BR‖zi (7)

Then putting together Eq.(5), (6) and (7) an equation for Kz can be derived

∂

∂θ

[
Kz +

1

B

∂

∂ψ

(
IΠ‖z
ZeB

)]
=

∂

∂ψ

[
IR‖zi

ZeB (B · ∇θ)

]
(8)

Note that an integration on θ of Eq.(8) leads to
∂Γψz,neo
∂ψ

= 0, where the neoclassical impurity flux is
given by

Γψz,neo = − I

Ze

〈
R‖zi
B

〉
ψ

(9)

and the bracket denotes the flux surface average:

〈f〉ψ =

¸
dθdϕ
B·∇θf¸
dθdϕ
B·∇θ

The condition
∂Γψz,neo
∂ψ

= 0 may be surprising at first sight. But on second thoughts, this condition
is natural. Indeed, in the approach considered, there is no source of particles, no turbulence and a
steady state solution is considered. The neoclassical flux of impurity is therefore equal to a constant.
To alleviate this conceptual paradox, one should keep in mind that time derivatives are neglected
in the neoclassical theory because they typically scale as the inverse of the confinement time which
is much larger than any other typical time of the problem. But rigorously, time derivatives are not
equal to zero.

Unfortunately, the analytical solution of Eq.(8) is not trivial as R‖zi is an implicit function of
Kz. To continue the analytical derivation, the rhs of Eq.(8) is neglected. This is the equivalent of
neglecting locally the collisional contribution in the parallel force balance Eq.(7). It can be shown
that this approximation is valid if Z

√
εqν?,i � 1 where ε = r

R0
is the inverse aspect ratio, q the safety

factor and ν?,i the collisionality of the main ion species. This approximation is therefore valid for
light impurities or if the collisionality of the main ion species is low enough. Note that even though
the collision friction is neglected locally in the parallel force balance Eq.(7), it has to be kept in its
flux surface average version, for the expression of the neoclassical flux. It is quite remarkable that
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no solubility problem arises when the friction force is neglected locally in Eq.(7). The function Kz

then reads Kz(ψ, θ) = Kz0(ψ) +Kz1(ψ, θ), where

Kz0 = 〈Kz〉ψ

Kz1 = − 1

B

∂

∂ψ

(
IΠ‖z
ZeB

)
+

〈
1

B

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

(10)

2.3 Neoclassical flux

In the case of a trace
(
NzZ2

Ni
� 1

)
and heavy impurity

(
mz
mi
� 1

)
, it can be shown that the friction

force reads (proof is in appendix)

R‖zi = mzνzi

{
−NZ

Ti
eB

I

Lψ
+B (Nzu−Kz)

}
(11)

where 1
Lψ

= 1
Lψ,i

+ 1
Lψ,z

with 1
Lψ,i

= ∂ lnPi
∂ψ
− 3

2
∂ lnTi
∂ψ

and 1
Lψ,z

= − 1
TiZNz

∂P⊥z
∂ψ

. Lψ,i is a flux function

whereas Lψ,z is a function of ψ and θ. In Eq.(11) u is a flux function given by

u =

(
kneo −

3

2

)
I

e 〈B2〉ψ
∂Ti
∂ψ

(12)

This quantity is closely link to the poloidal rotation of the main ion species as can be seen from the
presence of kneo in its expression. If the main ion is in the banana regime and large aspect ratio are
considered ε� 1, then kneo ' 1.17 and u takes the limit given in the literature [14] u ' −0.33 I

e〈B2〉
∂Ti
∂ψ

.

This value is used in the following. Note that νzi is also a flux function. Using Eq.(7), while keeping
the friction force leads to the solubility constraint〈

BR‖zi
Nz

〉
ψ

=

〈
B · ∇θ
Nz

[
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]〉
ψ

(13)

Combining Eq.(10), Eq.(11) and Eq.(13), one finds

Kz0 = −TiI
e

〈
1

Lψ

〉
ψ

〈
B2

NZ

〉−1

ψ

+ u
〈
B2
〉
ψ

〈
B2

Nz

〉−1

ψ

+

〈
B

Nz

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

〈
B2

Nz

〉−1

ψ

−
〈

1

B

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

− 1

mzνzi

〈
B · ∇θ
Nz

[
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]〉
ψ

〈
B2

Nz

〉−1

ψ

(14)

This expression ofKz0 can then be plugged into the friction force to calculate the neoclassical impurity
radial flux Eq.(9):

Γψz,neo = Γψz,BP+ Γψz,PS (15)

Γψz,BP = − I

Ze

1〈
B2

Nz

〉
ψ

〈
B · ∇θ
Nz

[
∂P⊥z
∂θ

+B
∂

∂θ

(
Π‖z
B

)]〉
ψ

(16)

5



Γψz,PS =
I

Ze
mzνzi

Tie I

Lψ,i

〈Nz

B2

〉
ψ

− 1〈
B2

Nz

〉
ψ

− u
〈Nz〉ψ −

〈B2〉ψ〈
B2

Nz

〉
ψ

 (17)

+
TiI

e

〈 Nz

B2Lψ,z

〉
ψ

−
〈

1

Lψ,z

〉
ψ

1〈
B2

Nz

〉
ψ

−〈 1

B

∂

∂ψ

(
IΠ‖z
ZeB

)〉
ψ

+

〈
B
Nz

∂
∂ψ

(
IΠ‖z
ZeB

)〉
ψ〈

B2

Nz

〉
ψ


Eq.(16) can be seen as a modification of the banana-plateau flux by poloidal asymmetries. Note

that it is independent of the interspecies collisionality and therefore dominates for low collisionality
regimes.

The first and second terms of Eq.(17) are identical to Eq.(10) of [4] for which only poloidal
density asymmetries are considered. The third term corresponds to a simple diffusion which is often
neglected but can become important when impurity peaking is strong. The last two terms are entirely
controlled by Kz1, and represent a modification of the friction force due to the impurity pressure
anisotropy.

3 Comparison with results from gyrokinetic simulations

The goal of this section is to assess the relative importance of the various contributions in the
neoclassical prediction derived in the previous section Eq.(15) using the results of a simulation
performed with the GYSELA code.

3.1 Choice of the simulation parameters

For this simulation, the main ion species is deuterium and the impurity is tungsten with a fixed

charge state (Z = 40) in the trace limit
(
NzZ2

Ni
∼ 10−3

)
. The electron response is adiabatic. The

size of the machine simulated is fixed by the dimensionless parameter ρ?i = ρi
a

= 1
190

where ρi is the
Larmor radius of a thermal ion at mid-radius. GYSELA uses a simplified geometry with circular
concentric magnetic surfaces characterized by an inverse aspect ratio R0

a
= 4.4 and a safety factor

profile q (r) = 1.5 + 1.3 exp
[
2.5 log

(
r
a

)]
. The two ion species are initiated with identical density and

temperature profiles d lnNs(r)
dr

= −2.2 cosh−2
[
25
(
r
a
− 0.5

)]
and d lnTs(r)

dr
= −6 cosh−2

[
25
(
r
a
− 0.5

)]
.

To approach a statistical steady state, an isotropic source of energy is added [6]. Its amplitude
depends only on the radius. Finally, the outer boundary condition is ensured via a penalization
technique [9]. More precisely, a krook term with a radial dependence is applied on the distribution
function. It allows to extract the energy coming from the heat flux without injecting/removing
particles.

The time step of the simulation is ∆tωci = 16 and is chosen to resolve accurately both turbulent
and collisional time scales. A high spatial resolution is needed bacause the Larmor radius of the

impurity is smaller than the one of the main ion ρz = 1
Z

√
mz
mi
ρi. Because of this high resolution and

the presence of two species, the numerical cost of this simulation is very large. In order to reduce
this cost, the following strategy has been used: in a first stage, the code is first run without impu-

rity until statistical steady-state with a resolution of
(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
= (256, 512, 32, 127, 64)

which is enough for the main ion species. A second step is then performed, with a resolution in-

creased in view of the later impurity introduction
(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
= (512, 1024, 32, 127, 64).

This step, performed without impurities, is done to allow for some reorganization of the system when
numerical resolution is increased. Eventhough this reorganization is rather short, it is numerically
cheaper to perform it in absence of impurities. Finally, the impurity is added with the same resolu-

tion
(
Nr, Nθ, Nϕ, Nv‖ , Nµ

)
= (512, 1024, 32, 127, 64) when statistical steady-state is reached without
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Figure 1: Radial variation of collisionality of the impurity (blue). The limit between plateau and
Pfirsch-Schlüter regime is represented by the black line

impurities. Despite this strategy, the convergence of a simulation with impurity toward a statistical
steady-state still requires several millions of CPU hours.

It has therefore been decided to focus on a single well resolved simulation for a quantitative
comparison between theory and simulation. In GYSELA, the collisionality of the main ion species
at mid-radius ν?i

(
r
a

= 0.5
)

is a free parameter. For an efficient test of the theory, the collisionality
of the main ion species has been fixed at ν?i

(
r
a

= 0.5
)

= 10−1. Indeed with this choice, the main
ion species is in the banana regime in the whole domain whereas the collisionality of the impurity
is close to the plateau/Pfirsch-Schlüter transition allowing to test both the banana/plateau Eq.(16)
and the Pfirsch-Schlüter Eq.(17) predictions with a single simulation. The collisionality of tungsten
in the considered simulation is given in the Fig.1. The impurity is in the Pfirsch-Schlüter regime in
all the simulation domain but in the region ranging between 0.15 ≤ r

a
≤ 0.4 where it is close to the

plateau regime.
Despite the choice to focus on a single simulation, this simulation is not in the statistical steady-

state and departure from stationarity is expected to play a role in particular in the parallel force
balance Eq.(7). As the model derived in the previous section is strictly valid only for steady-state, a
perfect match between the neoclassical flux given by the code and the theoretical prediction is not
expected. Nevertheless, it turns out that the flux predicted by the model presented in section 2.3
gives the right order of magnitude for the impurity flux coming from GYSELA as will be discussed
hereafter. Note that the cost of this single simulation is approximately 3 millions of CPU hours.
This cost did not allow a large scan of parameters.

3.2 Definitions of fluxes

The flux of particles coming from GYSELA does not make any difference between neoclassical and
turbulent fluxes as both are treated self-consistently within the code. This observation raises the
question of how to separate the two contributions a posteriori. For this purpose, the definitions
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Figure 2: Radial variation of the impurity fluxes. These fluxes are time averaged on approximately
3000ωci.

proposed by Esteve et al. [7] are used:

〈Γneos · ∇ψ〉ψ =

〈ˆ
d3vf̄s

(
vD,s + v̄n=0

E

)
· ∇ψ

〉
ψ

(18)

〈
Γturbs · ∇ψ

〉
ψ

=

〈ˆ
d3vf̄sv̄

n 6=0
E · ∇ψ

〉
ψ

(19)

where v̄n=0
E = 〈v̄E〉ϕ and v̄n6=0

E = v̄E − v̄n=0
E . The definition of these fluxes is not unique and some

authors call “turbulent” the flux associated with the E×B drift and “neoclassical” the flux associated
with the magnetic field drift. These fluxes are defined as

〈
ΓDs · ∇ψ

〉
ψ

=

〈ˆ
d3vf̄svD,s · ∇ψ

〉
ψ

(20)

〈
ΓEs · ∇ψ

〉
ψ

=

〈ˆ
d3vf̄sv̄E · ∇ψ

〉
ψ

(21)

Fig.2 depicts the different fluxes for the impurity in the simulation presented in the previous
section. There is a clear difference between the definitions of the turbulent and neoclassical fluxes
(solid lines) and the definitions sometimes found in the literature (dotted lines). This observation
means that the axisymmetric modes of the electric potential actively contribute to the impurity
flux. Note also that turbulent and neoclassical fluxes are of the same order of magnitude, although
sometimes of different signs. The overall transport of tungsten is mainly inward in this simulation.

For a fair comparison with the theoretical prediction of the neoclassical flux derived in the section
2, it is mandatory to use the definition given in this thesis Eq.(18). This comparison is discussed in
section 3.4.
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Figure 3: Left: poloidal asymmetry of the impurity density. Right: reconstruction of the poloidal
asymmetry with δ (ψ) and ∆ (ψ)

3.3 Poloidal asymmetries and pressure anisotropy

In the considered GYSELA simulation, the poloidal asymmetries are generated by turbulence. Indeed
the only source used is a heat source with no poloidal dependence. The poloidal asymmetry of the
tungsten density Fig.3 is of the order of 30% and can be expressed in the form [4]

Nz = 〈Nz〉 (ψ) [1 + δ (ψ) cos θ + ∆ (ψ) sin θ]

The knowledge of δ (ψ) and ∆ (ψ) then allows one to compute the impact of density asymmetries on
the first and second terms of Eq.(17), which correspond to terms already present in the literature
[4]. Indeed, one can show that these terms take the following simple expressions [4]:

〈
Nz

B2

〉
ψ

− 1〈
B2

NZ

〉
ψ

=
〈Nz〉ψ
〈B2〉ψ

[
2ε (ε+ δ) +

δ2 + ∆2

2

]
(22)

〈Nz〉ψ −
〈B2〉ψ〈
B2

Nz

〉
ψ

= 〈Nz〉ψ
[
εδ +

δ2 + ∆2

2

]
(23)

In these expressions, the contribution of density poloidal asymmetry is contained only in the δ
and ∆ terms. Fig.4 shows the radial shape of Eq.(22) and Eq.(23) for the considered GYSELA
simulation. It readily appears that both expressions remain close to their value at δ = ∆ = 0,
i.e. in the absence of any poloidal asymmetry. More precisely, the relative impact of the poloidal
asymmetry of density compared with the one of the magnetic field is moderate in the deep core and
weak in the outer part of the simulation.

Fig.5 shows that the poloidal asymmetries of both parallel and perpendicular pressure are signif-
icant in the inner part of the simulation where the banana/plateau contribution is expected to be
important (0.15 ≤ r

a
≤ 0.4).

3.4 Comparison between GYSELA results and theoretical predictions

An important point for the comparison between the theoretical prediction and the results of the
GYSELA code is the value of the screening factor. From the theoretical point of view, the Pfirsch-
Schlüter component of the screening factor should be HPS

theo = −1
2
. This can be seen in the expression

9



Figure 4: Radial shape of Eq.(22) in red and Eq.(23) in green. The blue curve represents the radial
shape of Eq.(22) in the absence of poloidal asymmetry of the impurity density, i.e. for δ = ∆ = 0.

Figure 5: Left: parallel pressure. Middle: perpendicular pressure. Right: CGL tensor divided by the
magnetic field.
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of 1
Lψ,i

= ∂ lnPi
∂ψ
− 3

2
∂ lnTi
∂ψ

= ∂ lnNi
∂ψ
− 1

2
∂ lnTi
∂ψ

. In this expression, there is a factor +1 coming from the

difference of velocities (∂ lnPi
∂ψ

) and a factor −3
2

coming from the main ion parallel heat flux (−3
2
∂ lnTi
∂ψ

).

From the standard neoclassical theory, the main ion parallel heat flux is expected to be (Eq.(18) of
[8]):

q‖i =

〈
Bq‖i

〉
ψ
B

〈B2〉ψ
− 5

2

NiTi
e

∂Ti
∂ψ

I (ψ)

(
1

B
− B

〈B2〉ψ

)
(24)

In the considered simulation, the parallel heat flux coming from GYSELA is not in agreement
with the theoretical prediction Eq.(24). More precisely, the poloidal shape is in fair agreement with
the theoretical prediction but the amplitude is approximately half the one predicted. The effect
of this disagreement is to reduce drastically the thermal screening factor of the Pfirsch-Schlüter
component HPS

GY S ' 0. This disagreement between the predicted parallel heat flux and the one
coming from the code had already been observed in a pure neoclassical case [8] but its origin remains
unclear. A remaining bug in the advection part of the code appears unlikely given the numerous
tests and benchmarks already successfully performed [6], although it cannot be ruled out completly.
Alternatively, the discrepancy could be due to some shortcomings of the theoretical prediction. In
the rest of this section, two distinct predictions are then used for the Pfirsch-Schlüter contribution of
the flux Eq.(17). The first one, labeled with H = −0.5, is the one coming from the theory, i.e. with

1
Lψ,i

= ∂ lnPi
∂ψ
− 3

2
∂ lnTi
∂ψ

= ∂ lnNi
∂ψ
− 1

2
∂ lnTi
∂ψ

. The second, labeled H = 0, is the same prediction but using

a different definition of the ion gradient contribution 1
Lψ,i

= ∂ lnPi
∂ψ
− ∂ lnTi

∂ψ
= ∂ lnNi

∂ψ
. This distinction

makes a huge difference in the outer part of the simulation, as discussed in the following.
Fig.6 shows the radial dependence of the banana/plateau contribution Eq.(16) (green curve) and

the Pfirsch-Schlüter contribution Eq.(17) with the two definitions for Lψ,i. The Pfirsch-Schlüter
prediction with H = −1

2
is depicted in red and the one with H = 0 is depicted in blue. From this

figure, it is clear that the banana/plateau contribution is large where the impurity is close to the
plateau regime (0.15 ≤ r

a
≤ 0.4) as expected . For the Pfirsch-Schlüter component, there is a large

impact of the screening factor, especially in the outer part of the simulation.
The final test consists in comparing the neoclassical flux coming from GYSELA with the neoclas-

sical prediction Eq.(15). The definition of the neoclassical flux is given in Eq.(18).The comparison
between the GYSELA results (black curve) and the theoretical prediction (red and blue curves) is
depicted on Fig.7. The right order of magnitude is recovered with a vanishing thermal screening
H = 0 (blue curve) as expected from the previous discussion.

4 Generation of poloidal asymmetries

In experiments, the poloidal asymmetries are often induced by external sources via temperature
anisotropies or high Mach numbers. A way to appreciate how heating systems can generate poloidal
asymmetries is to consider the following formula [3, 10]:

Nz (ψ, θ)

N?
z (ψ)

=
T⊥,z (ψ, θ)

T ?⊥,z (ψ)
exp

{
−eZ [φ (ψ, θ)− φ? (ψ)]

T‖,z (ψ)
+

mzΩ
2
z

2T‖,z (ψ)

[
R2 (ψ, θ)−R?2 (ψ)

]}
(25)

where the quantities with a star are taken at the outer mid-plane f ? (ψ) = f (ψ, θ = 0). In this
formula, a rigid body like rotation is assumed for the impurity Ωz. In Eq.(25), the poloidal asymmetry
of the perpendicular temperature is associated with anisotropy.

T⊥,z (ψ, θ)

T ?⊥,z (ψ)
=

[
T ?⊥,z (ψ)

T‖,z (ψ)
+

(
1−

T ?⊥,z (ψ)

T‖,z (ψ)

)
B? (ψ)

B (ψ, θ)

]
(26)

Eq.(25) clearly shows that toroidal rotation can generate poloidal asymmetry. This is in particular
the case when Neutral Beam Injection (NBI) is used for current generation [15]. The combination
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Figure 6: Components of the neoclassical flux. The banana/plateau contribution Eq.(16) is repre-
sented in green. The Pfirsch-Schlüter contribution Eq.(17) with H = −1

2
and H = 0 are depicted

respectively by the red and the blue curves. The various profiles, including their possible asymme-
tries, are taken from the GYSELA simulation.

Figure 7: Radial comparison of the theoretical predictions of the neoclassical radial impurity flux
(H = −1

2
in red, H = 0 in blue) with the neoclassical flux coming from the GYSELA code (black).
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Figure 8: Amplitude of the non zonal electric potentital in the considered GYSELA simulation

of Eq.(25) and Eq.(26) indicates that anisotropic heating like the one provided by Ion Cyclotron
Resonance Heating (ICRH) can also produce a poloidal asymmetry [16, 17].

In the simulation presented in the previous section, an isotropic heat source with no poloidal
asymmetry has been used. According to Eq.(25) and Eq.(26), no poloidal asymmetry is expected
from this source. Moreover, neoclassical physics predicts weak poloidal asymmetries [12, 13]. The
large poloidal asymmetries observed in section 3.3 are therefore induced by turbulence.

From Eq.(25), it is clear that even weak poloidal asymmetries of the electric field can lead to
significant poloidal asymmetries for heavy impurities due to their large charge number Z. Fig.8
shows that in the considered simulation, the poloidal asymmetry of the electric potential is of the
order of e(φn=0−φm=0,n=0)

T
∼ 1% where m and n are respectively the poloidal and toroidal mode

numbers. As a reminder, the amplitude of the density asymmetry for the impurity in the considered
simulation is of the order of 30% (Fig.3). As the charge of the impuriy is Z = 40, the right order
of magnitude of poloidal asymmetry of the impurity density is retrieved with this simple argument.
This was already observed in a previous study with the code GYSELA [7].

To quantify the relationship between electric potential and impurity poloidal asymmetries, a
numerical test has been done. The same simulation as the one presented in the previous sec-
tion has been performed except that a numerical filter removing all axisymmetric modes of the
potential with poloidal asymmetries (m 6= 0, n = 0) has been applied at each time step. Fig.9 de-
picts the poloidal asymmetry of the impurity density in both cases using the following definitions
Nz = 〈Nz〉 (ψ) [1 + δ (ψ) cos θ + ∆ (ψ) sin θ]. From this figure, it is clear that the poloidal asymmetry
of the electric field has an impact on the poloidal asymmetry of the impurity density. One should
note that there are still poloidal asymmetries of the impurity density when the axisymmetric part of
the electric field exhibits no poloidal asymmetry.

To understand how turbulence can generate poloidal asymmetries, one can use the Vlasov equa-
tion for the axisymmetric components neglecting particle trapping reads (Eq.(3) of [5]):

−i (Ω−MΩt) ḡM,Ω + ΩDz (ḡM+1,Ω − ḡM−1,Ω) = −iΩFeq,z
Teq,z

eZφ̄M,Ω − [˜̄vE · ∇˜̄g]MΩ (27)

where Ω is the frequency of the mode which is considered, Ωt =
v‖
qR0

is the transit frequency of passing

particles, ΩDz = KrρzvTz
4R0

(
2
v2‖
v2Tz

+
v2⊥
v2Tz

)
is the frequency associated with the magnetic drift, ḡ is the

non adiabatic part of the perturbed distribution function of the impurities. The tilde stands for
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Figure 9: Comparison of density poloidal asymmetry with (solid line) or without (dotted line) poloidal
asymmetry of electric potential. A time average on several turbulence correlation time has been
performed.

the non axisymmetric component, i.e. ˜̄g = ḡ − 〈ḡ〉ϕ. Here M designates the poloidal mode number
of the axisymmetric mode (n = 0) which is considered. It is clear from Eq.(27) that a poloidal
asymmetry of the distribution function, for instance ḡ1,Ω can be pumped by the zonal component
M = 0 due to the compressibility of the flow or directly generated by a poloidal asymmetry of
the turbulent Reynolds stress [˜̄vE · ∇˜̄g]MΩ due to turbulence ballooning (M 6= 0). It is shown in [5]
that the pumping by the zonal component is more efficient for large frequencies and gives a sin θ
dependence for the M = ±1 mode. On the other hand, the generation of the poloidal asymmetry
by the ballooning of the turbulent Reynolds stress dominates for lower frequencies and gives a cos θ
dependence.

In current tokamaks, poloidal asymmetries are often externally imposed by the use of NBI and/or
ICRH systems. But the importance of the turbulent generated poloidal asymmetries over the one
externally imposed should increase with the size of the machine. Moreover, ITER will use mainly
ECRH system which are known to produce less poloidal asymmetries. Therefore, the turbulent
generation of poloidal asymmetry, presented in this section, could be competitive or even dominant
in next step devices.

Note that turbulence can also modify the Pfirsch-Schlüter contribution of the impurity flux
Eq.(17) via the modification of u Eq.(12). Indeed, u is directly tied to the main ion poloidal ro-
tation. This rotation can differ from its neoclassical prediction due to the presence of turbulence
[18]. In the simulation considered in the previous section, this effect is small due to the small prefactor
in front of the u contribution Eq.(23) as shown in Fig.4.

5 Conclusion

The impact of both poloidal asymmetry and anisotropy of impurity pressure on the neoclassical
impurity flux has been derived analytically. These corrections can reveal important when considering
realistic cases, where pressure poloidal asymmetry and anisotropy can be generated by turbulence
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and/or sources. In particular, accounting for these corrections to the standard neoclassical prediction
could reveal critical in the perspective of impurity control by external heating systems.

From the theoretical stand point, this work provides a clear mechanism for synergy between
neoclassical and turbulent processes in the context of impurity transport. Importantly, these pre-
dictions are found in fair agreement with a dedicated and highly resolved GYSELA simulation –
featuring both turbulent and neoclassical transports, where the correction terms appear to have a
major contribution.
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Appendix: Derivation of the collisional parallel momentum

exchange for trace and heavy impurities

The goal of this appendix is to derive Eq.(11) and Eq.(12). The derivation begins with the expres-

sion of the collisional exchange of momentum in the case of trace
(
NzZ2

Ni
� 1

)
and heavy impurity(

mz
mi
� 1

)
:

R‖zi = −Nzmzνzi

[
V‖z − V‖z +

3

5

q‖i
NiTi

]
(28)

Moreover, the parallel velocity of any species can be expressed in the form

V‖s =
Ks

Ns

B − IΩs

B
(29)

with Ωs = ∂φ
∂ψ

+ 1
NzeZ

∂P⊥s
∂ψ

for any species s. In the same spirit, the parallel heat flux of the main ion
takes the form

q‖i
NiTi

= LiB −
5

2

I

eB

∂Ti
∂ψ

(30)

where Li is a flux function. Substituting Eq.(29) and Eq.(30) in Eq.(28), one gets directly Eq.(11)

R‖zi = mzνzi

{
−NZ

Ti
eB

I

Lψ
+B (Nzu−Kz)

}
at the condition to define 1

Lψ
= 1

Lψ,i
+ 1

Lψ,z
with 1

Lψ,i
= ∂ lnPi

∂ψ
− 3

2
∂ lnTi
∂ψ

and 1
Lψ,z

= − 1
TiZNz

∂P⊥z
∂ψ

and

u =
Ki

Ni

− 3

5
Li

The second step of this appendix is to prove the expression of u Eq.(12). The first step is to compute
Ki
Ni

, to do so we use the vector expression of the ion velocity

V i =
Ki

Ni

B − ΩiR
2∇ϕ (31)
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The poloidal velocity of the main ion is kown in the neoclassical theory vθ = kneo (ν?, ε)
∇T
eB

. The
poloidal projection of Eq.(31) then leads to

Ki

Ni

= kneo
I

e 〈B2〉ψ
∂Ti
∂ψ

Li can be computed directly with Eq.(24)

Li =

〈
B

q‖i
NiTi

〉
ψ

〈B2〉ψ
− 5

2

I

e 〈B2〉ψ
∂Ti
∂ψ

It has been showned [19] that
〈
B

q‖i
NiTi

〉
ψ
∼
√
εLi. Then at lowest order in ε, Eq.(12) is retrieved

u =

(
kneo −

3

2

)
I

e 〈B2〉ψ
∂Ti
∂ψ

References

[1] E. Joffrin, M. Baruzzo, M. Beurskens, C. Bourdelle, S. Brezinsek, J. Bucalossi, P. Buratti,
G. Calabro, C.D. Challis, M. Clever, J. Coenen, E. Delabie, R. Dux, P. Lomas, E. de la Luna,
P. de Vries, J. Flanagan, L. Frassinetti, D. Frigione, C. Giroud, M. Groth, N. Hawkes, J. Ho-
birk, M. Lehnen, G. Maddison, J. Mailloux, C.F. Maggi, G. Matthews, M. Mayoral, A. Meigs,
R. Neu, I. Nunes, T. Puetterich, F. Rimini, M. Sertoli, B. Sieglin, A.C.C. Sips, G. van Rooij,
I. Voitsekhovitch, and JET-EFDA Contributors. First scenario development with the jet new
iter-like wall. Nuclear Fusion, 54(1):013011, 2014.

[2] T Pütterich, R Dux, R Neu, M Bernert, M N A Beurskens, V Bobkov, S Brezinsek, C Challis,
J W Coenen, I Coffey, A Czarnecka, C Giroud, P Jacquet, E Joffrin, A Kallenbach, M Lehnen,
E Lerche, E de la Luna, S Marsen, G Matthews, M-L Mayoral, R M McDermott, A Meigs,
J Mlynar, M Sertoli, G van Rooij, the ASDEX Upgrade Team, and JET EFDA Contributors.
Observations on the w-transport in the core plasma of jet and asdex upgrade. Plasma Physics
and Controlled Fusion, 55(12):124036, 2013.

[3] R. Bilato, O. Maj, and C. Angioni. Modelling the influence of temperature anisotropies on
poloidal asymmetries of density in the core of rotating plasmas. Nuclear Fusion, 54(7):072003,
2014.

[4] C Angioni and P Helander. Neoclassical transport of heavy impurities with poloidally asym-
metric density distribution in tokamaks. Plasma Physics and Controlled Fusion, 56(12):124001,
2014.

[5] P. Donnel, X. Garbet, Y. Sarazin, Y. Asahi, F. Wilczynski, E. Caschera, G. Dif-Pradalier,
P. Ghendrih, and C. Gillot. Turbulent generation of poloidal asymmetries of the electric potential
in a tokamak. Plasma Physics and Controlled Fusion, 2018.

[6] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier,
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