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We have designed and built an optically-isolated millimeter-wave detection system to prevent interference from
a nearby, powerful, 2.45 GHz microwave source in millimeter-wave propagation experiments in TORPEX. A
series of tests demonstrates excellent system noise immunity and the ability to observe effects that cannot be
resolved in a setup using a bare Schottky diode detector.

I. INTRODUCTION

Millimeter waves (mmw) are electromagnetic (EM)
waves with wavelength approximately in the range ≈
1 − 10 mm, which in free-space corresponds to frequen-
cies ≈ 30 − 300 GHz. These types of waves have ap-
plications in many different branches of science and en-
gineering, including astrophysics1, telecommunications2,
radar systems3 and medicine4. In plasma physics,
mmws are widely used in diagnostic systems such as
interferometers5 as well as for plasma heating in fusion-
grade tokamaks6. At present, there is significant interest
in gaining understanding on the propagation of mmws
in turbulent plasmas7,8, as it may have important impli-
cations in the deposition of heating power and current
drive efficiency in fusion experiments9.

Schottky diode detectors (SDD) provide a simple
means of detecting mmws5. When operating in square-
law regime5,10, SDDs produce a voltage proportional to
the input mmw power. The response is very wide-band,
making SDDs very convenient for general purpose detec-
tion. Furthermore, some SDDs are zero-bias, requiring
no additional biasing to operate. These types of SDD are
particularly well suited for detection of mmws in areas of
limited access since they can work essentially standalone.
Indeed, the only connection that they require is from the
output to the read-out electronics.

In the TORoidal Plasma EXperiment (TORPEX11,12)
we installed a zero-bias SDD to detect a ≈ 30 GHz mmw
beam that is made to traverse a turbulent plasma. The
plasma is generated and sustained with a separate mag-
netron that produces heating microwaves (HW) at a fre-
quency fheat = 2.45 GHz with typical power Pheat =
100 − 1000 W. In early trials, it was observed that the
activation of HWs strongly affected the SDD despite the
mmw receiver having been designed to block EM waves
at the lower HW frequencies (Sec. II). Noise in the SDD
output signal reached an unacceptable level for experi-
ments whose aim was to distinguish fluctuations in the
detection of the ≈ 30 GHz mmw beam8.

Efforts at better shielding the SDD showed only lim-
ited improvement. The experimental setup allows differ-
ent types of EM coupling13? ,14 which make it possible
for magnetron-related noise or spurious power from HWs

to couple to the SDD and produce an unwanted response.
The identification of the noise paths, nevertheless, proved
to be extremely challenging, especially because the wide-
band character of the SDD prevents narrowing the search
to specific frequencies. Instead, we built an optically-
isolated mmw detector, based on a zero-bias SDD, as an
alternative to alleviate the effect of HWs on mmw detec-
tion (Sec. III). The capabilities of the system are demon-
strated with a set of measurements and comparisons to
data obtained using a bare SDD (Sec. IV).

Although the detector is developed in a plasma physics
context, the design may be of interest in other areas of
science and engineering where SDDs are used for mmw
detection, and where pickup from nearby, powerful, ∼
2.4 GHz microwave sources raises concern.

II. TORPEX AND MMW EXPERIMENTAL SETUP

TORPEX11,12 (Fig. 1) is a toroidal plasma device lo-
cated at the Swiss Plasma Center in Lausanne, Switzer-
land. With a major radius R = 1 m and minor radius
a = 20 cm, TORPEX is used in basic studies of mag-
netized plasmas of hydrogen (or other gases11,12) with
typical particle densities 1015 − 1017 m−3, electron tem-
peratures 1− 5 eV and plasma potentials 10− 20 V. The
discharges are produced and sustained by absorption of
the 2.45 GHz HWs at the electron-cyclotron and upper-
hybrid resonances15. In the typical Simple Magnetized
Torus (SMT) configuration, the magnetic field has a
small vertical component Bz ≤ 5 mT and a dominant
toroidal component Bφ ≈ 70 mT. SMT plasmas exhibit
turbulent features that are well suited for studies of tur-
bulent plasma structures11,12,16.

HWs are generated using a Muegge MH050KS-310BN
magnetron head. In our experiments, we only consider
Pheat ≤ 600 W and continuous discharges of duration
≤ 1 s, even though the system can allow for uninter-
rupted operation at higher power and different kinds of
modulation15,17. HWs are transported from the mag-
netron to the TORPEX vessel via a transmission line
composed of a WR430 rectangular waveguide, a step
twist and a WR340 waveguide connected radially at the
low field side of the torus (Fig. 1). HWs at the out-
let of the waveguide are expected to be mainly O-mode
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FIG. 1. The TORPEX device viewed from the magnetron
head. The output end of the magnetron (a) is visible in the
foreground. (b) HW transmission line. The transmitted HW
power is measured near the step twist between the waveg-
uides. (c) TORPEX stainless steel toroidal vessel. The coils
surrounding it are used to generate the toroidal magnetic field.
(d) Approximate toroidal location of mmw system.

(with polarization parallel to the magnetic field5). How-
ever, there is also an X-mode component (perpendicular
to the B-field) due to, among other things, the absence
of a focusing element at injection17. Given the low first
pass absorption of HWs in typical experiments, this ini-
tial polarization is expected to be promptly lost due to
reflections on the vessel walls17. As TORPEX is made
of stainless steel11, grounded, and closed-off for the most
part, HW power is largely confined to the interior of the
toroidal vessel. However, the use of dielectric interfaces
makes it possible for some HWs to leak out. Specifically,
some diagnostics require clear windows which may pro-
vide paths of propagation of HWs towards the exterior of
the vessel. Among these are the Plexiglas flanges used as
vacuum interfaces for the injection and detection of the
mmw beam.

Figure 2 shows the mmw system. Millimeter waves
of frequency ≈ 30 GHz and power ≈ 10.5 mW are gen-
erated with a Gunn-diode source and launched verti-
cally across TORPEX using a pyramidal horn antenna.
The waves have X-mode polarization but their dispersion
characteristics are very similar to O-mode for the plasmas
and B-fields used in our experiments. Detection is per-
formed with an assembly consisting of a pyramidal horn
of dimensions 4.2 cm × 5.5 cm (vertically aligned with
the transmission horn) and a WR22 waveguide of length
≈ 22 cm leading to the detector circuitry (Sec. III). The
waveguide has a cutoff frequency of 26.35 GHz and blocks
any incoming 2.45 GHz waves. Propagation of harmonics
of HW through the waveguide is in principle possible but
of no concern, as harmonics of the HWs have negligible
power compared to the expected ∼ 1 mW mmws. This
observation follows from dedicated measurements of the
HW spectral content using a Hewlett-Packard HP-70000
Spectrum Analyzer and an ultra wide bandwidth Vivaldi
antenna18 with S11 parameter19 ≤ −6 dB for the band

FIG. 2. Millimeter-wave system installed in TORPEX. (a)
mmw source. (b) mmws are injected on top through a Plex-
iglas window using a pyramidal horn. (c) TORPEX vessel
and toroidal B-field coils. (d) Second Plexiglas port, receiv-
ing pyramidal horn and waveguide. The last two items are
hidden from view by the plastic support that fixes the orienta-
tion of the antenna directly in front of the transmission horn.
(e) Detection system of mmws. There is no direct contact
between the system and any metallic surfaces, as the detec-
tor rests on an insulating stand. Notice the fiber-optics cable
connected in front.

2 − 22 GHz. The antenna, which is directly connected
to the spectrum analyzer, is placed at the same location
and with the same polarization as the mmw receiver horn.
Figure 3 shows the EM power at the frequencies of some
harmonics for different configurations of HW. Harmonics
higher than the third give no signature above noise and
are taken to be equivalent to the lowest value compatible
with results and noise at lower frequencies. However, we
expect their true value to be much lower, assuming power
decreases with increasing harmonic number as suggested
by PIC simulations20? . Thus, we expect < 80 dB of HW
harmonic content above the WR22 waveguide cutoff. As-
suming the effective area19 of the Vivaldi antenna to be
comparable to that of the horn, we can use the measured
≤ 15 dBm at the fundamental (in all HW configurations)
to conclude that at most −65 dBm = 3 × 10−7 mW of
HW power should make it through to the detector. This
value is negligible compared to the mmw power.

Spurious HWs can nevertheless be present in areas sur-
rounding the detector system since it is located near a
Plexiglas port. These HWs may couple to the detec-
tor directly or through connecting cables13? ,14 and pro-
duce an unwanted response. Furthermore, there exists a
path from the steel vessel to the magnetron through the
ground connection, so conductive, capacitive and even
radiative13? coupling can exist between the magnetron
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FIG. 3. Power of HW harmonics normalized to the power at
the fundamental frequency (≈ 2.45 GHz). Data is taken in
three different configurations: Pheat = 300 W and no plasma
(red diamonds), Pheat = 400 W and no plasma (blue squares),
and Pheat = 400 W with plasma (green circles; see Sec. IV
for description of plasma). The solid markers indicate ob-
servations of harmonics above the noise level, with the latter
shown as shaded areas (colored according to each configu-
ration). Measurements were also performed at some higher
harmonics that gave no signature above noise, so we draw
them for reference at the lowest value compatible with results
and noise at lower frequencies (hollow markers).

and any circuitry connected to or in proximity of the
vessel. Thus, any detection electronics placed in the area
must be properly built to avoid situations where noise
significantly degrades the signal, as in the case of the
original experiments using a bare SDD.

III. OPTICALLY-ISOLATED MMW DETECTOR

To avoid noise coupling, we designed and built an
optically-isolated mmw detector (OIMD). Figure 4 shows
the system and all its components. The pyramidal horn
antenna and WR22 waveguide direct incoming mmws to
a Farran Technology zero-bias SDD. The SDD generates
a voltage proportional to the power of the mmws5,10 (the
so called square-law regime) which is output through an
SMA connector on its back. Connected there is a coaxial
cable with a 560 Ω Resistive Load (RL) between the inner
conductor and the shielding chosen to ensure10 that the
SDD remain in the same operating regime for all levels
of mmw power expected in our experiments (≈ 2 mW).
Dedicated measurements for this setup show a sensitivity
of −101.3 mV/mW which remains linear up to ≈ 3 mW.

The coax cable goes to the input of an Analog Modules
model 732T/R fiber optic link21. The link is composed of
a transmitter module, which generates an optical signal
from the input voltage and sends it through an optical
fiber, and a receiver which converts the signal in the fiber
back into a voltage. In this way, signals with frequencies
DC−10 MHz can be sent and recovered avoiding all elec-
trical connections. The particular transmitter used in our

FIG. 4. Optically-isolated mmw detector (OIMD). (a) Pyra-
midal horn antenna. (b) WR22 waveguide. The plastic sup-
port around it is used to fix the orientation of the antenna
during operations (see Fig. 2). (c) Zero-bias SDD. (d) Resis-
tive load (RL). (e) Optical link transmitter. (f) Fiber optics.
(g) Optical link receiver. The output of this unit can be
connected directly to the data-acquisition system. (h) Two
12 V batteries are used to power the analog-to-optical unit
and keep the circuitry isolated. They are shown disconnected
only to avoid cable clutter in the image. The optical receiver
unit (g) is powered with separate supplies or batteries (not
shown). All components in the metallic box are sealed off
using the lid (i) during operations (see Fig. 2).

setup has a 33 kΩ input impedance which is small com-
pared to the RL, so its insertion has negligible effect on
the SDD.

The SDD does not require biasing, but the optical link
transmitter does. We use two 12 V, 2.3 Ah lead acid bat-
teries to power the transmitter. The current drawn is
≤ 50 mA so the batteries allow for extended operation
times. To avoid large surge currents caused by acciden-
tal short circuits, we protect the system with fuses on
each battery. There is also a switch to power off the
transmitter when not in use, and connectors to recharge
the batteries in-situ when the system is installed in TOR-
PEX.

The SDD, RL, optical link transmitter and batteries
are all placed in a sealed stainless steel box of wall thick-
ness 3.5 mm. The box is used as ground for all electronics
within it but is not connected to the TORPEX ground.
There are no open holes that could provide a direct path
for mmws or HWs to enter the casing. Indeed, the only
holes are those of the waveguide, switch, recharging con-
nectors, and optical fiber which are nonetheless closed
off by the corresponding components. A tight lid with a
grooved seam precludes a direct line-of-sight towards the
interior of the box. Thus, the detection system is heavily
isolated from the surrounding electromagnetic environ-
ment and it is expected that noise coupling be signifi-
cantly reduced. This is verified in Sec. IV.
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IV. TESTS AND DISCUSSION

In order to determine the performance of the OIMD,
we run a series of experiments for different values of Pheat

using the setup shown in Fig. 2. We compare these ob-
servations to a “bare SDD” case, where we remove the
optical-isolation and connect the data-acquisiton system
directly to the output of the RL (Fig. 4d) using a stan-
dard 50 Ω coaxial cable.

In a typical experiment, we activate the mmw source,
then the HWs, wait 0.1 s for the magnetron to stabilize,
and record 0.2 s of the output of the OIMD, or of the bare
SDD, using a 16-bit D-tAcq ACQ196CPCI data acquisi-
tion card22 at 250 k samples/s (the card includes filtering
for proper anti-aliasing)16. Since the SDD operates in
square-law regime, the recorded voltage signal is propor-
tional to the detected EM power which, in the absence
of noise, is just the mmw power reaching the detector.
We use the measured sensitivity of the SDD (including
RL; see Sec. III) to obtain the detected power signal s(t)
from the recorded voltages. Since the gain of the opti-
cal system is set to one, the voltages measured with the
OIMD can be converted to power using the same factor.

In the case of the shots taken with a plasma, hydro-
gen gas is injected in the vessel and an SMT magnetic
field (see Sec. II) is set with Bφ = 71 mT (on axis) and
Bz = 2 mT prior to starting the HWs. This leads to dis-
charges exhibiting turbulence and intermittent structures
that can scatter mmws8.

We focus on the fluctuations around the mean δs(t) =
s(t)−〈s〉t, where 〈s〉t is the time average of s(t), to better
compare the effect of noise in the signals for the different
configurations. For reference, 〈s〉t = 1.88 mW, with a
variation < 10 % across all experiments. Figure 5 shows
experimental traces of δs(t) as well as the computed stan-
dard deviation σ(s) of s(t). The value of σ(s) summarizes
the degree of variability of the detected mmw signal and
is used to quantify the performance of the system. When
the OIMD is present, Fig. 5b shows that δs(t) is close
to data-acquisition quantization limits (least significance
bit) and has noticeably smaller variability compared to
the similar situation using a bare SDD. Indeed, Fig. 5c
shows that σ(s) is very nearly the noise baseline value,
independent of Pheat, when there is no plasma. The sit-
uation is very different for the bare SDD, where σ(s) in-
creases significantly and has a value that is many times
the baseline.

The use of the OIMD is also seen to be very impor-
tant to distinguish plasma-related variations from noise.
This is exemplified by the cases Pheat = 300 − 600 W in
Fig. 5c, where the use of the OIMD leads to values of σ(s)
significantly higher than noise when a plasma is present.
In comparison, the value of σ(s) measured with the bare
SDD is similar with plasma and without it.

FIG. 5. Experimental observations. (a) mmw power fluctu-
ations δs(t) recorded with Pheat = 400 W and a bare SDD
in the cases with plasma (blue) and without plasma (red).
(b) OIMD time trace with (blue) and without plasma (red)
for the same value of Pheat. Notice the different vertical-axis
scale. (c) σ(s) for the cases SDD with (hollow blue diamonds)
and without plasma (hollow red diamonds), and OIMD with
(solid blue circles) and without plasma (solid red circles). The
lines are not fits and are present only to guide the eye. The
baseline values of σ(s) acquired with no HWs are shown in
green for the OIMD (solid line) and the bare SDD (dashed
line). The markers at Pheat = 400 W correspond to the data
shown in (a) and (b).

V. CONCLUSION

We have designed and built an optically-isolated mmw
detector system using an SDD, an optical-link and a
metallic enclosure that protects mmw detection from
being affected by a noisy electromagnetic environment.
This is verified in a series of tests that show very good
noise immunity over a range of HW power Pheat ≤ 600W,
typical of experiments using plasmas in TORPEX.

The tests also show that use of the OIMD allows distin-
guishing mmw detection variability due to plasma-related
effects, an important prerequisite for experimental stud-
ies of propagation of mmws in turbulent plasmas. Indeed,
recent measurements and results8 show the usefulness of
the system and its relevance for future research.
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8O. Chelläı, S. Alberti, M. Baquero-Ruiz, I. Furno, T. Goodman,
F. Manke, G. Plyushchev, L. Guidi, A. Koehn, O. Maj, E. Poli,
K. Hizanidis, L. Figini and D. Ricci, Millimeter-wave beam scat-
tering by field-aligned blobs in simple magnetized toroidal plas-
mas, Phys. Rev. Lett. 120, 105001 (2018).

9E.V. Sysoeva, F. Silva, E.Z. Gusakov, S. Heuraux and A.Y.
Popov, Electron cyclotron resonance heating beam broadening in
the edge turbulent plasma of fusion machines, Nucl. Fusion 55,
033016 (2015).

10Agilent Technologies, Dynamic range extension of Schottky de-
tectors, Appl. Note 956-5 (1999).

11I. Furno, F. Avino, A. Bovet, A. Diallo, A. Fasoli, K. Gustafson,
D. Iraji, B. Labit, J. Loizu, Müller, G. Plyushchev, M. Podestà,
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17M. Podestà, Plasma production and transport in a simple mag-
netised toroidal plasma, Ph.D. dissertation (Ecole Polytechnique
Fédérale de Lausanne, Switzerland, 2007).

18P.J. Gibson, The Vivaldi aerial, 1979 9th European Microwave
Conference, Brighton, UK, 101-105 (1979).

19C.A. Balanis, Modern antenna handbook, John Wiley and Sons,
Hoboken NJ, 2008.

20J. Zhang, L. Ying-Hua, Y. Jin-Sheng, C. Le, Y. Wen-Han and X.
Wan-Chun, Research of 2.45GHZ continuous wave magnetron
harmonic, 2009 5th Asia-Pacific Conference on Environmental
Electromagnetics, Xian, China, 62-65 (2009).

21See http://www.analogmodules.com/admincenter/datasheets/732tr.pdf
for Analog Modules model 732T/R analog/digital fiber optic
link specifications.

22See http://www.d-tacq.com/acq196cpci.shtml for ACQ196CPCI
digitizer specifications.


