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A set of equations that describes particle and energy transport in a thermonuclear

plasma on the energy confinement timescale is derived. The equations thus derived

allow to study collisional and turbulent transport self-consistently retaining the ef-

fect of magnetic field geometry without assuming any separation of scales between

fluctuations and reference state. In a previous article [Phys. Plasmas 25, 032306

(2018)], transport equations holding on the reference state lengthscale have been de-

rived using the moment approach introduced in the classical review work by Hinton

and Hazeltine. Furthermore it has been shown how this approach is not suitable for

the description of smaller length-scales; e.g., the mesoscales that are naturally formed

due to equilibrium nonuniformity and/or fluctuation induced transport. In this work,

this analysis is extended to micro- and meso-scales adopting the framework of phase

space zonal structure theory. Previous results are recovered in the long wavelength

limit and, in the general case, transport equations in the phase space for particles

and energy are obtained that correctly take into account meso-scale structures.

a)Electronic mail: matteo.falessi@enea.it
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I. INTRODUCTION

Describing the evolution of macroscopic plasma profiles on long time scales i.e., of the

order of the energy confinement time or even longer, requires to treat, on the same foot-

ing, transport processes induced by Coulomb collisions and by turbulent fluctuations which,

in turn, are driven by the gradients of macroscopic profiles. The self-consistency of the

adopted description is therefore of fundamental importance. A first principle approach is

recommended and several theories based on asymptotic expansions of the kinetic equation

have been proposed, see e.g. Refs. 1–6. The expansion order required to correctly describe

transport processes, i.e., to calculate consistent fluxes in terms of fluctuating fields, is de-

termined by the time scale of required validity of the theoretical description and by the

derivation technique. Some of these works, i.e. Refs. 4–6, are based on a systematic sepa-

ration of spatio-temporal scales between microscopic fluctuations and macroscopic profiles

which allow to obtain the evolution of the latter by averaging turbulent transport fluxes

over turbulence structures. This assumption is equivalent to conjecturing that microscopic

fluctuations do not produce meso-scales in the plasma profiles i.e., spatiotemporal scales

intermediate between the macroscopic and the microscopic ones. Although this approach is

particularly convenient from the numerical perspective; i.e., it allows to simulate separately

small sub-domains of the whole plasma5,6, it is not suitable to describe particular phenomena

observed in fusion plasmas, e.g. transport barriers4, L-H transitions etc. Furthermore, we

know7–9 that fusion plasmas are characterized by the unique role of energetic particles as me-

diators of cross-scale couplings due to the fact that they can excite Alfvénic fluctuations at

their gyroscales; i.e., meso-scales for the thermal plasma. Thus, a separation of scales cannot

always be assumed and a novel approach must be developed9. Following this framework, in

a previous article10 we have derived a set of equations governing particle and energy trans-

port on the energy confinement time using standard first order gyrokinetic theory11,12. The

results of Ref. 10 10 are consistent with those of Refs. 4–6 and transport equations reduce to

the ones found therein if we introduce proper spatio-temporal averages consistently with the

assumed separation of scales. Furthermore, the formulation introduced in Ref. 10, which is

valid point wise in space and time, naturally introduces the notion of spatiotemporal scales

of equilibrium variations and of the corresponding (zonal) structures. In fact, starting from

given plasma profiles, the spatiotemporal features of the corresponding dynamic evolution
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is given by collisional and fluctuation induced fluxes, self-consistently. Thus, we cannot con-

clude that the spatiotemporal scales of the considered plasma equilibrium will be preserved

by the nonlinear evolution. What we typically know, from this analysis, is that our macro-

scopic transport equations are valid as long as the asymptotic expansion in the small drift

parameter is consistent. The derivation of a theory to describe profile corrugations on the

micro- and meso-scales self-consistently generated by nonlinear plasma behavior is the scope

of this work. In particular we will show that the theory of phase space zonal structures7,9

allows us to generalize the concept of plasma reference state10 to self-consistently include

intermediate spatiotemporal scales.

Fluctuating fields in toroidal fusion plasmas can generate toroidal symmetric structures

in the density and temperature profiles that are usually linearly stable and are charac-

terized by a slow time variation13 with respect to microscopic fluctuations. In particular,

the poloidally symmetric response of these structures is unaffected by rapid collisionless

dissipation14,15, and may be regarded as radial corrugations of the “smooth” equilibrium

profiles effectively redefining the characteristic spatiotemporal scales. These modifications

are called zonal structures and they must satisfy k‖ ≡ 0 globally. Thus, in magnetically con-

fined fusion plasmas, zonal structures correspond to long-lived or oscillating electromagnetic

perturbations with predominant variations in the radial direction. As the zonal structures

are nonlinearly excited (being linearly stable), they will scatter the primary driving instabil-

ities to shorter-wavelength stable regime domain16–18. For this reason they can importantly

regulate turbulence saturation level13–15,19–27 and, eventually, turbulent transport; and, thus,

they must be properly accounted for a self-consistent description of gyrokinetic transport.

In addition to zonal structures, more general phase space zonal structures7,9 can exist, which

are also undamped by collisionless processes and characterize the phase space of the reference

state. They represent a deviation of the plasma from the local thermodynamic equilibrium

and their dynamics crucially determine the statistical properties of transport events such

as intermittency, avalanches, bursting and/or non-local behaviors. They are particularly

important when resonant wave-particle interactions are crucial for instability and transport

processes, e.g. see Refs. 7–9. In this context and theoretical framework, zonal structures

and phase space zonal structures are self-consistent counterparts of collisionless undamped

(long-lived) nonlinear deviation of the plasma from the reference thermodynamic equilib-

rium state as a consequence of fluctuation-induced transport processes, due to emission and
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reabsorption of (toroidal equilibrium) symmetry-breaking perturbations7,8. They are even-

tually damped by collisions; but a realistic description of transport in collisionless plasmas

must self-consistently take them into account.

As anticipated above, in this work we derive particle and energy transport equations

based on the description of phase space zonal structures, and demonstrate that they reduce,

as expected, to the equations obtained in Ref. 10, when only macroscopic spatial scale

corrugations to the nonlinear evolving equilibrium are considered. As collisional transport

manifests itself on long time and length scales only, and gyrokinetic theory is based on

spatiotemporal scale separation between plasma reference state and fluctuation spectra11,12,

we discuss gyrokinetic transport equations in the collisionless, short wavelength limit. By

doing so, we are able to isolate the linear polarization response14,15, which can be considered

of higher order in the usual macroscopic plasma transport analysis, and the fluctuation

induced nonlinear fluxes, suitably modified at short scales. In general, we show that fast

radial oscillations of the profiles are of crucial importance in the self-consistent description

of the transport processes in a magnetically confined plasma.

This work is organized as follows. In Section II, we provide the definition of plasma

reference state in terms of phase space zonal structures and we introduce the notation and

the ordering of the physical quantities. In Section III, we derive the transport equations

from the evolution of phase space zonal structures. In Section IV, we compare our results

with Ref. 10 showing that the two approaches are consistent in the long wavelength limit.

Final conclusions and discussions are given in Section V.

II. THEORETICAL FRAMEWORK AND ORDERING ASSUMPTIONS

In this work, we study transport processes in strongly magnetized plasmas and, therefore,

for each species, the particle distribution function can be written as the sum of a reference

distribution function F0 and a small perturbation δf :

f = F0 + δf , (1)

where the characteristic (macroscopic) lengthscale of variation of F0, i.e. L, is such that

δf/F ∼ ρ/L ∼ δ � 1 and ρ is the Larmor radius. Following Refs. 11,28, we assume

that reference states are characterized by profiles (conventionally denoted as p0) varying on
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macroscopic spatio-temporal scales, and satisfying the following time and scale ordering:

ω−1 ∂

∂t
ln p0 = ω−1p−1

0

∂p0

∂t
∼ O(δ2) , (2)

.We further assume the so-called drift ordering:

cE

B0vth
∼ O(δ) , (3)

where vth is the particle thermal speed, and other symbols are standard. Following Ref. 11,

we adopt the gyrokinetic ordering for fluctuating quantities:

|∂/∂t|
|Ω|

∼
∣∣∣∣δBB0

∣∣∣∣ ∼ ∇‖
∇⊥
∼

k‖
k⊥
∼ O(δ) , (4)

where Ω is the particle cyclotron frequency in the reference state magnetic field. We assume

axisymmetry of the reference state and, therefore, without loss of generality, the reference

magnetic field can be written in the following form29:

B0 = F∇φ+ ∇φ×∇ψ. (5)

Following Ref. 12, we express the particle distribution function in terms of the gyrocenter

distribution function F̄ :

f =e−ρ·∇F̄ − e
m
e−ρ·∇ 〈δψgc〉

(
∂F̄
∂E + 1

B0

∂F̄
∂µ

)
+
[
e
m
δφ∂F̄

∂E

]
+ (6)

+
[
e
m

(
δφ− v‖

c
δA‖

)
1
B0

∂F̄
∂µ

+ δA⊥ × b
B0
·∇F̄

]
,

where ρ denotes the lowest-order gyroangle-dependent gyroradius vector, E = v2/2 is the

energy per unit mass, µ is the magnetic moment adiabatic invariant µ = v2
⊥/(2B0)+ . . . and:

δψgc = δφgc −
v

c
· δAgc = eρ·∇

(
δφ− v

c
· δA

)
≡ eρ·∇δψ. (7)

Now, let us formally write the leading order plasma response to zonal structures; i.e., the

component of the distribution function undamped by collisionless processes (see e.g. Ref.

7,9), in term of its adiabatic and non-adiabatic components:

δfz = e−ρ·∇δḠz +
e

m
δφ0,0

∂F̄0

∂E
, (8)

where, 0, 0 subscript to δφ indicates the m = n = 0 Fourier component, with m and n

being, respectively, the poloidal and toroidal mode numbers of the fluctuation. We have
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also assumed that the equilibrium guiding center distribution is isotropic, that is ∂µF̄0 = 0,

and that the usual low-β tokamak ordering applies. Due to its slow dynamics, governed

by nonlinear phenomena, δfz will be adopted to effectively extend the notion of plasma

reference state. The newly defined reference state will be F0 + 〈δfz〉ψ, where 〈. . . 〉ψ stand

for flux surface average, and transport processes will be described uniquely in term of the

evolution equation for δfz. This definition allows us to describe self-consistently mesoscale

corrugations of the reference state and is consistent with the conventional one, i.e. see Eq.

(1), in the long-wavelength limit.

The (leading order) non-adiabatic gyrocenter plasma response to zonal structures, δḠz,

is obtained solving the first order nonlinear gyrokinetic equation11,12:(
∂t + v‖∇‖ + vd ·∇

)
δḠz = − e

m

∂F̄0

∂E
∂

∂t
〈δψgc〉z −

c

B0

b×∇ 〈δψgc〉 ·∇δḠ

∣∣∣∣
z

, (9)

where:

〈δψgc〉z = Î0

(
δφ0,0 −

v‖
c
δA‖0,0

)
+
m

e
µÎ1δB‖0,0. (10)

The last term of Eq. (9) depends quadratically on the fluctuation strength, and is due

to fluctuations with opposite toroidal mode number, În(x) ≡ (2/x)nJn(x)30, Jn(x) are the

Bessel functions, λ2 ≡ 2(µB0/Ω
2)k2
⊥ and the definition of În acting on a generic function

g(r) =
∫
ĝ(k) exp(ik · r)dk is:

Îng(r) ≡
∫
dkeik·rÎn(λ)ĝ(k). (11)

This equation states that zonal structures are driven by zonal fields with n = m = 0 and

by the nonlinear interplay between the gyro-center response and the perpendicular gradient

of fluctuating fields that generate terms with the same property. Note that the gyro-center

zonal structure response, δḠz, must be axisymmetric in order to avoid collisionless damping

processes. The exact expression for δḠz which annihilates linear collisionless dissipation

will be derived in the next sections. Furthermore, we will show that leading order particle

and energy cross-field fluxes that are valid up to the energy confinement time scale can

be derived by means of first order gyrokinetic theory. This generalizes to an arbitrary

characteristic lengthscale of radial profiles the procedure adopted in Ref. 10, where the

first order push-forward representation of particle moments12 is exploited for a compact

derivation of transport equations valid on the energy confinement time. We show that the

two approaches are consistent and one reduces to the other as limiting case, when the plasma
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response to zonal structures is macroscopic; i.e., is described by the characteristic lengthscale

of reference fields.

III. TRANSPORT EQUATIONS

In this section, as anticipated in Sec. I, we derive particle and energy transport on the

energy confinement time from Eq. 9. Particle drift velocity due to reference fields can be

written in the following form:

vd =
v‖
Ω
∇× (bv‖). (12)

Using toroidal flux coordinates, along with the equilibrium magnetic field representation of

Eq. (5), and exploiting the axisymmetry of δḠz, we obtain:

vd ·∇ =
v‖
JΩ

[
∂

∂θ

(
Fv‖
B0

)
∂

∂ψ
− ∂

∂ψ

(
Fv‖
B0

)
∂

∂θ

]
. (13)

Furthermore, the following relation holds:

∇‖ =
1

JB

∂

∂θ
; (14)

and, therefore, we can rewrite the linear part of the free streaming operator in Eq. (9) as:

∂t + v‖

[
1− ∂

∂ψ

(
Fv‖
Ω

)]
∇‖ + v‖∇‖

(
Fv‖
Ω

)
∂

∂ψ
. (15)

Introducing the toroidal angular momentum Pφ = (e/c)(Fv‖/Ω − ψ), Eq. (15) can be

rewritten as:

∂t −
v‖c

e

[
∂Pφ
∂ψ
∇‖ −∇‖Pφ

∂

∂ψ

]
= ∂t −

v‖c

e

[
∂Pφ
∂ψ

]
θ

∇‖
∣∣
Pφ
, (16)

which explicitly shows that particles belonging to the phase space zonal structure move

along surfaces of constant Pφ. Up to the leading order in δ, the linear part of the particle

free streaming operator can therefore be written as:

∂t + v‖∇‖ + v‖∇‖
(
Fv‖
Ω

)
∂

∂ψ
. (17)

We introduce the (drift/banana center) decomposition31,32 δḠz = e−iQzδḡz and impose:

i∇‖Qz = i∇‖
(
Fv‖
Ω

)
kz

dψ/dr
, n (18)
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with kz ≡ (−i∂r), that simplifies the nonlinear gyrokinetic equation. Integrating Eq. (18),

we obtain the following expression:

Qz = F (ψ)

[
v‖
Ω
−
(v‖

Ω

)] kz
dψ/dr

, (19)

where we have introduced the average along unperturbed particle orbits:

[. . .] ≡ τ−1
b

∮
d`

v‖
[. . .] ; (20)

and τb is the time required for particles to complete an (integrable) close poloidal orbit in

the reference magnetic field. Note that introducing:

ρdrift ≡
F (ψ)

dψ/dr

[
v‖
Ω
−
(v‖

Ω

)]
, (21)

we can write the pullback operator as eiρdriftkz , which is the same formal expression used

for the guiding center pullback operator. Also the physical meaning is the same: it allows a

simplified description of the plasma in terms of “moving drift and/or banana orbits” 33,34.

Using these results, we can rewrite Eq. (9) as(
∂t + v‖∇‖

)
δḡz = eiQz

(
− e

m

∂F̄0

∂E
∂

∂t
〈δψgc〉z −

c

B0

b×∇ 〈δψgc〉 ·∇δḠ

)
. (22)

The requirement for the phase space zonal structure to be long lived; i.e., that it annihilates

the linear part of the free streaming operator, imposes that ∇‖δḡz = 0. The pullback

operator does not depend on the φ coordinate and, therefore, we obtain that δḡz must be

toroidally symmetric and characterized by m = 0. We note that δḠz = e−iQzδḡz, instead, is

not necessarily poloidally symmetric. The equation governing the evolution of δḡz is:

∂tδḡz =

[
eiQz

(
− e

m

∂F̄0

∂E
∂

∂t
〈δψgc〉z −

c

B0

b×∇ 〈δψgc〉 ·∇δḠ

)]
. (23)

Next, let us recall the relationship between lowest order bounce averaging and the flux

surface average of a velocity space integral in order to conveniently rewriting governing

equations for the moments of δfz. Consider the definitions of flux surface average and

velocity space integration,

〈. . .〉v = 2πB0

∑
v‖/|v‖|=±

∫
dµdE
|v‖|

(. . .) ,

〈. . .〉ψ =
1

V ′

∮
Jdθdφ(. . .) =

1

V ′

∮
dθdφ

B ·∇θ
(. . .),
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where J is the Jacobian of the toroidal flux coordinates and V ′ =
∮
dθdφ/B ·∇θ is the flux

surface volume element. Noting that particle motion is along B0 at the lowest order in the

drift parameter expansion; i.e.: ∫
dθ

B ·∇θ
=

∫
d`

B0

, (24)

we can derive, for any velocity space function f , the following expression:

〈〈f〉v〉ψ =
4π2

V ′

∑
v‖/|v‖|=±

∫
dµdE τbfn=0. (25)

This result shows that the flux surface average of a velocity integral depends only on the

bounce averaged response of the n = 0 toroidal Fourier harmonic at the leading order in the

asymptotic expansion. This is clearly connected with phase space zonal structures. In fact,

in the presence of fluctuations in the gyro-center particle distribution, the drift/banana-

center non-adiabatic particle response yields the following form for the phase space zonal

structure7,9:

〈δfz〉 =
(
e−iQz Î0

)
δḡz +

e

m
δφ0,0

∂F̄0

∂E
, (26)

where the gyrophase average is indicated by 〈. . . 〉. Acting on this expression by ∂t, substi-

tuting Eq. (23) and integrating in velocity space, we obtain:

∂t 〈〈δfz〉v〉ψ =
e

m
∂tδφ0,0

〈
∂F̄0

∂E

〉
v

+
4π2

V ′

∑
v‖/|v‖|=±

∫
τbdµdE

×
(
e−iQz Î0

)[
− e

m

∂F̄0

∂E

(
eiQz Î0

)
∂tδφ0,0

−eiQz
(
c

B0

b×∇ 〈δψgc〉 ·∇δḠ

)]
, (27)

where we have used Eq. (25) to remove the bounce average from the LHS of this expression.

Equation (27) is the gyrokinetic extension of Eq. (15) in Ref. 10, and it is valid for

corrugations of the reference state characterized by a lengthscale up to the particle Larmor

radius. As anticipated above, collisional transport is suppressed here but could be readily

restored. If weighted by mv2/2, Eq. (27) would give the gyrokinetic extension of Eq. (20) in

Ref. 10, and shows that fluctuation induced particle and energy transport are obtained from

the same “formal” expressions; i.e., the moments of the newly defined reference state. In

particular in the next section, we will explicitly show that, considering the long wavelength

component of zonal structures; i.e., kzL < δ−1/2, we obtain a density transport equation

that is identical to the fluctuation induced part of Eq. (15) in Ref. 10.
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IV. COMPARISON WITH PREVIOUS TREATMENTS

In order to make a comparison with the transport equations derived in 10, it is convenient

to cast Eq. (27) in a different form. We can re-write the last term of its RHS:

b×∇ 〈δψgc〉 ·∇δḠ = b · (∇r ×∇θ)

(
∂ 〈δψgc〉
∂r

∂δḠ

∂θ
− ∂ 〈δψgc〉

∂θ

∂δḠ

∂r

)
+ (28)

+ b · (∇r ×∇φ)

(
∂ 〈δψgc〉
∂r

∂δḠ

∂φ
− ∂ 〈δψgc〉

∂φ

∂δḠ

∂r

)
+

+ b · (∇φ×∇θ)

(
∂ 〈δψgc〉
∂φ

∂δḠ

∂θ
− ∂ 〈δψgc〉

∂θ

∂δḠ

∂φ

)
.

Substituting the following expressions into Eq. (28):

b · (∇r ×∇θ) =
F

(dψ/dr)

1

JB
; b · (∇r ×∇φ) =

F

(dψ/dr)

(
q

JB
− B

F

)
(29)

and noting that:

O
(

1

qR0

)
∼ k‖ = − i

JB

(
∂

∂θ
+ q(r)

∂

∂φ

)
, (30)

that (JB)−1 ∼ 1/qR0 and that ∂θ ∼ Lk⊥ ∼ δ−1k‖ when acting on plasma turbulence thus:

∂

∂θ
' −q(r) ∂

∂φ
+O(δ). (31)

We obtain, at the leading order, the following expression:

c

B
b×∇ 〈δψgc〉 ·∇δḠ

∣∣∣
z

=
c

(dψ/dr)

(
∂ 〈δψgc〉
∂φ

∂δḠ

∂r
− ∂ 〈δψgc〉

∂r

∂δḠ

∂φ

)
z

+O(δ). (32)

Therefore we can re-write the LHS of Eq. (32):

c

B
b×∇ 〈δψgc〉 ·∇δḠ|z =

c

(dψ/dr)

(
∂ 〈δψgc〉
∂φ

∂δḠ

∂r
− ∂ 〈δψgc〉

∂r

∂δḠ

∂φ

)
z

+O(δ) ' (33)

' c

(dψ/dr)

(
in 〈δψgc〉

∂δḠ

∂r
+ in

∂ 〈δψgc〉
∂r

δḠ

)
+O(δ) '

' inc

(dψ/dr)

∂

∂r

(
δḠ 〈δψgc〉

)
+O(δ) '

' c
∂

∂ψ

(
R2∇φ ·∇ 〈δψgc〉 δḠ

)
+O(δ).

Here, we have noted that zonal structures must have n = 0, which is obtained only if the

toroidal mode number of 〈δψgc〉 is opposite to the toroidal mode number of δḠ. Taking into

account Eq. (33), the equation governing zonal structures dynamics reads:

∂t 〈〈δfz〉v〉ψ =
e

m
∂tδφ0,0

〈[
1−

(
e−iQz Î0

)(
eiQz Î0

)] ∂F̄0

∂E

〉
v

− 1

V ′
∂

∂ψ

〈〈
V ′
(
e−iQz Î0

) [
ceiQzR2∇φ ·∇ 〈δψgc〉 δḠ

]〉
v

〉
ψ
. (34)
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The first two terms on the RHS represent the linear polarization response of the plasma while

the third term is the long-lived effect (not related to collisionless processes) of turbulent

transport. Mesoscales in the density profile are spontaneously produced by this term. In

order to show the consistency of the long wavelength limit of this equation, i.e.
(
eiQz Î0

)
→ 1,

with Eq. (15) of Ref. 10, we note that the first term on the RHS of Eq: (34) reads:

e

m
∂tδφ0,0

〈[
1−

(
e−iQz Î0

)(
eiQz Î0

)] ∂F̄0

∂E

〉
v

∼ (Q2
z + λ2)

eδφ

T
n0 ∼ (kzρdrift)

2δωn0 (35)

and, therefore, we can neglect this term in the study of the effect of structures with long

wavelength, i.e. kzL < δ−1/2, on the energy confinement time. Analogously, the second term

on the RHS reads:

− 1

V ′
∂

∂ψ

〈〈
V ′
(
e−iQz Î0

) [
ceiQzR2∇φ ·∇ 〈δψgc〉 δḠ

]〉
v

〉
ψ
∼

− 1

V ′
∂

∂ψ

〈〈
V ′
[
cR2∇φ ·∇ 〈δψgc〉 δḠ

]〉
v

〉
ψ

(36)

which is the fluctuation-induced term of Eq. (15) in Ref. 10.

V. CONCLUSIONS & FUTURE PERSPECTIVES

In this work, we have derived transport equations valid up to the energy confinement time

in the framework of phase spaces zonal structures theory7,9. The governing equations allow

describing multiple spatiotemporal scales generated nonlinearly, eventually invalidating the

hypothesis of scale separation4–6 between reference state and fluctuations. Furthermore, we

have shown that the equations in the long wavelength limit yields fluctuation induced fluxes

consistent with Ref. 10. Meanwhile, the resulting fluxes have the same formal expression

for both particle and energy transport, suggesting, thus, and illuminating further, that

the fundamental structures governing turbulent transport processes are phase space zonal

structures, which can be viewed as the lifting of transport processes to the phase space.

These results allow to extend the concept of plasma reference state to self-consistently include

spatiotemporal meso-scales.

In general, it is possible to obtain both collisional and fluctuation induced fluxes by study-

ing phase space zonal structures equations including an appropriate collisional term. This

requires the introduction of a gyrokinetic collision integral35–37. Gyrokinetics codes, based

on Lagrangian particle-in-cell approaches20,38–44 as well as Eulerian descriptions45–53 could
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be used to calculate fluxes, obtaining thus, a complete description of the transport processes

in magnetized plasmas on the energy confinement time. Obviously, transport is already ac-

counted for by the gyrokinetic description adopted in numerical simulations. However, the

advantage of using explicit expressions for turbulent and collisional fluxes to evolve plasma

profiles has been demonstrated in practical applications4–6 and may yield an efficient way

to approach the simulation of global plasma transport on long time scales . Furthermore,

explicit expressions of turbulent and collisional fluxes allow for higher order accuracy in the

evolution of plasma equilibrium profiles, once the accuracy of the plasma response to sym-

metry breaking perturbations is fixed10,28. The present work, adds to this framework the

possibility of self-consistently accounting of mesoscale structures that are naturally formed

in collisionless fusion plasmas in the form of phase space zonal structures.These results allow

to extend the concept of plasma reference state to self-consistently include spatiotemporal

meso-scales.

In this work, the relative ordering of temporal and spatial scales, as well as fluctuation

amplitudes, has been assumed consistent with gyrokinetic field theory of the core region

of magnetized thermonuclear plasmas. As the edge plasma region is approached, where

equilibrium magnetic field is modified from closed to open field lines, the relative ordering

of spatiotemporal scale of turbulent fluctuation spectra and transport phenomena is also

modified and not so well separated as in the plasma core. These aspects have been recently

addressed by Abel and coworkers in Ref.54. The development of a gyrokinetic field theory

that encompasses these different ordering within a unified framework is of main importance.

Progress in this research field will be crucial in order to describe transport processes on

long time scales. The present approach poses an important issue concerning collisional

transport and its synergistic interplay with fluctuation induced transport, since collisions

eventually damp phase space zonal structures and tend to bring the reference state closer

to local thermodynamic equilibrium. Because of its implications (cf., e.g., the recent review

by Sugama55, this problem will be addressed in a separate work.
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