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Time-averaged spatially resolved measurements are used in many fields of physics to determine spatial dis-
tributions of a physical quantity. Although one could think that time-averaging suppresses all information
on time variation, there are some situations in which a link can be established between time-averaging and
time-variability. In this paper, we consider a simple system composed of a particle bunch that moves in space
without deforming, and a detector placed at a point in space. The detector continuously counts the number of
particles in its neighborhood. Upon sampling, the detector signal gives rise to a time-series with, in general,
non-vanishing variance. Time-series obtained by placing the detector at different locations can then be used
to obtain a time-average distribution of the number of particles by computing the time-average of all the
time-series. We show that there is a close relationship between this average profile and higher order statistics
of the time-series, including the variance and skewness. We also show a simple procedure by which individual
time-series can be used to determine features of the shape of the particle bunch.

I. INTRODUCTION

Spatially-resolved measurements of time-varying quan-
tities are ubiquitous in all fields of physics, from
astrophysics1,2 to plasmas3, condensed matter4 and
atomic physics5. These types of measurements are often
carried out using time-averaging methods which can be a
consequence of the detection process itself6, or a require-
ment in cases when the signal of interest is weak and, con-
sequently, the Signal-to-Noise Ratio (SNR) is low. Then,
techniques such as lock-in amplification7 must be used to
raise the SNR, effectively yielding a time-averaged result.

The ability to determine time-variations is neverthe-
less essential in a wide range of studies and applications.
For example, real-time measurements of light distortion
are routinely used to correct blurring in astronomical ob-
servations from Earth-bound telescopes8. Measurements
of wandering of a laser beam that propagates through
the atmosphere can be used to determine the strength of
atmospheric turbulence9,10. In tokamaks, the location of
mm-wave power deposition depends on wave scattering
by intermittent structures in the turbulent plasma11,12.
In all these cases, time-variations associated to time-
changing spatial distributions reveal information that,
naively, one could think would be washed away by time-
averaging.

In this paper, we show that this need not be the case.
We develop a model to study time variations of detec-
tion signals in the particular case where the spatial dis-
tribution moves as a whole within a bounded region and
without significant deformation (see Fig. 1). The ideal-
ized system is composed of a finite-sized bunch of parti-
cles and a detector placed in a particular location that
counts the number of particles in its neighborhood. Due
to the motion of the bunch, the detector measures a
time-changing signal, which upon sampling, constitutes a
Time-Series13 of the Number of detected particles (TSN).
We call the average of the TSN the Average particle

Count (AC). If we then place the detector in other lo-
cations, we obtain a collection of TSNs with location-
varying properties, among them the AC. The AC as a
function of all possible locations of the detector is re-
ferred to as Average Profile (AP), and is a proxy for
general time-averaged spatially-resolved measurements.

We show that the AP is closely related to TSN statis-
tics of higher order at each possible detector location.
In other words, knowledge of a time-averaged spatially-
resolved quantity can be used to obtain local time-
variability information. This is different from recent
studies14,15 where a theoretical framework is developed
to obtain APs from more general models of individual
bunches (including time decay) but no general relation-
ship of the AP to higher order TSN statistics is estab-
lished. It is also different from the model developed by
Taylor in his studies of turbulence in a streaming fluid16,
where it is shown that the frequency spectrum of fluctua-
tion measurements at a fixed point in space can be related
to the correlation of measurements performed simultane-
ously at two different locations joined by a streamline.
Key to this result is the assumption that there are tur-
bulent structures that are frozen into the flow17 so that
they move at the fixed stream velocity. In our model,
we have a single particle bunch whose motion cannot be
characterized by a constant velocity.

Conversely, we show that spatial information can be
obtained from local time-variability information. Indeed,
under certain conditions, features of the shape of the par-
ticle bunch can be obtained from the moments of indi-
vidual TSNs.

Our study starts in one dimension (1D). We develop
a model for the simple 1D idealized system (Sec. II) and
use it to obtain some important relations as well as ex-
pressions for the statistics of TSNs, such as the variance
and skewness. We then apply the theory to a particular
case that yields exact solutions and use them to com-
pare predictions with results from numerically-generated



2

FIG. 1. One-dimensional case. A rigid particle bunch, of
density n(x), moves along x such that at time tk its center is at
x = χk (dashed lines). A detector located at x = X counts the
number of particles within a small region of effective length
Leff (gray shade), leading to a TSN with K samples. The
mean of the TSN, 〈N(X)〉, converges to the AC at X for
sufficiently large K.

time-series. In Sec. III, we find a way to compute TSN
statistics only from knowledge of a few global parame-
ters and more general APs. We establish conditions of
validity for these results and study the effect of relaxing
some of the hypotheses. We then study how the results
change for different bunch shapes and, conversely, ex-
plore a procedure that allows determining shape features
from single-TSN statistics.

In Sec. IV, we extend the formalism to 2D. We demon-
strate the applicability of the theory to a realistic situa-
tion using as an example the propagation of fast ions in a
turbulent plasma in the TORPEX18–20 device (Sec. V).
After discussing the results, we conclude with a summary
and an outlook on possible future studies (Sec. VI).

Although we deal with particle counts and particle den-
sity profiles, the formalism developed in the paper can
be straightforwardly used to model any system where
a quantity is measured and we expect a rigid motion
of the corresponding spatial density profile. The results
may therefore find use in different fields of physics and
engineering.

II. 1D MODEL

A. Description of model

Figure 1 shows a description of our 1D model. A
bunch of N � 1 particles with density profile n(x)
moves rigidly along x. Without loss of generality, we
assume that

∫
xn(x) dx = 0 (this integral, as well as

all other integrals in this work, are understood to be
performed over all space, i.e. the interval (−∞, ∞)).
The evolution of the system is observed at K instants
t1 < t2 < ... < tk < ... < tK and, for the k-th sample,
the center of the bunch is located at x = χk. The overall
particle density distribution at time tk is then n(x− χk)
and

∫
n(x− χk) dx = N for all k.

A detector is placed at a location x = X to instan-

taneously count the number of particles near it. The
probability that a particle at x will be counted, given
that the detector is at X, is given by the response effi-
ciency L(x,X), which is assumed to be a function only
of location relative to X. Then L(x,X) = L(x−X), and
0 ≤ L(x−X) ≤ 1, with 0 equivalent to no response and
1 to full efficiency. We assume that

∫
L(x) dx ≡ Leff is

finite. The number of particles counted by the detector
in sample k (time tk) is then

Nk(X) =

∫
n(x− χk)L(x−X) dx

=

∫
n(X + u− χk)L(u) du (1)

where u is just a dummy integration variable. The col-
lection {Nk(X)} ≡ {N1(X), N2(X), ... , NK(X)} of all
K samples of Nk(X) is a TSN at detector location X.

From Eq. (1) one can see that
∫
Nk(x) dx = LeffN for

all k. We define the normalized detected bunch profile
nL(x) as

nL(x) ≡ 1

LeffN

∫
n(x+ u)L(u) du , (2)

such that
∫
nL(x) dx = 1 and Nk(X) = N Leff nL(X −

χk), and use this definition to find the average number of
particles detected at X, 〈N(X)〉. This is accomplished
by computing the mean of all samples of {Nk(X)}:

〈N(X)〉 ≡ 1

K

K∑
k=1

Nk(X)

=
LeffN

K

K∑
k=1

nL(X − χk) . (3)

When regarded as a function of all x, 〈N(x)〉 is the AP
in 1D.

In Eq. (3) one can consider {χk} as a collection of K
instances of a random variable χ that follows some Prob-
ability Density Function (PDF) f(x). Given that21–23

1

K

K∑
k=1

nL(X − χk)
K→∞

= E[nL(X − χ)]

where E[χ] is the expected value of χ and, therefore24,
E[nL(X − χ)] =

∫
nL(X − x) f(x) dx, we obtain

〈N(X)〉 K→∞= LeffN

∫
nL(X − x) f(x) dx . (4)

The PDF f(x) can then be understood as the number
of times that the center of the bunch visits the interval
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(x, x + dx), compared to all other locations, when suffi-
ciently many observations are considered. As such, f(x)
encapsulates the information of the motion of the bunch.

We now define the function

m(X) ≡ 〈N(X)〉
LeffN

(5)

noticing that m(X) ≥ 0 for all detector locations X and
that

∫
m(x) dx = 1. Then, in the limit of very large K,

Eq. (4) can be written as

m(X) =

∫
nL(X − x) f(x) dx . (6)

Equation (6) is an interesting relation, as it links a
temporal average of the local quantity m(X) to a spatial
average of nL(x) (through f(x)). It will be shown, in
Secs. II B, III, that Eq. (6) provides a way to determine
f from knowledge of nL and the AP.

One can find expressions for other moments of the TSN
in a similar way. For any real q ≥ 1,

〈Nq(X)〉 =
1

K

K∑
k=1

[Nk(X)]
q

K→∞
= (LeffN)

q
∫

[nL(X − x)]
q
f(x) dx .

The PDF f(x) is the same as in Eq. (6), as it is related
to the same random variable χ. Then, defining

mq(X) ≡ 〈N
q(X)〉

(LeffN)
q , (7)

we have

mq(X) =

∫
[nL(X − x)]

q
f(x) dx . (8)

Notice that m1(x) ≡ m(x). Notice also that the integral
of mq(x) can in general be different from 1 for q > 1.
The choice q = 2 allows one to find an expression for the
variance of {Nk(X)} which, for large K, needs no bias
correction21:

Var [{Nk(X)}] =
〈
N2(X)

〉
− 〈N(X)〉2

= (LeffN)
2
(
m2(X)−

(
m(X)

)2)
.

(9)

The cases q = 3 and q = 2 allow us to obtain an ex-
pression for the skewness25 S of {Nk(X)}, again assuming
large K:

S [{Nk(X)}] =
m3(X)− 3m(X)m2(X) + 2 (m(X))

3(
m2(X)− (m(X))

2
)3/2

.

(10)

A similar procedure can be followed to find expressions
relating other statistics of the TSN to the functions mq in
the limit of large K. As shown in Sec. III, it is sometimes
possible to find approximations of the mq and compute
the Right Hand Side (RHS) of Eqs. (4, 9, 10) using known
parameters to find predictions of the TSN statistics on
the Left Hand Side (LHS). Under certain conditions, it
is even possible to find the mq in closed form. The latter
case is explored in Sec. II B.

We can also find the covariance21,24 of TSNs obtained
simultaneously using two identical detectors at locations
X1 and X2:

Cov [{Nk(X1)} , {Nk(X2)}] =

=
1

K

K∑
k=1

(
Nk(X1)− 〈N(X1)〉

)(
Nk(X2)− 〈N(X2)〉

)
=

(LeffN)2

K

(
K∑
k=1

nL(X1 − χk)nL(X2 − χk)

)
− 〈N(X1)〉 〈N(X2)〉 .

We then get, for large K,

Cov [{Nk(X1)} , {Nk(X2)}]
(LeffN)2

(11)

=

∫
nL(X1 − x)nL(X2 − x) f(x) dx−m(X1)m(X2) .

B. Results using Gaussian profiles

The formalism developed in Sec. II A can be applied
to a situation in which exact analytical solutions can be
obtained.

We consider a particle bunch with a Gaussian-shaped
density profile of width wn:

n(x) =
N√

2πw2
n

e
− x2

2w2
n .

Then
∫
xn(x) dx = 0 and

∫
n(x) dx = N as required

in Sec. II A. Next, we assume that the detector has
a Gaussian-shaped response of width wL and peak ef-
ficiency (equal to 1) at x = 0:

L(x) = e
− x2

2w2
L .

We choose wL = Leff/
√

2π so that
∫
L(x) dx = Leff.

Defining the following notation for the Gaussian (nor-
malized) function,

G(x; c,w2) ≡ 1√
2πw2

e−
(x−c)2

2 w2 , (12)



4

we can write n(x)/N = G(x; 0,w2
n) and L(x)/Leff =

G(x; 0,w2
L). Replacing these expressions into Eq. 2 we

obtain a Gaussian nL(x):

nL(x) =

∫
G(x+ u; 0,w2

n) ·G(u; 0,w2
L) du

= G(x; 0,w2
n + w2

L) .

The width of nL(x) is wnL =
√

w2
n + w2

L =√
w2
n + L2

eff/(2π). As one would expect, the detector
widens the observed bunch profile. At this point, it is
worthwhile stressing that nL is not a PDF as it is not
associated with any random variable on its own. It is
rather just a Gaussian-shaped function.

We assume now that the AP (i.e. 〈N(x)〉 in all x) has
been determined, possibly from experiments, to also be
Gaussian-shaped with width wm and mean location cm.
From Eq. (5),

〈N(X)〉 = LeffN m(X) , (13)

so m(X) = G(X; cm,w
2
m). According to Eq. (6) we must

then have

G(X; cm,w
2
m) =

∫
G(X − x; 0,w2

nL) f(x) dx .

This equation is satisfied with f(x) = G(x; cm,w
2
m −

w2
nL). Since f(x) is a PDF, this result shows that the χk

are instances of a Normal random variable with mean
µf = cm and standard deviation σf =

√
w2
m − w2

nL,
which is well defined since the width of the average pro-
file cannot be smaller than the width of the bunch profile.
This procedure exemplifies how, as discussed in Sec. II A,
knowledge of nL and the AP can be used to determine
f .

The preceding result is, in fact, very convenient as we
can now replace nL and f in Eq. (8) and, after some
algebra (see App. A), express the mq in terms of m as

mq(X) =

√
sq (2πw2

m)
sq−1

q (2πw2
nL)

q−1

(
m(X)

)sq
, (14)

where we have defined

sq ≡
(

1− w2
nL

w2
m

(
1− 1

q

))−1

. (15)

From Eqs. (9, 14), the TSN variance satisfies

Var [{Nk(X)}]
(LeffN)

2 =

√
s2 (2πw2

m)
s2−1

4πw2
nL

(
m(X)

)s2−(m(X)
)2

.

(16)

FIG. 2. Comparison of simulated values of TSN statistics
(circles) to predictions (lines) of the mean (a), standard devi-
ation (b) and skewness (c) at different detector locations X.
We use cm = 0, wm = 1 (apparent from the width of the
Gaussian profile in (a)), wn = 0.7 and wL = 0.2. Notice the
large range of values of the skewness, which includes negative
numbers close to X = 0.

From Eq. (10), an analytic expression for the skewness
can be obtained in a similar way.

For given parameters N, wm, wn and wL, we can pre-
dict the values of the time-series statistics on the LHS of
Eqs. (13, 16) from the expressions on the RHS. Figure 2
shows an example of predictions compared to numeri-
cal results obtained with a simulation in MATLAB26.
This simple code generates time-series {Nk(X)} with
105 samples using Eq. (3), the definitions of n(x), L(x)
and 〈N(x)〉 in this section, and random numbers χk dis-
tributed f(x). It then computes the mean, standard de-
viation and skewness of {Nk(X)} for different detector
locations X. Figure 3 shows a comparison of predictions
and numerical results for a wide range of detected bunch
widths wnL. The good agreement in all cases shows that
the formalism developed in Sec. II A can accurately de-
scribe statistical features of the TSNs.

Equation (11) and the Gaussian-shaped n(x), L(x) and
m(X) also allow us to find an analytic expression for the
covariance with two identical detectors at locations X1

and X2:

Cov [{Nk(X1)} , {Nk(X2)}]
(LeffN)2

= −m(X1)m(X2)

+

√
s2 (2πw2

m)
s2−1

4πw2
nL

[
m

(
X1 +X2

2

)]s2
e
− (X1−X2)2

4 w2
nL .

(17)
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FIG. 3. Using wm = 1, we compute the variance and the
skewness of numerically generated TSNs {Nk(X)} for differ-
ent values of wnL. (a) Simulated standard deviation plotted
against the simulated mean (circles). Both the standard de-
viation and the mean have been normalized by Leff N . This
makes it simple to compare the results against predictions
(lines) and highlights the fact that TSN moments can be de-
termined at a particular detector location X from knowledge
of 〈N(X)〉 and Leff N . (b) Skewness versus normalized mean.
No normalization is performed for the skewness as its value is
not affected by rescalings of the Nk(X).

Figure 4 shows results of numerical simulations of
the covariance that corroborate the predictions obtained
with the model.

C. Effect of independent (uncorrelated) noise

Real detector systems are subject to noise6,27. As-
suming noise to be additive and independent (in the sta-
tistical sense) of the actual signal, we model the noisy
particle-number samples as being affected by indepen-
dent instances ηk(X) of the random variable η(X), with
mean µη(X), variance σ2

η(X) and skewness γη(X):

Nk(X) ≡ Nk(X) + ηk(X) . (18)

Notice that we allow for noise to change with the detector
location X. The noisy detected time-series is {Nk(X)}.
Then

〈N (X)〉 = 〈N(X)〉+ µη(X)

= (LeffN)m(X) + µη(X) . (19)

Statistical independence of the noise allows to drop
terms in summations that involve products of the Nk(X)

FIG. 4. Numerically generated covariance (circles) of the time
series at two locations X1 and X2. The different colors cor-
respond to different values of X1 as shown in the legend. We
use here cm = 0, wm = 1 and wnL = 0.5. The predicted
covariances (lines) precisely follow the numerical results.

and ηk(X), leading to the following expressions for the
variance,

Var [{Nk(X)}] = Var [{Nk(X)}] + σ2
η(X)

= (LeffN)
2
(
m2(X)−

(
m(X)

)2)
+ σ2

η(X) ,

(20)

and the skewness,

S [{Nk(X)}]
(
Var [{Nk(X)}]

)3/2
=

1

K

K∑
k=1

(
(Nk(X)− 〈N(X)〉) + (ηk(X)− µη(X))

)3
= S [{Nk(X)}]

(
Var [{Nk(X)}]

)3/2
+ γη(X)σ3

η(X) .

Equation (10) allows us to write the skewness in terms
of the mq:

S [{Nk(X)}]

=
m3(X)− 3m(X)m2(X) + 2 (m(X))

3
+

γη(X)σ3
η(X)

(LeffN)3(
m2(X)− (m(X))

2
+

σ2
η(X)

(LeffN)2

)3/2
.

(21)

This last expression shows that noise can greatly
affect the value of skewness. Indeed, if σ2

η(X) �
Var [{Nk(X)}], then S [{Nk(X)}] → γη(X), so the true
skewness can be completely obscured. An example of
the effect of varying levels of noise on the value of the
variance and skewness is shown in Fig. 5.

The covariance of the noisy TSN at X1 and X2 is
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FIG. 5. Normalized standard deviation (a) and skewness (b)
of the noisy TSN {Nk(X)}, plotted against the normalized
mean, for varying levels of noise (as indicated in the legend).
We assume Gaussian-shaped n(x), L(x) and 〈N(x)〉, as in
Fig. 2, with parameters cm = 0, wm = 1, wn = 0.7 and
wL = 0.2, and Gaussian noise with µη, ση independent of
the detector location X (clearly γη = 0). These predictions
are obtained from Eqs. (19, 20, 21). Notice that even small
values of noise force the skewness to fall to 0 in regions of
weak signal, i.e. where 〈N (X)〉 − µη(X) = 0.

Cov [{Nk(X1)} , {Nk(X2)}] (22)

= Cov [{Nk(X1)} , {Nk(X2)}]
+ Cov [{ηk(X1)} , {ηk(X2)}]

where we have further assumed that noise is independent
of the signal irrespective of location. As one would ex-
pect, the covariance is affected by noise that exhibits a
correlation between locations X1 and X2.

III. APPROXIMATIONS FOR MORE GENERAL 1D
AVERAGE PARTICLE COUNT PROFILES

A. Approximations

In Sec. II B we solved Eq. (6) for Gaussian m and nL.
We found a solution f of similar shape (a Normal PDF)
and width σ2

f = w2
m − w2

nL = w2
m

(
1− w2

nL/w
2
m

)
. If

wnL < wm, this suggests that the functional forms of f
and m may differ only by small corrections in wnL/wm.
We now show that this is indeed the case, even when m
has a non-Gaussian (but anyway integrable) profile.

For simplicity, we still assume nL(x) = G(x; 0,w2
nL),

although other shapes can be explored in a similar way

(see Sec. III B). We perform an expansion of f(x)
around the detector location X such that f(x) ≈ f(X)+
f ′(X) (x−X) +(1/2) f ′′(X) (x−X)2 +O[(x−X)3] and,
up until third order (due to symmetry of nL),

m(X) =

∫
nL(X−x) f(x) dx ≈ f(X) +

w2
nL

2
f ′′(X)

≈ f(X)
(
if w2

nL |f ′′(X)| � f(X)
)

.

(23)

In this expression, one can think of |f ′′(x)| ∼ f(x)/L2
typ,

where Ltyp is some typical variation length of f(x). Then
f(x) ≈ m(x) if w2

nL/L
2
typ � 1, in a way similar to the

discussion of a Gaussian m above.

The functions mq can be computed in a similar way:

mq(X) ≈ f(X)

∫
[nL(x)]

q
dx+

f ′′(X)

2

∫
x2 [nL(x)]

q
dx

≈ f(X)

∫
[nL(x)]

q
dx

(
if w2

nL |f ′′(X)| � f(X)
)

(24)

where the last line follows from
∫
x2 [nL(x)]

q
dx =

(w2
nL/q)

∫
[nL(x)]

q
dx for the Gaussian nL(x) with zero

mean and q ≥ 1. Then, combining this result with
Eq. (23), we obtain

mq(X) ≈ m(X)

∫
[nL(x)]

q
dx

=
1
√
q

(nmax
L )

q−1
m(X) (25)

valid for w2
nL |m′′(X)| � m(X) and q ≥ 1. In this ex-

pression nmax
L is the maximum of nL(x), i.e. nmax

L =

nL(0) = 1/
√

2πw2
nL.

The mq(X) obtained in Eq. (25) can be replaced in
Eqs. (9, 10) (or, in the noisy case, Eqs. (20, 21)) to find
approximate values of variance and skewness of TSNs
in the case of small wnL/wm considered here. Figure 6
shows a comparison between predictions that use the ex-
act expressions for Gaussian m(X) in Secs. II B, II C,
with predictions using the approximations. The agree-
ment is good to within 10% in variance and 2% in skew-
ness in all X for wnL/wm ≤ 0.2. Since these two statistics
depend only on the value of m(X) and not explicitly on
X (exemplified by the fact that Fig. 6 is plotted against
m(X)), we expect other more general m(X) profiles to
show a similar behavior. Simulations may however be
required in non-gaussian cases where higher accuracy is
desired.

Under the same conditions as in Eq. (25), the covari-
ance can be approximated by
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FIG. 6. (a) Relative error between the predicted variance
(RHS in Eq. (9)) using approximations (i.e. using Eq. (25))
and using exact expressions of mq (Eq. 14), for the case
with no noise and Gaussian m(X). The error is computed
as Erel(Var) =

(
Varappr.(X) − Varexact(X)

)
/Varexact(X) and

analogously for the skewness. (b) Relative error between pre-
dicted skewness using approximations and using exact expres-
sions. Notice that these results are valid for any wm > 0.
Indeed, the expressions for the errors can be cast in a form
that only depends on wnL/wm and

√
2πwmm(X).

Cov [{Nk(X1)} , {Nk(X2)}]
(LeffN)2

≈ −m(X1)m(X2)

+m

(
X1 +X2

2

)
·G(X1 −X2; 0, 2 w2

nL) .

(26)

Figure 7 shows expected errors in the covariance by
comparing results from Eq. (26) and Eq. (17) in the case
wm = 1, wnL = 0.2. The agreement is good to within
10% except near zero covariance, where the computation
of the error is problematic due to small denominators.
The agreement becomes better for smaller values of wnL,
as in the case of the variance and skewness above.

B. Other bunch shapes

Equation (24) is valid for arbitrary nL and q ≥ 1,
provided

∫
x [nL(x)]

q
dx = 0 and

∫
x2 [nL(x)]

q
dx ≤

w2
nL

∫
[nL(x)]

q
dx, where in this more general case w2

nL ≡∫
x2 nL(x) dx. Figure 8a shows some examples of nL that

fulfill these requirements.
If w2

nL |m′′(X)| � m(X), we then similarly have
mq(X) ≈ m(X)

∫
[nL(x)]

q
dx. In this case, however, the

value of the integral
∫

[nL(x)]
q
dx will change for different

choices of nL. A direct computation shows that

FIG. 7. Error in the covariance when using the approxima-
tion (Eq. (26)) compared to the exact result (Eq. (17)) for
Gaussian-shaped m (cm = 0, wm = 1) and nL (wnL = 0.2).
Each marker represents one choice of X1, X2 where X1 =
0, 0.4, 1.2, 2 or 3 and X2 ∈ [−5, 5]. To better compare val-
ues near zero crossings, we use the symmetric absolute error
Esae(Cov) = 2 |Covappr. − Covexact| / (|Covappr.|+ |Covexact|)
instead of the more common relative error. An Esae ≤ 0.1 =
10% is observed for all values of the approximate covariance
Covappr. except very close to zero, where small denominators
make the error estimation impractical.

FIG. 8. (a) Some possible shapes for nL that fulfill the re-
quirements for the approximations in Sec. III A. All shapes
are correctly normalized to integrate to 1 and have wnL =
0.15. (b) Application of Eq. (31) to numerically-generated
TSNs using the nL(x) shown in (a), f(x) = G(x; 0, 1− w2

nL)
and K = 105 gives the results shown with circles (same color
labeling as in (a)). The detector location is X = 0 in all cases.
Gaussian noise is added with µη = 0 and ση = 0.2 × Nmax,
and Nmax is determined from the known parameters (it is not
estimated from the TSNs). The agreement with the expres-
sions for b(q) in Eq. (28) (dashed lines) allows to distinguish
shapes based on information gathered from a single TSN.
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∫
[nL(x)]

q
dx =

(
nmax
L

)q−1
b(q) (27)

where, remembering that q ≥ 1,

b(q) =


1 if nL is uniform,
1√
q if nL is Gaussian,
2
q+1 if nL is triangular,
1
q if nL is Laplacian23.

(28)

The different shapes considered here are depicted in
Fig. 8a.

Equations (27, 28) can be regarded as a link between
bunch shapes and the function b(q). They are useful
whenever one wants to find approximate expressions for
the variance and skewness of TSNs in the case when the
bunch is not Gaussian-shaped (see Eqs. (9, 10, 20, 21)).

This link also provides a way to explore the inverse
problem, i.e. the determination of features of bunches
from TSNs.

Using the definitions of m(X) and the mq(X) in
Eqs. (5, 7), together with Eq. (27), we can rewrite the
relation mq(X) ≈ m(X)

∫
[nL(x)]

q
dx as

〈Nq(X)〉
(LeffN)

q ≈
〈N(X)〉
LeffN

(
nmax
L

)q−1
b(q) . (29)

Upon noticing (see discussion after Eq. (2)) that Nmax ≡
LeffN nmax

L = max [{Nk(X)}], the maximum value of the
time-series detected at X, Eq. (29) leads to

b(q) ≈ 〈Nq(X)〉(
Nmax

)q−1 〈N(X)〉
. (30)

Here, of course, we assume that K is sufficiently large for
statistical (sample-size related) errors to be negligible.

From only knowledge of the TSN at the single detector
location X, Eq. (30) provides a way to determine b(q)
for all q ≥ 1. Since b(q) only depends on integrals of
nL (recall Eq. (27)), comparison of an experimental b(q)
with plots of Eq. (28) gives an idea of the compatibility
of the experimental bunch-shape with any one of the four
theoretical cases considered for nL.

In practice, though, there are two problems with the
application of Eq. (30). The first one is noise. As seen
in Sec. II C, noise may greatly affect the values of TSN
statistics and must therefore be taken into account. The
second problem is the estimation of Nmax. This can be
a difficult task, especially in detector locations with low
〈N(X)〉 as, then, it is expected that the bunch visits be
infrequent and few instances of the maximum (if any at
all) be observed in a finite amount of time.

Assuming anyway that Nmax can be determined with
negligible error even in the presence of noise, we now con-
sider the case of the noisy TSN {Nk(X)} as in Eq. (18).

We notice that some TSN samples Nk(X) may be neg-
ative due to noise, so we restrict the analysis to integer
values of q ≥ 1 to avoid complications with fractional
powers. Since noise is statistically independent from the
signal,

〈N q(X)〉 =
1

K

K∑
k=1

[Nk(X) + ηk(X)]
q

=

q∑
j=0

(
q

j

)〈
N j(X)

〉 〈
ηq−j(X)

〉
where 〈ηq(X)〉 ≡ (1/K)

∑K
k=1 [ηk(X)]

q
. Keeping in mind

that 〈N (X)〉 = 〈N(X)〉+〈η(X)〉, we can use this expres-
sion together with Eq. (30) to find

b(q) +

q−1∑
j=1

(
q

j

) 〈
ηq−j(X)

〉(
Nmax

)q−j b(j)
=

1(
Nmax

)q−1

〈N q(X)〉 − 〈ηq(X)〉
〈N (X)〉 − 〈η(X)〉

, (31)

valid for q ≥ 2, and b(1) = 1. Thus, if we are able to
determine a time-series {ηk(X)} of only the noise, we
can use Eq. (31) to solve for b(q) in ascending order q =
1, 2, ... , Q to find b(2), b(3), ... , b(Q) up to any integer
Q ≥ 2.

Figure 8b shows results of b(q) obtained using Eq. (31)
from numerical simulations of noisy TSNs and different
choices of nL. The compatibility of the simulations with
the curves for the different shapes is an example of the
practical applicability of this procedure.

C. Bunch density profile variations

So far, it has been assumed that n(x) does not change
over time. We now study small variations of n(x).

We assume that the density profile n(x) depends on
an additional parameter λ which is related to its shape
but does not alter the mean. For example, if n(x)
is Gaussian-like, then λ could be the width. This is
made explicit by renaming the particle density n(x, λ)
and having

∫
n(x, λ) dx = N for all λ, i.e. the total

number of particles in the bunch is the same indepen-
dently of any changes in shape. Also, we require that∫
xn(x, λ) dx = 0.
We then allow λ to change over time, so that at time

tk (k-th sample) it has the value λk. Nk(X) in Eq. (1) is
redefined as

Nk(X) =

∫
n(X + u− χk, λk)L(u) du

and Nk(X) = N Leff nL(X − χk, λk). The mean particle
number detected at X then becomes
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〈N(X)〉 =
LeffN

K

K∑
k=1

nL(X − χk, λk)

K→∞
= LeffN

∫∫
nL(X − x, l)h(x, l) dx dl

in a similar way as argued in the derivation of Eq. (4).
This time, however, the χk and λk come from a joint
PDF h(x, l) which, in general, allows the motion of the
bunch to be correlated with changes in shape.

For what follows, however, we assume that mo-
tion and shape are statistically independent, so
h(x, l) = f(x) g(l) where f and g are PDFs of a
single variable. Then,

∫∫
nL(X − x, l)h(x, l) dx dl =∫ [∫

nL(X − x, l) g(l) dl
]
f(x) dx. The function

nL(x) ≡
∫
nL(x, l) g(l) dl (32)

can be understood as an average profile in terms of shape.
Notice that

∫
nL(x) dx = 1 and

∫
xnL(x) dx = 0. With

this definition, we can write

m(X) ≡ 〈N(X)〉
LeffN

K→∞
=

∫
nL(X − x) f(x) dx (33)

in a very similar way to Eqs. (4, 5, 6), except that in this
case we use the average bunch profile (Eq. (32)).

In order to compute the mq, we make first the following
definition:

δnjL(x) ≡
∫ [

nL(x, l)− nL(x)
]j
g(l) dl .

We observe that, for fixed x, δnjL(x) is just the j-th cen-
tral moment of the random quantity nL(x, λ), where λ is
distributed g(l).

For any integer q ≥ 1,

mq(X) =

∫ [
nL(X − x)

]q
f(x) dx + ∆mq(X) , (34)

where we have introduced

∆mq(X) =

q∑
j=2

(
q

j

)∫
δnjL(X−x)

[
nL(X−x)

]q−j
f(x) dx .

Notice that the summation does not include the case j =
1 as, by definition, δn1

L(x) = 0.
The ∆mq can be seen as corrections to the mq due to

additional variability from bunch shape changes. It is in
general difficult to evaluate them explicitly for arbitrary
g(l) and, in most cases, we have to resort to simulations

(see for example Sec. V). However, there is a particu-
lar case that can be very illuminating, specifically in the
cases q = 2, 3 of importance in our TSN studies.

For fixed x, we assume that nL(x, λ) is distributed
Gamma. This is a very general PDF for nonnegative ran-
dom variables that includes other common distributions
as special cases24.

If δn2
L(x) � [nL(x)]

2
, which corresponds to

Gamma distributions with shape parameter24 α(x) =

[nL(x)]
2
/δn2

L(x) � 1, we obtain a value of ∆m2 and
∆m3 that is small compared to the first term on the
RHS of Eq. (34) for q = 2, 3, respectively. We have, to

order δn2
L(x)/ [nL(x)]

2
,

∆m2(X) =

∫
δn2

L(X − x) f(x) dx ,

∆m3(X) ≈ 3

∫
δn2

L(X − x)nL(X − x) f(x) dx .

(35)

As in Sec. III A, we focus on the case of a Gaussian
nL of width wnL. Using Eq. (33) and similar arguments
as before (see discussion leading to Eq. (23)), we have
f(X) ≈ m(X) for w2

nL
|m′′(X)| � m(X).

For this narrow Gaussian nL, the first term on the
RHS of Eq. (34) gives results similar to Eq. (25). Since
α(x) > 1 for all x,

∫
x2 δn2

L(x) dx =

∫
x2 [nL(x)]

2

α(x)
dx

<

∫
x2 [nL(x)]

2
dx = w2

nL
,

therefore narrow nL (i.e. small wnL) implies narrow
δn2

L(x), this time in terms of variation along x. This
motivates performing approximations of Eq. (35) similar
to those of Eq. (33). Collecting results, we get

m2(X) ≈
(
nL

max

√
2

+

∫
δn2

L(x) dx

)
m(X)

m3(X) ≈

(
(nL

max )
2

√
3

+ 3

∫
δn2

L(x)nL(x) dx

)
m(X)

where nL
max =

(
2πw2

nL

)−1/2

is the maximum of nL(x).

These expressions may have conditions of validity that
are more stringent compared to Eq. (25), as the approx-
imations depend on the exact profile of bunch shape
variances δn2

L(x). Nevertheless, they show that given
α(x)� 1, m2(X) and m3(X) are very nearly the expres-
sions for no shape change, provided one uses the average
bunch profile nL(x).

The calculation of the covariance can also be shown to
involve only the average bunch profile in leading terms.
However, establishing the order of magnitude of the cor-
rections involves determining a model for correlations of
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FIG. 9. Two-dimensional case. A rigid particle bunch (black)
of density n(r) moves on the xy plane such that its center
at time tk is located at r = νk = (χk, ψk). A detector at
r = R = (X,Y ) counts the number of particles within a
region of effective area Aeff (shaded light gray) near R. At
large K, the detector will have recorded an AC 〈N(R)〉.

deformations at different points of nL. This will depend
strongly on the particularities of the shape changes and,
therefore, simulations are needed to establish their im-
pact on the statistic.

IV. 2D MODEL AND APPROXIMATIONS

We can use the same concepts of previous sections to
find a link between time-series statistics and the 2D av-
erage detected particle number.

Figure 9 illustrates the situation in 2D. Similarly as
in Sec. II A, the bunch density profile n is assumed to
be rigid and contain a total of N � 1 particles. How-
ever, it now depends on two dimensions (x, y) ≡ r, so∫
n(r) dr ≡

∫
n(x, y) dx dy = N . For simplicity, and

without loss of generality, we assume again a zero mean,
i.e.

∫
rn(r) dr = (0, 0).

As before, we observe the evolution of the system at K
different instants. At sample time tk, the overall particle
density distribution is n(r− νk), where νk ≡ (χk, ψk) is
the location of the bunch center. The particles are instan-
taneously counted by a homogeneous detector located at
r = R ≡ (X, Y ), which has a 2D response efficiency
A(r−R).

Defining

nA(r) ≡ 1

AeffN

∫
n(r + u)A(u) du , (36)

where u is just a dummy integration variable and Aeff ≡∫
A(r) dr is the finite effective area of the detector, we

obtain an expression for the number of particles detected
at location R and time tk,

Nk(R) = N Aeff nA(R− νk) ,

where nA satisfies
∫
nA(r) dr = 1. The ordered collection

{Nk(R)} ≡ {N1(R), ... , NK(R)} is the corresponding
TSN. If

〈N(R)〉 =
1

K

K∑
k=1

Nk(R) ,

we follow a similar procedure as in Eqs. (3, 4, 6) to obtain

m(R)
K→∞

=

∫
nA(R− r) f(r) dr (37)

where m(r) ≡ 〈N(r)〉 / (AeffN) is the normalized AP in
2D. The function f(r) is the PDF of the νk, and as such,
encloses the information of the motion of the bunch.

The equivalent of Eq. (8) for 2D is

mq(R) ≡ 〈N
q(R)〉

(AeffN)
q =

∫
[nA(R− r)]

q
f(r) dr (38)

valid for large K and q ≥ 1.
Following the same procedure of Sec. III A, we can find

an approximate solution for f(r) in Eq. (37). In 2D, the
normalized Gaussian23 function is

G(r; c, W) ≡ 1

2π
√

det(W)
e−

1
2 (r−c)TW−1(r−c) (39)

where W is the matrix

W =

(
w2
x ρwxwy

ρwxwy w2
y

)
.

Here −1 < ρ < 1 can be understood as a parame-
ter determining the orientation of the possibly elliptic
shape, and wx, wy the widths along the x and y di-
rections. Then, for a Gaussian centered at the origin,
nA(r) = nA(x, y) = G(r; 0, WnA) we have

f(R) ≈ m(R)

provided

m(R)�
∣∣∣∣ ρnA wnA,x wnA,y

∂2m(R)

∂x ∂y
(40)

+
1

2
w2

nA,x

∂2m(R)

∂x2
+

1

2
w2

nA,y

∂2m(R)

∂y2

∣∣∣∣ .
This is a condition on the widths of nA similar to the
condition obtained for Eq. (25). From similar arguments,
it is approximately second order in the ratio of the widths
of nA and m. This condition is also sufficient for

mq(R) ≈ m(R)

∫
[nA(r)]

q
dr

=
1

q
(nmax
A )

q−1
m(R) (41)
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to be valid for all q ≥ 1. Here nmax
A = nA(0, 0) =(

2πwnA,x wnA,y

√
1− ρ2

nA

)−1

which has units of inverse

length squared, different from Eq. (25). This expression
also has a factor 1/q instead of 1/

√
q, as in Sec. III A.

The expressions for the variance and skewness of the
TSN in 2D can be obtained in a way similar to Eqs. (9,
10). If noise is included as Nk(R) ≡ Nk(R) + ηk(R), as
in Sec. II C, then Eqs. (19, 20, 21) together with Eq. (41)
yield

〈N (R)〉 = AeffN m(R) + µη(R) (42)

where µη(R) is the noise mean at detector location R,

Var [{Nk(R)}]
(AeffN)

2 ≈ nmax
A

2
m(R)−

(
m(R)

)2
+

σ2
η(R)

(AeffN)
2

(43)
where σ2

η(R) is the noise variance at R, and

S [{Nk(R)}] ≈
(nmax
A )2m(R)

3 − 3nmax
A (m(R))2

2 + 2 (m(R))
3

+
γη(R)σ3

η(R)

(AeffN)3(
nmax
A

2 m(R)− (m(R))
2

+
σ2
η(R)

(AeffN)2

)3/2

(44)

where γη(R) is the skewness of the noise at R.
Equations (43, 44) have been obtained for very large

K and a narrow Gaussian nA which fulfills Eq. (40) and
does not change shape over time. From Sec. III C, we ex-
pect these results to be reasonably robust to small shape
changes, an important aspect for their usefulness in more
realistic applications. Nevertheless, performing a similar
analysis in 2D is cumbersome and more difficult to in-
terpret. We therefore rely on simulations (see Sec. V) to
demonstrate the predictive power of the equations.

Similarly as in Eqs. (22, 26), the covariance can be
expressed as

Cov [{Nk(R1)} , {Nk(R2)}]
(AeffN)2

≈ −m(R1)m(R2)

+m

(
R1 + R2

2

)
·G(R1 −R2; 0, 2WnA)

+
Cov [{ηk(R1)} , {ηk(R2)}]

(AeffN)2
(45)

for very large K. Here we use Eq. (39) for the definition
of the 2D Gaussian function. This expression is a good
approximation whenever Eqs. (41, 43, 44) are valid.

Given the similarity of Eq. (41) and Eq. (25), bunch
shapes different than Gaussian can be treated in a way
very similar to Sec. III B. Indeed, the function b(q) that
relates bunch-shapes and TSN moments can be defined
as in Eq. (27). Then, some possible 2D generalizations

of the symmetric, zero-mean, shapes considered earlier
yield

b(q) =


1 if nA is uniform,
1
q if nA is Gaussian,
6

q2+3q+2 if nA is conical,
1
q2 if nA is Laplacian.

(46)

To avoid confusion with other conventional definitions,
the functional form of the 2D Laplacian function consid-
ered here is

nA(x, y) =
3 e
−
√

3x2

w2
nA,x

+ 3y2

w2
nA,y

2πwnA,xwnA,y
.

Equation (46) can be used for the inverse problem as
well, that is, to check the compatibility of a given TSN
with an assumed bunch-shape. The procedure would use
an expression similar to Eq. (31) to create a plot of b(q)
against q. Comparison with the aforementioned theoret-
ical values would then give an idea of the shape of nA.

V. SIMULATIONS OF A FAST ION BEAM IN TORPEX
AND COMPARISON WITH 2D MODEL

A. Description of simulations

As an example of the applicability of the formalism
developed in previous sections, we analyze the results
of simulations of fast ion trajectories in the TORoidal
Plasma EXperiment (TORPEX) under the light of
Sec. IV.

TORPEX18 is a toroidal plasma device of major and
minor radii 1 m and 20 cm, respectively, where plasmas28

of hydrogen (or possibly other gases) are produced
by absorption of 2.45 GHz microwaves at the electron-
cyclotron and upper-hybrid resonances29. Typically,
TORPEX plasmas have densities 1015 − 1017 m−3, elec-
tron temperatures ≤ 10 eV and plasma potentials Vp =
10− 20 V.

In experiments dealing with fast ions19,20, a Simple
Magnetized Torus (SMT) configuration18 is used where
a small vertical field Bz ≈ 2 mT is superposed on a dom-
inant toroidal field Bφ ≈ 74 mT (on axis). Magnetic
field lines are therefore open and helical in shape, as
shown in Fig. 10. In this particular configuration, plasma
structures are elongated along the B-field lines30–32 and,
therefore, plasma parameters exhibit an approximately
2D spatial variation (perpendicular to the B-field). Some
field-aligned structures can detach intermittently33 from
the plasma and propagate radially outward34 (in the di-
rection of increasing x), giving rise to so-called blobs35–37.

We use the Boris algorithm38 to simulate the propa-
gation of Li-6 ions in a volume with the prescribed SMT
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FIG. 10. Fast ion propagation in TORPEX. The toroidal
vessel contains a hydrogen plasma in an SMT configuration
with open helical magnetic field lines. A Li-6+ source injects
fast lithium ions into the plasma. These ions then propagate
towards a detector positioned at a different toroidal location.
Interaction with the turbulent plasma potential (depicted at
two toroidal locations, one near the source and the other near
the detector) affects the ion trajectories and introduces vari-
ations in the number of ions that reach the detector. The
detector can be moved in the x and y directions (indicated in
white) to perform measurements at different locations on the
same xy (poloidal) plane.

magnetic field and a time-varying electric field (Fig. 10)
associated to the presence of the plasma. This E-field,
in fact, is just the gradient of the plasma potential Vp.
We use, as a proxy for Vp, 2D-resolved floating potential
measurements39,40 rescaled such that the magnitude of
the gradients agrees with E-field fluctuation profiles ob-
tained with a triple-probe41. The fast ions act as tracers
and do not affect the fields.

Li-6 ions are generated in bunches of N = 1.6×105 par-
ticles on the poloidal plane of the source. They initially
have a 2D gaussian density profile of widths wx = wy =
1 mm, centered at (x, y) = (−1, −13.5) cm. The initial
ion speed is random and distributed 1D Normal such that
the kinetic energy is (30±0.3) eV. As the average energy
is much higher than typical ion temperatures (< 1 eV),
the Li-6 ions are suprathermal, or fast. The initial direc-
tion is almost parallel to the B-field, with a 2D Normal
distribution with width 4.3◦ and a mean angle of 5.6 ◦

above the toroidal direction (see Fig. 10).

The ion motion is integrated until ions reach the
toroidal location of the detector, 171.3 cm apart. Ions
can only be lost to the wall, since collisions with neu-
trals and plasma constituents are negligible20. Although
ions may spread toroidally, due for example to the differ-
ences in initial conditions, we include all ions in the same
bunch as contributing to the same detection signal. The
detector is modeled as having efficiency 1 within a circle
of radius 4 mm and 0 outside. Thus, any ions that arrive
within the collection circle centered at R = (X,Y ) are
counted and generate one sample of number of detected
particles, for example N1(R). We model the situation of
a continuous ion beam by injecting bunches every 4µs.

Then, the TSN at detector location R will consist of
the collection of detected samples for all K = 1.1 × 104

bunches {Nk(R)}. Formally, this situation is different
from Sec. IV as now many similar bunches arrive (one at
a time) on a plane instead of having a single bunch that
moves on the plane. However, the conditions are analo-
gous in the two cases (see Fig. 11). Finally, by displacing
the detector, we obtain a collection of TSNs as a function
of location, in the xy plane, whose average 〈N(r)〉 is the
AP of Li-6 ions.

Since the floating potential profiles evolve in time, the
arrival location of the Li-6 ions changes with time. Fig-
ure 11 shows simulation results of ions as they reach the
poloidal plane of the detector. Interestingly, the ions are
still bunched in xy and are small compared to the AP.
They wander around in xy as illustrated in Fig. 9. They,
however, are somewhat deformed, which can be under-
stood by remembering that local variations of the tur-
bulent plasma potential have a direct effect on fast ion
displacement across magnetic field lines through E × B
drifts28,42. In our simulations, the spatial variation ∆|E|
of the E-field over a distance of 1 cm (in the order of the
beam cross section; see Fig. 11) is typically < 17 V/m.
This value is an average computed over the region in
the xy plane in which the ion beam propagates, taking
into account both the x and the y components of the E-
field. However, ∆|E| can reach values as high as 250 V/m
over 1 cm, which can lead to significant particle diver-
gence even for short interaction times. For example, if
two particles ≈ 1 cm apart within the same bunch are
subject to this field gradient for 1µs (the typical propa-
gation time is 56µs), their final separation will increase
by ≈ 1µs · ∆|E|/Bφ = 3.4 mm. In that case we ex-
pect significant changes in shape. This estimate does
not include gyro-averaging19,20,42 from the ≈ 5 mm ra-
dius gyro-orbits, nor drift-averaging19,20, whose effect is
included in the simulations but is difficult to quantify in
a simple way.

In Sec. V B we show that the theory of Sec. IV describes
well the relationship between TSN statistics, despite the
beam deformations and the slightly altered response ef-
ficiency function used for the detector.

B. Simulation results for 30 eV ions

Figure 12 shows the mean, variance and skewness of
simulated TSNs as a function of detector location. The
plot of the mean is then the AP of the fast ions. To illus-
trate the impact of noise on the profiles of the different
statistics, we make a comparison with the case of added
Gaussian noise (zero skewness).

From Sec. V A, we know that N = 1.6 × 105 and
Aeff = π (4 mm)2 = 50.2 mm2. We use these num-
bers to normalize the variance and plot it against the
normalized mean, similarly as in Fig. 5. The result
(Fig. 13a) shows an approximately linear relationship,
with a quadratic correction, as expected from Eq. (43).
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FIG. 11. Some fast ion bunches as they arrive at the xy
(poloidal) plane of the detector. Different bunches (shaded
structures) arrive at different locations after propagating
through the turbulent plasma. Darker parts correspond to
higher density of ions, as per the colorbar. Comparison with
the shape and location of the bunches as injected at the source
(indicated in the figure) shows that fast ions experience drifts
as well as shear. Once the effects of the detector are added,
〈N(r)〉 can be computed. Contour lines of the result (blue
dashed lines) show a time-averaged profile that is much wider
than the individual bunches.

In fact, a least-squares fit of the data gives a value
nmax
A = 7348 m−2 which is in reasonable agreement with

simulated bunch widths corrected to account for the fi-
nite detector width. Indeed, assuming a Gaussian-shaped
bunch, the discussion following Eq. (41) allows us to es-
timate wnA ≈ 1/

√
2π nmax

A = 4.7 mm.
Figure 13b shows TSN skewness versus normalized

mean. Using the value of nmax
A determined above, we plot

the predicted skewness (Eq. (44)) and find good agree-
ment with the simulations. Some discrepancies are ob-
served, but they are reasonably expected from the fact
that fast ions exhibit behavior that is more complex than
the simple assumptions used in the model of Sec. IV.

VI. CONCLUSIONS

We have developed a simple model to study the re-
lationship between the Average Profile (AP) and higher
order statistics of Time-Series of Number of detected par-
ticles (TSNs) in systems where a detector counts particles
of a moving density profile.

We started with the 1D case and showed that the PDF
of the particle bunch center locations is closely related
to the AP. This result was deemed fundamental, since
the computation of the variance, skewness, kurtosis and
higher order moments of TSNs, as well as the covariance,
were shown to rely on the knowledge of this PDF.

FIG. 12. Fast-ion simulation results. TSNs are determined
for ≈ 100 choices of detector location (“+” markers) and the
mean, variance and skewness are computed. The results are
then linearly interpolated between the markers, and the out-
come is plotted following the colormap in each column. TSNs
are dimensionless, as they hold data in units of number of par-
ticles. (a) Mean, (b) variance and (c) skewness for the case
of no noise. (d, e, f) Same statistics when Gaussian noise
with zero mean and ση = 103 is added to all TSNs. Even
though the mean and variance remain similar, a comparison
of (c) and (f) confirms that low levels of noise can have a big
impact on the skewness.

Using all Gaussian shapes, we then obtained exact re-
sults in 1D. This allowed us to make a detailed compar-
ison of theoretical predictions with statistics computed
from numerically-generated TSNs. The notable level of
agreement between them showed that the theory gives a
correct description of the problem.

An important observation is that many different val-
ues of skewness are possible in a single AP. Care must
therefore be taken when drawing conclusions from the
skewness of distinct time-series, as any difference may be
related to differences in the detector location (within a
single AP) and not necessarily to changes of APs. This
consideration may be specially important in transport
studies, where one is interested in determining changes
of APs to establish, for example, diffusion properties20 of
the system.

The exact results also allowed us to benchmark a series
of approximations carried out to extend the applicabil-
ity of the formalism to the case of non-gaussian APs.
These approximations show that, under certain condi-
tions, knowledge of the AP and a few other parameters
is enough to determine the value of the variance, skew-
ness and covariances of the TSNs in all possible locations
of the detector. The procedure can easily be extended for
higher-order moments such as the kurtosis.

Bunch shapes different than Gaussian can easily be
considered and lead to slight modifications of the expres-
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FIG. 13. Normalized variance (a) and skewness (b) of the
simulated fast ion TSNs, plotted against the mean. Gaus-
sian noise with zero mean and ση = 103 has been added to
all TSNs. Each black dot corresponds to statistics computed
for a single TSN from one particular detector location (“+”
markers in Fig. 12). The error bars are 1-sigma uncertainties
estimated using simple bootstrapping with non-overlapping
blocks of 500 samples from the corresponding TSN (changing
the block size does not appreciably alter the outcome). The
red dashed curve in (a) is a fit of the data using Eq. (43) as
a model. The fit allows us to determine the parameter nmax

A ,
which can then be replaced in Eq. (44) to produce a pre-
dicted skewness curve (red dotted line in (b)) for an assumed
Gaussian-shaped bunch. There is good agreement between
the model and the simulations.

sions for the approximated statistics. Conversely, it was
shown that single TSNs can be used to gain knowledge
into the shape of the particle bunch, an observation that
may be useful in situations where detectors cannot be
displaced and there is interest in establishing spatial fea-
tures of the instantaneous bunch profile.

Incorporation of noise was shown to have potentially
significant effects on the TSN statistics, most notably
on the value of the skewness. Indeed, problems seem
to arise at locations visited only scarcely by the bunch
(low values in the AP), as the detection signal variance
tends to vanish and noise starts dominating. Since the
variance enters in the calculation of the skewness through
the denominator, even small values of noise may have a
big impact. This observation motivates exploring the
use of alternatives to the skewness which do not require
normalization by the variance.

The theory was extended to 2D and applied to studies
of fast ion propagation in TORPEX. The results show
that the formalism is robust and may be used in real-
istic situations. Future experiments with fast ions are
envisioned in TORPEX to further test these ideas.

We showed that simulations using a large number of
samples K lead to results that are consistent with the
theory developed in the paper. However, one outstanding
question is how robust TSN statistics are for different
sample sizes. Further dedicated numerical studies with
larger K may be required.

The formalism can be straightforwardly used to model
other systems. For example, one can replace N by I and
n(r) by J(r) in studies dealing with samples of current
and (moving) current density profiles.

ACKNOWLEDGMENT

This work has been carried out within the framework
of the EUROfusion Consortium and has received fund-
ing from the Euratom research and training programme
2014-2018 under grant agreement number 633053. The
views and opinions expressed herein do not necessarily re-
flect those of the European Commission. This work was
supported in part by the Swiss National Science Founda-
tion.

Appendix A: Computation of mq for 1D Gaussian profiles

This appendix refers to the discussion and results of
Sec. II B.

In the case of 1D Gaussian-profiles, nL(x) =
G(x; 0,w2

nL) we can express [nL(x)]
q

as

[
nL(x)

]q
=

(
1√

2πw2
nL

e
− x2

2w2
nL

)q
(A1)

=
1
√
q

(
1√

2πw2
nL

)q−1

· G(x; 0,w2
nL/q) .

Since f(x) = G(x; cm, σ
2
f ) with σf =

√
w2
m − w2

nL for

the case when m(X) = G(X; cm,w
2
m), we have

mq(X) =

∫
[nL(X − x)]q f(x) dx

=
1

√
q
(
2πw2

nL

) q−1
2

∫
G(X − x; 0,w2

nL/q) ·G(x; cm, σ
2
f ) dx

=
1

√
q
(
2πw2

nL

) q−1
2

·G(X; cm,
w2

nL

q
+ σ2

f ) (A2)

The last line comes from the fact that the convolution
of two normalized Gaussians is a normalized Gaussian.
Notice that mq need not be normalized, as it is preceded
by a factor that is in general different from 1 for q > 1.
The width of the Gaussian in the last line is
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w2
nL

q
+ σ2

f =
w2

nL

q
+
(
w2
m − w2

nL

)
= w2

m

(
1− w2

nL

w2
m

(
1− 1

q

))
= w2

m · s−1
q

where sq is defined as in Eq. (15). Then, an argument
similar to Eq. (A1) can be used to show that

G(x; cm,
w2
m

sq
) =
√
sq
(
2πw2

m

) sq−1

2
(
G(x; cm,w

2
m)
)sq

=
√
sq
(
2πw2

m

) sq−1

2
(
m(x)

)sq .

Replacing this result back in Eq. (A2) we get

mq(X) =

√
sq
(
2πw2

m

) sq−1

2

√
q
(
2πw2

nL

) q−1
2

(
m(X)

)sq
.

This expression is equivalent to Eq. (14).
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