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Predicting critical currents in grain-boundary limited

superconductors

M. Eisterer

Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria

Abstract

The critical current across grain boundaries is severely suppressed in hight temperature super-

conductors, such as the cuprate or the iron-based compounds, if the grain boundary angle exceeds

a few degrees. This is known from the low critical currents in untextured conductors and mea-

surements on bi-crystalline films. Textured conductors were developed to overcome this limitation,

however, a quantitative understanding between the degree of texture and the macroscopic critical

current is still missing. A model for the prediction of the self-field critical current on the basis

of experimental data obtained from bi-crystals is presented. It is a mean-field approach based on

percolation theory. Without any fit parameter, good agreement with recent studies on cuprates

and iron-based superconductors, where the critical current and the texture were analyzed quan-

titatively, is obtained. The simplified grain boundary physics hence describes the macroscopic

properties of imperfectly textured materials.
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I. INTRODUCTION

Many exciting superconducting materials have been discovered during the past decades.

They are very promising for applications since they can significantly increase the opera-

tional space of superconductivity both in terms of temperature and magnetic field. The

most promising among them, the cuprate and iron-based superconductors suffer from a bad

connectivity between the grains of a conductor. It was shown on bi-crystalline films that

the critical current across grain boundaries drops exponentially with the misalignment angle

between the adjacent grains.[1, 2] The technological solution of this problem was the devel-

opment of textured conductors, the most efficient form being coated conductors, where the

grains are aligned within a few degrees so that they are sometimes called “single crystals

by the mile”. However, the according production processes are slow and expensive, hence

the market is still dominated by NbTi and Nb3Sn, which do not suffer from this granularity

problem. Alternative texturing processes, in particular thermo-mechanical treatments, are

cheaper although the resulting grain alignment is less perfect. Recent results on Bi-2212[3, 4]

and Ba-122[5] indeed indicate the feasibility of this approach. The relation between texture

and the macroscopic critical current density is still not understood quantitatively despite

many approaches, such as the brick-wall,[6, 7] railway switch,[8], freeway[9], or parallel

path[10] model, or various numerical approaches.[11–15] Most of them model the current

meandering between the grains to predict the macroscopic behavior. Here, the approach

is different, focusing on the statistical distribution of the grain boundary angles only and

neglecting any details of the grain structure or its local variation. This enables a comparison

of different materials on the basis of the experimentally observed dependence of the criti-

cal current density on misalgnement angle and a quantitative prediction of the influence of

texture.

II. MEAN FIELD PERCOLATION MODEL

The percolation model is based on the mean field approach originally proposed for pre-

dicting the critical current density in MgB2,[16] as well as its anisotropy upon texturing.[17]

While the anisotropy of the upper critical field induces a variation of the properties of dif-

ferently oriented grains and hence causes the inhomogeneity of the current flow in MgB2,
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the grain boundary currents are assumed to vary and limit per definition the macroscopic

currents in grain-boundary limited superconductors. The critical current density, Jc, is

obtained from a single integral[16]

Jc =

Jmax
c∫
0

σpdJ (1)

with the effective cross section for current flow

σp = (
p(J)− pc

1− pc
)t. (2)

The percolation threshold, pc is given by the minimal fraction of sites (grains) or bonds

(grain boundaries) necessary for a continuous current path (spanning cluster). It is about

0.2 in three dimensional systems and depends on the coordination number, i.e. the number

of neighboring grains. It is generally somewhat smaller in bond than in site percolation

problems because removing one site removes all respective bonds, while a site may stay con-

nected with the spanning cluster upon removing one of its bonds. For the sake of simplicity,

pc = 0.2 will be used in the following. The fraction of sites or bonds, p(J), with Jc exceeding

J is the only material dependent input, since the so-called transport exponent was fixed to

1.79. p(J) is just 1 − F (J), with the distribution function of the critical current densities,

F (Jc). J
max
c is given by the condition p(Jmax

c ) = pc where the effective cross section becomes

zero, because grain boundaries with higher critical current densities do not form a contin-

uous cluster anymore and, therefore, cannot contribute more than Jmax
c to the macroscopic

current. The distribution function of the critical current density across grain boundaries has

to be known or modeled in order to get the macroscopic critical current density by means

of Equ.1. In principle, five parameters are needed to classify grain boundaries:

• The grain boundary angle

• The orientation of the rotational axis (2)

• The grain boundary plane (2)

A model for Jc as a function of all these five parameters is currently unavailable and we

restrict our considerations to the grain boundary angle, α. Most available experimental data

refer to [001] tilt boundaries (e.g. [1] and references therein) and an exponential decrease of
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Jc as a function of α was found after a plateau at low angles in the cuprates[1] as well as in

the iron-based superconductors[2]

Jc = J0e
−1 for α ≤ αc (3)

Jc = J0e
− α

αc for α ≥ αc (4)

Although the actual type of the grain boundary,[18] as well as its morphology[19] influ-

ence this dependence, the exponential behavior is a general trend in these two classes of

superconductors and the critical currents across grain boundaries will modeled by Equs. 3

and 4. With this simplification, the distribution function of the grain boundary angle, α,

has to be calculated to obtain F (Jc) and p(J) needed for the integral in Equ. 1.

A. Distribution of grain boundary angles

We first consider the angle distribution between two arbitrarily oriented grains. The

orientation of one grain can be obtained by rotation of the other grain about the common

axis. The rotation angle defines the grain boundary angle, α. For a total random orientation

of both grains one obtains for 0 ≤ α ≤ π (details are given in the Appendix)

f(α) =
1− cosα

2π
(5)

F (α) =
α− sinα

2π
(6)

f(α) denotes the distribution density of the distribution function F (α), i.e. f(α) = F ′(α).

The angular range is restricted to 180◦ since clockwise and anticlockwise rotations result in

the same boundary. However, we have further symmetries because a rotation about 180◦

results in the same crystal lattice. We further assume that the effect of orthorhombicity is

small, hence rotations about the crystallographic c-axis have a periodicity of 90◦. This leads

to

F (α) =
8

π
(α− sinα) (7)

for α ≤ π
4
,

F (α) = 2− 8

π
(cosα + 1) tan

π

8
(8)

for π
4
≤ α ≤ π

2
, and approximately

F (α) ≈ 2− 4

π
arccos(2 cosα + 1)− 8

π
(cosα + 1)(tan

π

8
− tan

arccos(2 cosα + 1)

2
) (9)
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for π
2
≤ α ≤ 1.7178. The distribution function (bottom panel) and the distribution density

(top panel) are shown as gray lines in Fig.1. The circles in the figure were obtained from

numerical simulations assuming cubic grains on a simple cubic lattice. The orientation of

the grains was chosen randomly and the distribution function and density were obtained

by counting the grain boundary angles in a small angular range. Details are given in the

Appendix. These simulations are necessary to obtain the distribution of grain boundary

angles in textured samples, as well as to ensure that the distribution is also valid for a large

ensemble of grains. The analytical expressions are valid for the distribution of two grains

with random orientation, but the grain boundary angles are not independent of each other in

a large ensemble, which becomes evident by considering a closed path. The grain boundary

angles are restricted by the condition that the grain orientation has to be the same after

the entire loop. Although this restriction does not change the angular distribution in an

ensemble of randomly oriented grains, it does for partially aligned grains (not shown) and

the maximum in the distribution function for the ensemble shifts to lower angles compared

to the case of two grains. The differences between the analytical formula and the simulation

at grain boundaries above 90◦ is caused by another reason: the derivation of the formula does

not take all symmetries into account (cf. Appendix). A first important result follows from

the grain boundary angle distribution between randomly oriented grains. The distribution

function becomes 0.2, which is a typical percolation threshold in three-dimensional materials,

only at about 45◦ (upper panel in Fig. 1). Since nearly all experimental data for critical

currents across grain boundaries were obtained for bi-crystals with misorientation anlges up

to 45◦,[1] these data are not useful for predicting the behavior of untextured materials. If the

fraction of grain boundaries with angles below 45◦ is smaller than the percolation threshold,

these boundaries can per definition not form a continuous current path throughout the entire

sample and consequently not contribute more to the global currents than the best links in

the remaining matrix. Data for grain boundaries with grain boundary angles above 45◦

are needed for this purpose. We will restrict our considerations in the following to textured

samples, where the grain boundaries below 45◦ determine the properties so that the available

experimental data can be used.
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FIG. 1: Distribution function (upper panel) and distribution density (lower panel) of grain bound-

ary angles in randomly oriented grains. The line graphs were obtained from the analytical expres-

sions (cf. Equs. 7-9), the circles represent the results from the simulation.

B. Preferred grain orientation

A Gaussian distribution density of the grain misalignment from the preferred orientation

is assumed

f(θ) ∝ e
− θ2

2θ2t sin θ (10)

f(φ) ∝ e
− φ2

2φ2t (11)

where φt and θt quantify the in- and out-of-plane texture, respectively. With this definition,

the full width at half maximum (FWHM) is larger by a factor of 2
√

2 ln 2 ≈ 2.35 than these

texture angles.

The upper panel in Fig. 2 shows the evolution of the grain boundary angle distribution

density with texture for pure out-of-plane texture, as achieved for instance by thermo-

mechanical treatments (see Bi-2223 below). With decreasing θt, a peak evolves below 90◦
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FIG. 2: Distribution density of the grain boundary angles for uni- (upper panel) and bi-axial (lower

panel) texture. The given angles refer to the out-of-plane texture angle, θt. φt = θt is assumed for

bi-axial texture, φt = ∞ for uniaxial texture. The distribution densities were divided by 2 and 5

for φt = 5◦ and 1◦, respectively, to fit into the lower panel.

and shifts to lower angles upon improving texture. A plateau develops below 45◦ which

finally extends to 0◦ in the limit θt = 0 when the peak disappears reflecting the equal

distribution of the in-plane misorientation anlge, φ.

This plateau does not occur for biaxial texture. The distribution densities displayed in

the lower panel of Fig. 2 were calculated for φt = θt meaning the same in- and out-of-plane

alignment. There is hardly any difference to uni-axial texture at θt = 45◦, some weight is

transfered to grain boundary angles below 45◦ at θt = 30◦ and the peak shifts from 45◦ to

about 25◦ for θt = 15◦, becoming more symmetric for bi-axial grain alignment. At lower

texture angles, the distribution functions become very different, because of the absence of

the plateau. The distribution density has to converge to the delta function for θt = φt → 0◦.

We will restrict our considerations in the following to textured samples with texture
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angles below 15◦, where grain boundaries below 45◦ determine the properties so that the

available experimental data can be used. Figure 3 demonstrates the influence of texture on

Jc. The open and solid symbols refer to uni- (φt = ∞) and bi-axial (φt = θt) texture. The

decay angle, αc, in Equ. 4 was chosen 5 and 9, as representative for cuprate and iron-based

superconductors.[1, 2] . The upper pannel represents the suppression of Jc, the data are

normalized by J0/e (cf. Equ. 4). In case of uniaxial texture, a plateau is found at low angles

in both materials, where the in-plane misorientation dominates. A large decay angle, αc,

in Equ. 4 is crucial for large currents in case of pure out-of-plane texture. The currents

are suppressed to 9% and 1.5% for perfect out-of-plane textrue (θt = 0) in the iron-based

(αc = 9◦) and cuprate (αc = 5◦) superconductors, respectively. The low-angle plateau is

restricted to very small angles in case of bi-axial texure, when all misorientation angles are

below αc and the grain boundaries do not limit the currents anymore. If the texture becomes

weaker, αc determines the slope of the approximately exponential decrease in Jc with θt for

both, uni- and bi-axial texture.

The positive effect of the larger αc in the iron-based superconductors, is partly compen-

sated by a smaller J0. For instance, J0 was reported to be 2.8 · 106 Acm−2 for Co-doped

Ba-122 and the data for YBCO summarized in Fig. 30 of the review from Hilgenkamp und

Manhart can be described by J0 = 2 · 107 Acm−2. Much less data obtained from bi-crystals

are available for other compounds of these superconducting families. Since the properties of

BiSSCO and K-doped Ba-122 tapes and wires will be discussed later, J0 of these compounds

has to be estimated. The maximum current density that can be obtained in superconductors

scales with the depairing current density Jd, it seems hence reasonable to re-scale J0 with

the respective depairing current densities, which are about 400, 240, 110, and 75 MAcm−2 in

YBCO, BiSCCO (similar for 2212 and 2223), K- and Co-doped Ba-122, respectively. This

leads to J0 ≈ 1.25 · 107 Acm−2 for BiSCCO 2212 and 2223 and J0 ≈ 6.35 · 106 Acm−2 for

K-doped Ba-122. These data refer to low temperatures (around 4.2 K) and self-field. The re-

sulting current densities are shown in the lower panel of Fig. 3. Iron-based superconductors

are favorable against the cuprates for uni-axially textured conductors under the viewpoint of

required grain alignment. The situation is more complex in bi-axially textured conductors

where the cuprates (BiSSCO) reach higher currents at high texture crossing below Jc of

K-doped Ba-122 at around θt = 5◦. The situation is even more favorable for YBCO, since

its Jd and hence J0 are higher.
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FIG. 3: Critical current densties as a function of texture quantified by θt. The current densities

are normalized to the intraganular value (i.e. α=0) in the upper panel. The expected values of J0

for Bi-2212/2223 and K-doped Ba-122 were used to calculate the current densities shown in the

lower panel.

III. COMPARISON WITH EXPERIMENTAL DATA

The excellent work of Kametami et al.[20] provides data on texture obtained from Elec-

tron Backscatter Diffraction Orientation Imaging Microscopy (EBSD-OIM) together with

critical current densities of the same conductor. This is ideal to check the predictions of the

calculations and to validate the underlying, simplified grain boundary physics. The upper

panel in Fig. 4 compares the experimentally obtained distribution density of the grain bound-

ary angles in a Bi-2223 tape with the theoretical expectation. The gray line corresponds to

pure out-of-plane texture. The experimental data do not show this plateau-like behavior, or

the peak is much higher than the plateau, hence the in-plane orientation is likely not totally

random. This is taken into account by adding a weak in-plane alignment (φt = 33◦), which
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FIG. 4: Distribution density of grain-boundary angles in Bi-2223 tapes (upper panel) and Bi-2212

wires (lower panel) . Experimental data (symbols) were extracted from Ref. [20].

leads to a much better agreement with the experiment (black line). The lower panel refers

to a Bi-2212 wire, where a local texture enables a high critical current. The experimental

data can be reasonable described by a similar in- and out-of-plane texture of about 5.5◦,

or assuming a high out-of-plane texture (3.5◦) and a weaker in-plane alignment. The latter

is supported by the step at 45◦ in the experimental data. However, the plateau between

5.5◦ and 5.5◦ cannot be described either way. This in turn leads to the conclusion, that the

Gaussian distribution of the grain boundary angle is a useful approximation for Bi-2212 and

2223, but does not rigorously apply.

The critical current densities predicted on the basis of these distribution densities are

represented by the stars in the lower panel of Fig. 3. 4 · 105 Acm−2 are obtained with

θt = 3.5◦, φt = 18◦ and θt = 5.5◦, φt = 5.5◦ result in 6.8 · 105 Acm−2. The latter value is in

excellent agreement to the experimental data, about 6 · 105 Acm−2 were reported for the Bi-

2212 wire at 1 T, the lowest field data are available.[20] The model somewhat underestimates
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the current density in the Bi-2223 tape. It predicts 1.1 · 105 Acm−2 for θt = 4◦, φt = 33◦,

while the self-field Jc of the tape is certainly above 2 · 105 Acm−2 (experimental data are

available only for fields down to 2 T).

Another study on grain alignment and the resulting Jc is available for K-doped Ba-122.[5].

The distribution density of the grain boundary angles given in Fig. 5 of that paper cannot

be described well by the Gaussian distributions 10 and 11. Therefore, the data of the bar

graph were extracted and linearly interpolated for the calculations, which predict a Jc of

4.4 · 105 Acm−2. This value cannot be compared to experimental data directly, since only

high field data are available at low temperature. The behavior of the volume pinning force

Fp = JcB ∝ b0.64(1 − b)2.3 observed at high temperatures[5] was hence used to extrapolate

the high field data to self field, which was estimated self-consistently from Bself ≈ µ0Jcd/2

with the sample thickness d: Jc ≈ 4.8 · 105 Acm−2.

Untextured, polycrystalline materials cannot be modeled because the behavior of Jc across

grain boundaries with misalignment angles above 45◦ is unknown. However, by looking on

the data of Katase et al.[2] (Fig. 1b), it is tempting to speculate that Jc(θGB) becomes

constant above 30◦ since the values at 30◦ and 45◦ are very similar. With this assumption

about high angle grain boundaries our approach would predict a current density of 2.2 ·

105 Acm−2 while the highest reported self-field Jc is around 1.2 · 105 Acm−2.[21]

IV. DISCUSSION

The agreement between the model and the experimental data is astonishing, given the

various assumptions and simplifications, in particular the reduction of the grain boundary

properties to one parameter and the Gaussian distribution of the grain orientation. Note

that there is no free parameter, since all parameters (Jd, J0, αc, pc) were fixed in accordance

with literature values before the calculations. The behavior of the grain boundaries are

based on experiments on PLD (pulsed laser deposition) films on bi-crystalline substrates,

which may or may not be representative for natural grain boundaries. Even in these films

the scatter of data is considerable. Also no common agreement on the values of the depair-

ing current density, Jd, (or superfluid density) of the various materials has been reached so

far. Since the parameter selection was subjective (but not biased in view of the results)

some coincidence is certainly responsible for the agreement and a discussion of quantitative
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differences is pointless. There are good reasons that the approach overestimated the critical

currents in polycrystalline conductors: The superconducting matrix is assumed to be per-

fect (no voids, secondary phases etc.) and the average self-field is certainly smaller at the

artificial grain boundaries than in the conductors under consideration. On the other hand,

there a good reasons for the opposite as well: The critical current density along the very

planar grain boundaries resulting from PLD are smaller than those across meandering grain

boundaries,[19] which often arise from other synthesis techniques. Percolating currents could

preferentially cross grain-boundaries under reduced Lorentz force, and last but not least the

large aspect ratio of the grains in particular in the BiSCCO compounds could enable a

much higher macroscopic (longitudinal) current density than the local (mainly transversal)

inter-grain current densities[22] (cf. brick wall model[6, 7]).

The model is restricted so far to the self-field limit and to textured materials mainly

because of the availability of data on grain boundary currents. The extension to untextured

materials or materials containing a significant fraction of grain boundaries with misalignment

angles above 45◦ is straight forward when the according experimental data or theoretical

predictions become available. Predicting in-field currents might be more complex, because

the orientation of the local field with respect to the grain boundary becomes of importance

and is hard to address within this approach.

V. CONCLUSIONS

A model for the quantitative prediction of the macroscopic critical currents based on

experimental data for the texture and grain boundary properties was developed and suc-

cessfully applied to Bi-2212 tapes, Bi-2212 wires and Ba-122 tapes. The good agreement

between prediction and experiment indicate that the simplified grain boundary physics cov-

ers the essential physics of imperfectly textured high temperature superconductors. For

(perfect) uniaxial texture (out-of-plane), the currents are suppressed to 9% and 1.5% com-

pared to highly biaxially textured materials in the iron-based and cuprate superconductors,

respectively. A reliable prediction for untextured materials is not possible, because the

relevant grain boundaries have a misorientation above 45 in that case and only very few

experimental data exist for such high angle grain boundaries.

12



VI. APPENDIX

A. Grain boundary angle between two adjacent grains

Without loss of generality, the crystallographic axes of the first grain are assumed to be

parallel to the x-, y-, and z-axes of the Cartesian coordinate system. The crystallographic

axes of the other grain can be considered as the axes of another coordinate system and the

unit vectors of ~a, ~b, and ~c define the transformation matrix between these two coordinate

systems

T =


− ~ea −

− ~eb −

− ~ec −

 (12)

T then also defines the rotation of the two crystallographic lattices and the rotation angle

can be easily obtained from

trace(T ) = 1 + 2 cosα (13)

The rotation axis is the eigenvector of T to the eigenvalue 1.

B. Distribution of grain boundary angles

We start with perfectly aligned grains (i.e. α = 0), their (normalized) crystallographic

axes defining our coordinate system. In order to change the orientation of the second grain,

we first establish its in-plane misorientation by a rotation about ~ez (or ~ec)

Rin =


cosφin − sinφin 0

sinφin cosφin 0

0 0 1

 (14)

The out-of-plane misorientation is then defined by the orientation of ~c with its unit vector

~ec =


sin θ cosφ

sin θ sinφ

cos θ

 (15)

θ defines the out-of-plane misorientation angle. To obtain ~ec from ~ez and keep the in-plane

misorientation unaltered, the second grain has to be rotated about ~n = ~ez × ~ec/|~ez × ~ec| =

13



(− sinφ, cosφ, 0)T . The corresponding rotation matrix is given by

Rout =


n2
1(1− cos θ) + cosθ n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ n2
2(1− cos θ) + cosθ n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ n2
3(1− cos θ) + cosθ


(16)

The rotation (or misalignment) angle can be calculated from Equ. 13 with T = RoutRin

cosα =
1

2
(cos θ + cos θ cosφin + cosφin − 1) (17)

For a random orientation, φin is equally distributed on [0 2π] (i.e. f(φin) = 1/2π) and θ

is distributed as f(θ) = 1
2

sin θ on [0 π]. The distribution function for α is obtained by

calculating the fraction of grains with a misalignement angle less than or equal to α. φin

can vary between 0 and α, and cos θ is, for a given α and φin, restricted by Equ. 17

F (α) =

∫ α

0

1

2π
dφin

∫ arccos
2 cosα−cosφin+1

1+cosφin

0

1

2
sin θdθ =

1

2π
(α− sinα) (18)

If θ and φin are restricted to π/2 and π/4, respectively, the maximum misalignement angle

becomes αmax = 1.7178 = 98.42◦ and the distribution functions 7-9 are obtained.The dif-

ferent angular regions result from the changing limits of the integration over φin: the upper

limit is fixed to π/4 for α > π/4, the lower limit becomes larger than zero for α > π/2.

Since it turned out to be difficult to derive analytical expression for non-random grain

orientations, numerical simulations were performed. Cubic grains (typically about 1503)

were arranged on a simple cubic lattice (coordination number of 6). Their orientation was

chosen as outlined above (in- and out-of-plane rotation), but allowing a preferred grain

orientation according to Equs. 10 and 11 if desired. The coordinate system of the first grain

is transformed into the system of the other grain by T = T T2 T1 where T1 and T2 are the

rotation matrices of the two grains defined as above (T = RoutRin). The rotation angle is

then in principle obtained from relation 13. However, the symmetries has to be taken into

account which results in

cosα =
1

2
(max(|T1,1|+ |T2,2|, |T1,2|+ |T2,1|) + |T3,3| − 1) (19)

The absolute value reflect inversion symmetry, the maximum refers to an exchange of the

a- and b-axes. The grain boundary angles of all pairs of grains are calculated and assigned

to the respective angular interval to derive the distribution density.
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