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Abstract

The nonlinear dynamics of energetic particle (EP) driven geodesic acoustic modes (EGAM)
in tokamaks is investigated, and compared with the beam-plasma system (BPS). The EGAM
is studied with the global gyrokinetic (GK) particle-in-cell code ORB5, treating the thermal
ions and EP (in this case, fast ions) as GK and neglecting the kinetic effects of the electrons.
The wave-particle nonlinearity only is considered in the EGAM nonlinear dynamics. The
BPS is studied with a 1D code where the thermal plasma is treated as a linear dielectric, and
the EP (in this case, fast electrons) with an n-body hamiltonian formulation. A one-to-one
mapping between the EGAM and the BPS is described. The focus is on understanding and
predicting the EP redistribution in phase space. We identify here two distint regimes for the
mapping: in the low-drive regime, the BPS mapping with the EGAM is found to be complete,
and in the high-drive regime, the EGAM dynamics and the BPS dynamics are found to differ.
The transition is described with the presence of a non-negligible frequency chirping, which
affects the EGAM but not the BPS, above the identified drive threshold. The difference can
be resolved by adding an ad-hoc frequency modification to the BPS model. As a main result,
the formula for the prediction of the nonlinear width of the velocity redistribution around the
resonance velocity is provided.

1 Introduction

Zonal (i.e. axisymmetric) flows, associated to zonal radial electric fields, are known to exist in
tokamak plasmas due to the nonlinear generation by drift-wave turbulence. Both zero-frequency
zonal flows (ZFZF) [1, 2, 3] and finite frequency geodesic acoustic modes (GAM) [4, 5, 6] can be
excited. As a consequence of this energy flow from microscopic to mesoscopic scales, ZFZFs and
GAMs play a role as major turbulence saturation mechanisms. Moreover, in the presence of ener-
getic particles (EP), EP-driven GAMs (EGAM) can be excited due to inverse Landau damping.
EGAMs have been studied theoretically [7, 8, 9, 10, 11, 12, 13, 14, 15, 6] and experimentally (see
for example Ref. [16]). The role of EGAMs as possible mediators between EP and turbulence has
also been emphasized [11]. One of the main effects of EGAMs in tokamak plasmas is the redistri-
bution of the EP population (crf. Ref. [17] for the implications on the losses of counter-passing
EP). In particular, in phase space, this occurs due to nonlinear inverse Landau damping. As a
possible consequence, EGAMs might modify the efficiency of the heating mechanism of neutral
beam injectors or ion cyclotron heating.

A kinetic model is necessary for theoretically describing the EGAM. One reason is that the
EGAM has a frequency of the order of magnitude of the sound frequency ωs =

√
2cs/R0, with cs =

√

Te/mi being the sound velocity (with Te the electron temperature andmi the thermal ion mass)
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and R0 being the major radius, and this is comparable to the transit frequency of thermal ions:
therefore, resonances with the thermal ions substantially modify the EGAM frequency. Another
reason is that the damping and excitation mechanisms, i.e. respectively the Landau damping and
the inverse Landau damping, are intrinsically wave-particle mechanisms. Moreover, resonances
with electrons are found to be important for a proper determination of the damping/growth
rates of modes of the family of the GAM, and therefore, when a comparison of the theoretical
predictions with experiments is desired, kinetic effects of electrons should also be retained [18, 19].
Due to the fact that numerical simulations in 3D real space and 3D velocity space are numerically
too demanding for the present computational capabilities, and include much physics which is
not interacting with the EGAM due to separation of scales, it is desirable to reduce the model
complexity. Due to the fact that the EGAM frequency is much lower than the ion gyro-frequency,
a reduction is possible from 6D to 5D in phase space, with the gyrokinetic (GK) model. This
strongly reduces the computational times. Nevertheless, a comparison with even more simplified
reduced models is essential to identify the basic physics of the selected instability, and to push
towards modelling techniques which can act in real-time, in parallel to a tokamak discharge. Such
are 1D reduced models.

In this paper, we investigate the nonlinear dynamics of EGAMs due to wave-particle non-
linearity. A strong analogy between the EGAM and the beam-plasma system (BPS) [20, 21]
exists [9]. Although the BPS is basically a mono-dimensional (1D) problem, and the correspond-
ing unstable wave, i.e. the Langmuir wave, lives in a higher frequency domain, nevertheless both
instabilities are driven by a suprathermal species (fast ions for the EGAM, fast electrons for
the BPS) via inverse Landau damping. Moreover, although the EGAM is a 2D problem in an
equilibrium toroidal magnetic field, its excitation mechanism, i.e. the inverse Landau damping,
acts mainly in one direction, namely the direction parallel to the local equilibrium magnetic field.
Therefore, once a proper mapping is made, both instabilities can be investigated in terms of an
inverse Landau damping problem in a 1D system. As a consequence, not only the linear dynam-
ics, but also the nonlinear wave-particle dynamics has strong analogies for the two instabilities.
In particular, the bounce frequency of the EP which fall trapped into the perturbed electric field
is proportional to the square root of the perturbed electric field [9, 22], and the saturated elec-
tric field is proportional to the square of the linear growth rate [23, 22]. As a consequence, the
question arises whether also the EP redistribution in phase space can be described with similar
models for both instabilities.

The comparison of the nonlinear EP redistribution in velocity for the EGAM and the BPS is
the problem faced in this paper. The EGAM is studied here with the global GK particle-in-cell
code ORB5, which was developed in tokamak geometry for electrostatic turbulence studies [24]
and now includes the electro-magnetic multi-species extensions [25, 26]. ORB5 has been verified
against analytical theory [27] and benchmarked against GYSELA [28] and GENE [15] for the
linear dyanamics of EGAMs. Moreover, the scaling of the saturated electric field of EGAMs
with the linear growth rate, for saturation due to wave-particle nonlinearity, has been studied
with ORB5 [23]. The BPS is studied here with a 1D code treating the thermal plasma as a cold
dielectric medium and describing the dynamics of the fast electrons as an N-body problem solved
with an Hamiltonian formulation [29, 30, 31]. A mapping of the velocity space for the EGAM
system and for the bump-on-tail (BoT) paradigm for the BPS is also formulated, allowing to find
a one-to-one correspondence between EP redistribution studied in the two problems.

Two regimes are identified here: the regime where the instabilities are weakly driven shows a
very good match between the nonlinear EP redistribution observed in the two problems; on the
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other hand, above a certain threshold in the drive, a difference is found. The difference occurs
due to the nonlinear modification of the mode frequency (i.e. the frequency chirping) which exists
for the EGAMs, but is not observed for the BPS for the cases of interest. This frequency chirping
is observed here to shift the resonance velocity of the EGAM, whereas the resonance velocity of
the BPS remains constant in time. As a consequence, the EP redistribution for strongly driven
EGAM is observed to affect a region of the velocity space which slightly moves in time, creating
a qualitatively different picture. It is important to note that the scaling of the saturated electric
field with the linear growth rate was found to be quadratic in Ref. [23], and it does not change
at the threshold of the two regimes identified here. Therefore, we can state that the onset of
a non-negligible frequency chirping affects the EP redistribution in velocity space but not the
scaling of the saturated levels. The EP redistribution of the EGAM is shown to be recovered
with the BPS in the high-drive regime, by adding an ad-hoc frequency modification to the BPS
model. As a main result, the formula for the prediction of the nonlinear width of the velocity
redistribution around the resonance velocity is provided, and a good match with GK simulations
is found.

The paper is organized as follows. In Sec. 2, the gyrokinetic model of ORB5 used here for the
study of the EGAM is introduced. In Sec. 3, the equilibrium is defined and the linear dynamics of
EGAMs is described. The time evolution of the EGAM is shown in Sec. 4. Sec. 5 is devoted to a
description of the analogy between the EGAM and the beam-plasma systems, and the definition
of the mapping. The mapping is applied to the prediction of the EP redistribution in velocity
space, which is given in Sec. 6, together with the discussion of the regimes of validity.

2 The gyrokinetic model

The EGAM problem is investigated here with the global nonlinear GK particle-in-cell code ORB5.
ORB5 was written for studying electrostatic turbulence in tokamak plasmas [24], and extended
to treat multiple kinetic species (i.e. thermal ions, electrons, EP, impurities, etc) and electromag-
netic perturbations [25, 26]. A collision operator is also implemented in ORB5, for the linearized
inclusion of inter-species and like-species collisions. In this paper, electrostatic collisionless simu-
lations are performed with ORB5. Only the wave-particle nonlinearity is considered, by filtering
out all n 6= 0 modes and pushing only the EP species along the perturbed trajectories (whereas
the bulk ions and electrons follow the unperturbed trajectories).

The model equations of the electrostatic version of ORB5 are the trajectories of the markers,
and the gyrokinetic Poisson law for the scalar potential φ. These equations are derived in a
Lagrangian formulation [32]. The equations for the marker trajectories for the thermal ions and
fast ions (in the electrostatic version of the code) are [26]:

Ṙ =
1

ms
p‖

B
∗

B∗
‖

+
c

qsB
∗
‖

b×
[

µ∇B + qs∇φ̃
]

(1)

ṗ‖ = −B
∗

B∗
‖

·
[

µ∇B + qs∇φ̃
]

(2)

µ̇ = 0 (3)

The set of coordinates used for the phase space is (R, p‖, µ), i.e. respectively the gyrocenter
position, canonical parallel momentum p‖ = msv‖ and magnetic momentum µ = msv

2
⊥/(2B)

(with ms and qs being the mass and charge of the species). v‖ and v⊥ are respectively the parallel
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and perpendicular component of the particle velocity. The gyroaverage operator is labeled here
by the tilde symbol .̃ B

∗ = B + (c/qs)∇ × (b p‖), where B and b are the equilibrium magnetic
field and magnetic unitary vector.

As we are not interested here in comparing the EGAM damping/growth rates with experi-
mental observations, but only in investigating a specific piece of the nonlinear physics of EGAMs,
we neglect kinetic effects of the electrons. This is done by calculating the electron gyrocenter
density directly from the value of the scalar potential as [26]:

ne(R, t) = ne0 +
qene0

Te0

(

φ− φ̄
)

(4)

where φ̄ is the flux-surface averaged potential, instead of treating the electrons with markers
evolved with Eqs. 1, 2, 3.

We are interested here in the dynamics of zonal perturbations, and we filter out all non-zonal
components. Wave-wave coupling is neglected, by evolving the bulk-ion and electron markers
along unperturbed trajectories. This means that, in Eqs. 1, 2, 3 for the bulk ions, the last terms,
proportional to the EGAM electric field, are dropped. The nonlinear wave-particle dynamics
is studied by evolving the EP markers along the trajectories which include perturbed terms
associated with the EGAM electric field. This means that the EP markers are evolved with
Eqs. 1, 2, 3 where the terms proportional to the EGAM electric field are retained.

Finally, the gyrokinetic Poisson equation is [26]:

−
∑

s 6=e

∇ · n0smsc
2

B2
∇⊥φ =

∑

s 6=e

∫

dWsqs ˜δfs + qene(R, t) (5)

with n0s =
∫

dWsf0s. The summation over the species is performed for the bulk ions and for the
EP, whereas the electron contribution is given by qene(R, t). Here δfs = fs−f0s is the gyrocenter
perturbed distribution function, with fs and f0s being the total and equilibrium (i.e. independent
of time, assumed here to be a Maxwellian) gyrocenter distribution functions. The integrals are
over the phase space volume, with dWs = (2π/m2

s)B
∗
‖dp‖dµ being the velocity-space infinitesimal

volume element. In this paper, finite-larmor-radius effects are considered, for both thermal and
fast ions.

3 Equilibrium and linear EGAM dynamics

We consider here the same tokamak configuration adopted in Ref. [23], where the scalings of the
EGAM nonlinear saturation levels were studied. The tokamak magnetic equilibrium is defined by
a major and minor radii of R0 = 1 m and a = 0.3125 m, a magnetic field on axis of B0 = 1.9 T,
a flat safety factor radial profile, with q = 2, and circular flux surfaces (with no Grad-Shafranov
shift). Flat temperature and density profiles are considered at the equilibrium. The bulk plasma
temperature is defined by ρ∗ = ρs/a, with ρs = cs/Ωi, with cs =

√

Te/mi being the sound
speed. We choose ρ∗ = 1/128 = 0.0078 (τe = Te/Ti = 1 for all cases described in this paper),
corresponding to 2/ρ∗ = 256.
In the case of a hydrogen plasma, we get a value of the ion cyclotron frequency of Ωi = 1.82 · 108
rad/s and a temperature of Ti = 2060 eV. The sound frequency is defined as ωs = 21/2vti/R (with
vti =

√

Ti/mi, which for τe = 1 reads vti = cs). We obtain cs = 4.44 · 105 m/s. This corresponds
to the following value of the sound frequency: ωs = 6.28 · 105 rad/s.
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Figure 1: Linear frequency (left) and growth rate (right) vs EP concentration.

The energetic particle distribution function is a double bump-on-tail, with two bumps at
v‖ = ±vbump, like in Ref. [28, 23], labelled here as FEP . In this paper, vbump = 4 vti is chosen. In
order to initialize an EP distribution function which is function of the constants of motion only,
we neglect the radial dependence of the magnetic field in v‖(µ,E,R) =

√

2(E − µB)/m/vti ≃
ṽ‖(µ,E) in the Vlasov equation (details are given in Ref. [27]). Neumann and Dirichlet boundary
conditions are imposed to the scalar potential, respectively at the inner and outer boundaries,
s = 0 and s = 1.

The scan of linear simulations with different EP concentration, performed in Ref. [23], is
reported here for completeness. This defines the linear dynamics of the system. The dependence of
the linear frequency and growth rate on the EP concentration is shown in Fig. 1. For comparison,
the GAM frequency for these parameters is ωGAM = 1.8ωs.

4 Nonlinear EGAM evolution

In this Section, we describe the evolution in time of the nonlinear simulations of EGAMs per-
formed with ORB5. In this section, like in the rest of this paper, the wave-particle nonlinearity
only is considered. As an example, we consider a case with nEP/ni = 0.10. A zonal (i.e. ax-
isymmetric) radial electric field is initialized at t=0, with an amplitude of the order of 103 V/m,
and let evolve in time in a nonlinear simulation with ORB5. A typical simulation has a spatial
resolution set by a grid of (ns,nchi,nphi)=(256, 64, 16) number of points respectively in the ra-
dial, poloidal and toroidal direction, a time step of dt = 20Ω−1

i , and a number of markers of
(ntoti, ntotEP ) = (107, 107) respectively for the thermal and fast ions. An initial linear phase
is observed, where the radial electric field grows esponentially in time. In this phase the linear
frequency and growth rate is measured and checked to match with the ones of the linear simula-
tion: ωL = 1.24ωs, γL = 0.06ωs. Then, a nonlinear phase is entered, the growth rate gradually
decreases to zero, and the radial electric field saturates at t ≃ 2.5 · 104 Ω−1

i (see Fig. 2-a), when
the electric field reaches a value of δEr ≃ 3.5 · 104 V/m. This value of the saturated electric field
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Figure 2: Radial electric field in time, at different radial positions (left), and EP distribution
function at different times, vs parallel velocity (right) for an EGAM simulation with ORB5 with
nEP/ni = 0.10.

can be compared with the prediction of Ref. [23]:

δEr,th =
2RBβ2

0

ωGAM
γ2L = 3.5 · 104 V

m
(6)

where the constant β0 = 2.66 is estimated in Ref. [23] for this regime. We emphasize here that
the quadratic scaling of the electric field with the linear growth rate shown in Eq. 6 has been
found to be valid for the whole considered range of EP concentrations (the same range used
in Fig. 1). After the saturation, the EGAM enters a deep nonlinear phase (t > 2.5 · 104 Ω−1

i ),
when the electric field starts decreasing in amplitude. In this paper we are interested in the first
nonlinear phase only, up to the saturation, and we leave the study of the deep nonlinear phase
to another dedicated paper. In particular, we focus here on the nonlinear modification of the EP
distr. funct. at the time of the saturation, and on the corresponding nonlinear modification of
the EGAM frequency.

The EP distribution function redistributes in v‖ during the first nonlinear phase, causing a
relaxation of the drive due to the inverse Landau damping. The EP distribution function and the
EP perturbed distribution function of this simulation is shown in Fig. 2-b). The redistribution
of the EPs is observed to occur in a range of velocities between 2.5 vti and 4.5 vti. The EP
distribution function does not change during the linear phase, and when entering the nonlinear
phase, the redistribution occurs with higher-velocity EP moving towards lower values of v‖, as
time increases. Therefore, negative values of the perturbed distribution function are measured
at high velocities, and positive at low velocities. The resonance velocity can be calculated as
v‖res = qRωEGAM = 3.5 vti, and can be measured in Fig. 2-b as the velocity where the perturbed
distribution function changes sign. We note that this velocity measured in Fig. 2-b, for this value
of nEP/ni = 0.10, does not sensibly change in the time range of interest.

Before moving farther, we want to consider another case for comparison, with a stronger drive,
namely with nEP/ni = 0.176. The evolution in time of the radial electric field and is shown in
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Figure 3: Radial electric field in time, at different radial positions (left), and EP distribution
function at different times, vs parallel velocity (right) for an EGAM simulation with ORB5 with
nEP/ni = 0.176.

Fig. 3-a. The linear frequency and growth rate is measured and checked to match with the ones
of the linear simulation: ωL = 1.14ωs, γL = 0.094ωs. The saturated level of the radial electric
field is measured at δEr ≃ 0.8 · 105 V/m (in agreement with the prediction of Ref. [23]).

The EP distribution function of the case with nEP/ni = 0.176 is shown in Fig. 3-b, for
different times up to the saturation. Firstly, we note that the range of velocities affected by
the nonlinear modification is broader than that for the weaker drive. In fact, the redistribution
of the EPs is observed to occur in a range of velocities between 2 vti and 5 vti. Secondly, we
note that the resonance frequency, which is calculated in this case from the linear frequency as
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v‖res = qRωEGAM = 3.2 vti, does not perfectly describe the velocity of the change of sign of the
perturbed distribution function at all times. In fact, the resonance velocity is observed to grow
in time, from 3.2 vti to 3.5 vti.

The evolution of the resonance velocity in time is in relation with the EGAM nonlinear
frequency modification, i.e. the EGAM chirping. The perturbed EP distribution function can be
plotted explicitely (see Fig. 4-a). The positive peak (clump) and the negative peak (hole) can
be seen to form and evolve in time, becoming bigger and centered at higher and higher distances
from the linear resonance velocity. The location in velocity space of the peaks can be measured
and translated into resonance frequencies as ω1,2 = v‖1,2/qR (see Fig. 4-b). When compared with
the measured EGAM frequency, we note that the nonlinear EGAM frequency modification at
the time of the saturation is described with a good approximation by the resonance frequency of
the negative peak (hole). This relation offers the possibility to predict the nonlinear frequency
by approximating it with the frequency obtained by the velocity of the negative peak of the EP
perturbed distribution function (see also Ref. [10]).

In the next section, Sec. 5, we introduce the beam-plasma system (BPS) and the map linking
the BPS with the EGAM. This map shows how we can predict the EGAM EP redistribution in
velocity space.

5 Dynamics of the energetic particles: analogy with the beam-

plasma system

In the EGAM system, the equilibrium magnetic field is not uniform but has a toroidal shape.
In general, particles moving in a toroidal magnetic field can perform passing orbits, i.e. follow
the magnetic field on both low-field side and high-field side, or perform banana orbits in the
space restricted to the low-field side of the tokamak. By construction, in the EGAM problem
considered here, the energetic ions are initialized with a bump-on-tail distribution function (beam
distribution), with a relatively high parallel mean velocity along the equilibrium magnetic field,
plus a smaller isotropic thermal distribution around the mean velocity. Due to the relatively
high parallel velocity, the time derivative of their toroidal angle never vanishes (and therefore
banana orbits of the EP in the low-field side are not considered in the present treatment). During
their motion which is, to the leading order, directed along the equilibrium magnetic field, they
perform small drifts towards higher values of the minor radius, and then towards lower values of
the minor radius, known as the curvature and grad-B drifts. These drifts have zero time average:
this defines orbits with an average radial position plus a radial orbit width.

For the energetic particles, the EGAM appears as an additional zonal electric field, directed
like the minor radius, and oscillating in time with frequency ωEGAM . This radial electric field can
exchange energy with the energetic particles, due to their radial component of the trajectories,
and in particular of the curvature drift [9]: vdc = (v2‖/ΩEP )B × ∇B/B2. The radial electric

field is mainly axisymmetric, i.e. it has (m,n) = (0, 0), and the radial curvature drift has a
characteristic (m,n) = (1, 0) structure. As a consequence, the effective parallel wavenumber of
the EGAM is k‖ = 1/qR, the phase-angle is Θ = θ−ωEGAMt and its normalized time derivative is

Θ̇/ωEGAM = (v‖−v‖r)/qRωEGAM . In terms of the phase angle, the energetic particles experience
a periodic electric field, and their harmonic motion can be expressed as [9]:

Θ̈

ω2
EGAM

= − ω2
b

ω2
EGAM

sinΘ , (7)

8



where ωb is the bounce frequency of the energetic particles in the potential created by the wave.
Using these considerations, the analogy with respect to the 1D beam-plasma system (BPS) turns
out to be evident. In fact, the BPS is described as given by a Langmuir wave, excited by a
beam of energetic electrons along a given direction x. The Langmuir wave has a perturbed
electric field directed along x, oscillating at the plasma frequency ωp =

√

nee2/meǫ0. In general,
the Langmuir wave can be decomposed in Fourier in terms of the wavenumbers kℓ = ℓ(2π/L),
where L is the periodicity length of the 1D space domain of the BPS, and ℓ is a positive integer
(whereas the EGAM has only one possible wavenumber set by the equilibrium, as mentioned
above). Considering a single monochromatic wave with a chosen value of ℓ, we can focus on that,
and we denote the wavenumber as k. The phase-angle Θ experienced by the electrons in the field
of the Langmuir wave is thus Θ = kx − ωpt and the normalized variation in time of the phase
angle is Θ̇/ωp = k(v−vr)/ωp = kv/ωp−1, where the resonant velocity is defined as vr = ωp/k. As
a choice of nomenclature, we refer here to the velocities of the EGAM as v‖, and to the velocities
of the BPS as v. Similarly, we refer to the wavenumbers of the EGAM as k‖ = 1/qR, and to the
wavenumbers of the BPS as k.

In the following, we describe the detailed mapping procedure which links the EGAM frame-
work with the BPS. As already mentioned, the dynamics of the EGAM model can be reduced
in the parallel velocity direction and we start from the generic resonance condition written using
two suitable normalization constants ν1,2, i.e.,

v‖ − v‖0

ν1
=

v − vr
ν2

, (8)

where we recall that the transit resonance velocity reads v‖res = qRωEGAM(nEP ). Using the
introduced above standard normalization ν1 = vti and, for the calculation of this Section, v̄‖ =
v‖/vti, in the following, we denote with v̄‖min 6 v̄‖ 6 v̄‖max the domain of the positive bump of
energetic particles. Imposing the boundary v̄‖min = 0 7→ vmin = 0, in order to map one single
bump of energetic particles with v̄‖ > 0, we get ν2 = vr/v̄‖r and the map finally writes

v =
vr
v̄‖r

v̄‖ . (9)

Let us now introduce the following normalization: v = ωp(2π/L)
−1 u. In order to fix the dimen-

sionless resonant wavenumber ℓr, we use the condition k1vmax = ωp, with vmax = vrv̄‖max/v̄‖r,
which characterize the spectral features (wavenumbers and periodicity length). This yields to
ℓr = ℓ1v̄‖max/v̄‖r, and ℓr is determined arbitrarily fixing ℓ1 since v̄‖max and v̄‖r are given quanti-
ties from the EGAM system. We stress how the resonance condition can be rewritten as ℓrur = 1.

The map between the velocities of the two systems is now closed. The bump (positive part) of
the EP is described by the shifted Maxwellian distribution function FEP (v‖) in velocity space [23].
For modelling the EP distribution function of the EGAM in the BPS, let us now discretize the
positive bump of FEP (v‖) in n delta-like beams, equispaced in velocity space and located in v̄‖j
(with j = 1, ..., n), and assign the numbers of particles Nj for each beam distributed according to
FEP . The initial conditions on the distribution for BPS simulations are now given by Nj particles
located at

uj = v̄‖j/(ℓr v̄‖r) . (10)

For the sake of completeness, we mention that, for the simulation of the BPS, we have set n = 600,
ℓ1 = 400 and we have usedN = 106 total particles. The complete derivation of the BPS dynamical
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equation used here, is described in [29, 30] (and refs. therein), and it can be specified for one
single resonance as:

x̄′i = ui , u′i = i ℓr φ̄r e
iℓr x̄i + c.c. , φ̄′

r = −iφ̄r +
iη

2ℓ2rN

N
∑

i=1

e−iℓr x̄i , (11)

where the particle position along the x direction is labeled by xi, with i = 1, ... N (N being the
total particle number) normalized as x̄i = xi(2π/L). The Langmuir electrostatic scalar potential
φ(x, t) is expressed in terms of the Fourier component φr(k, t) and we have used: η = nB/np

(for the plasma density np assumed much greater than the beam one nB), τ = tωp (the prime
indicates derivative with respect to this variable), φ̃r = (2π/L)2eφr/mω2

p, φ̄r = φ̃re
−iτ . Eqs.(11)

are solved using a Runge-Kutta (fourth order) algorithm. For the considered time scales and for
an integration step h = 0.1, both the total energy and momentum (for the explicit expressions,
see [29]) are conserved with relative fluctuations of about 1.4× 10−5.

The BPS is closed once the density of the beam (drive) is fixed. In order to quantitatively
compare the non-linear features of two systems, we now fix the bounce (trapping) frequency ωB

normalized to the mode frequency equal for the two schemes. For the BPS, the bounce frequency
results proportional to the linear growth rate of the mode γL,BPS. The same occurs for the EGAM
system, but with a proportionality factor depending on the EP density [23]. In particular, we
get:

ωB,BPS

ωp
= α

γL,BPS

ωp
,

ωB,EGAM

ωL,EGAM
= β(n̄EP )

γL,EGAM

ωL,EGAM
. (12)

where α ≃ 3.3 (see well-known literature results [33, 34] and also [31]) while for the EGAM we
have β = β0

√

ωL,EGAM/ωGAM , with β0 = 2.66 in this regime, and ωL,EGAM depending on the
EP density [23]. For the four selected EGAM simulations, we get β(0.07, 0.10, 0.176, 0.30) ≃
[2.21, 2.17, 2.07, 1.98]. Using standard normalization for frequencies, i.e., γ̄L,BPS = γL,BPS/ωp

and γ̄L,EGAM = γL,EGAM/ωGAM , ω̄L,EGAM = ωL,EGAM/ωGAM and equaling the bounce frequen-
cies, we finally get

γ̄L,BPS =
β

α

γ̄L,EGAM

ω̄L,EGAM
. (13)

This condition preserves the linear and nonlinear features of the two systems and it is used in
the evaluation for the drive of BPS simulations from the linear dispersion relation which formally
reads as

ǫ = 1−
ω2
p

ω2
=

ηω2
p

k2

∫

+∞

−∞
dv

k ∂vF̂B(v)

kv − ω
. (14)

where F̂B(v) is the initial beam distribution function. Here, the dielectric function ǫ can be
expanded near ω ≃ ωp to deal with Langmuir modes as in Eqs.(11), i.e., ǫ ≃ 2(ω̄ − 1) (where
ω̄ = ω/ωp). Let us now use the expansion ω̄ = ω̄0 + iγ̄L,BPS, where ω̄0 is the real part of the
normalized Langmuir frequency ω̄. Using the linear character of the mapping which yields to
the normalization F̂B(v) = κFEP (v̄‖) (with κ = const.), Eq.(14) can be written in terms of the
EGAM system variables as

2(ω̄0 + iγ̄L,BPS − 1)−
ηv̄‖r

M

∫

+∞

−∞
dv̄‖

∂v̄‖FEP

v̄‖/v̄‖r − ω̄0 − iγ̄L,BPS

= 0 , (15)
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where M =
∫

+∞
−∞ dv̄‖FEP . This equation is numerically integrated assuming Eq.(13), which

guarantees the requested features described above, and provides the drive parameter η closing
the map procedure.

6 Nonlinear EP redistribution of the EGAM, and comparison

with the beam-plasma model

In this section, we compare the results of the EP redistribution due to the EGAM, with the
redistribution due to the beam-plasma system. In particular, we are aimed at predicting, from
BPS informations, the nonlinear parallel velocity spread in the positive bump of the distribution
function.

In the BPS, the single mode dynamics proceeds in an initial exponential mode growth followed
by non-linear saturation. Here the particles get trapped and begin to bounce back and forth in
the potential well generating clumps. A measure of the clumps width ∆ucNL for a generic initial
half-Gaussian velocity distribution, which can be directly extrapolated to the analysis of the
present work, has been evaluated in [31] for several cases outlining the following scaling rule as
function of the linear drive:

∆ucNL/ur = (6.64 ± 0.12) γ̄L. (16)

In order to include the dynamic role also of passing but nearly resonant particles [35], i.e. the
region involved in the effective wave particle power exchange, in the following analysis we con-
sider as the proper nonlinear particle velocity spread the scaled quantity ∆uNL ≃ χ∆ucNL with
χ ≃ 1.28. This estimate is derived [31] characterizing the active overlap of different non-linear
fluctuations [36, 37] and corresponds to the finite distortion of the distribution function, including
effects at the edges of the plateau (defined as the flattened region of the distribution function,
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Figure 5: Energetic particle distribution function averaged in space, and measured at µ ≃ 0, vs
parallel velocity, for nEP/ni = 0.07 (left-hand panel) and nEP/ni = 0.10 (right-hand panel). The
vertical dashed and continuous lines are the resonance velocity (center), with the borders of the
nonlinear velocity predicted by v‖res ±∆v‖NL.
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Figure 6: Same as FIG.5 but for nEP/ni = 0.176 (left panel) and nEP/ni = 0.30 (right panel).

mainly coinciding with the clump size). We finally obtain the desired formula for the prediction
of the nonlinear velocity spread due to the EGAM:

∆v‖NL

v‖L,res
= 8.5 γ̄BPS

L (17)

and by substituting the value of γ̄BPS
L we obtain:

∆v‖NL

v‖L,res
= 2.57

β0√
ωGAM

γEGAM
L√
ωL,EGAM

(18)

Eq. 18 has been derived for the EGAM system, using the scaling derived in Eq.(13) and the
normalized mapping of Eq. (10). For the regime of interest in this paper, we have β0 = 2.66 [23],
and ωGAM = 1.8ωs, therefore we obtain:

∆v‖NL

v‖L,res
=

5.1√
ωs

γEGAM
L√
ωL,EGAM

(19)

Let us now analyze the predictivity of Eq. 18, simplified as in Eq. 19 for the regime of
interest. Four different simulations are considered, with different values of energetic particle con-
centration: nEP/ni ∈ [0.07, 0.10, 0.176, 0.30]. The corresponding linear frequencies and growth
rates are ωL,EGAM = [1.30, 1.24, 1.14, 1.04]ωs and γL,EGAM = [0.04, 0.06, 0.09, 0.11]ωs. In all
simulations, the distribution function is averaged in space, and measured at µ ≃ 0. Snapshots
of the distribution function at different times are selected, going from the linear phase to the
instant when the first peak of the electric field is reached, i.e. at saturation. In FIG.5 and
FIG.6, the distribution functions measured with ORB5 are shown to be modified by the non-
linear interaction with the EGAM, with a certain width in the velocity space. The position of
the linear resonance velocity and the nonlinearly modified resonance velocity are shown for each
simulation respectively as a dashed vertical black line, and a continuous vertical black line. We
can now compare with the predicted values of Eq. 19: ∆v‖NL/v‖L,res = [0.17, 0.28, 0.45, 0.55].
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Figure 7: Plot of the BPS distribution function at saturation (dashed-black) mapped back in
the v‖ space, over the evolution of the EP profile for nEP/ni = 0.176 (left-hand panel) and
nEP/ni = 0.3 (right-hand panel).

The corresponding predicted range is delimited by vertical red lines in FIG.5 and FIG.6. The
dashed lines correspond to the range calculated with respect to the linear resonance velocity, and
the continuous lines with respect to the nonlinearly modified resonance velocity. Note that the
predicted width of the velocity domain of EP redistribution, centered at the nonlinearly modified
resonance velocity, fits very well with the results of ORB5. Note also that, for the two cases with
lowest drive, the nonlinear modification of the resonance velocity is negligible, and therefore the
predicted width of the velocity domain of EP redistribution fits very well the results of ORB5,
even when centered at the linear resonance velocity.

In summary, two distinct regimes can be identified. When the instabilities are weakly driven
(FIG.5), a very good match between the estimated deviation v‖res ± ∆v‖NL and the nonlinear
EP redistribution is observed, where v‖res is the linear resonance velocity. Otherwise, in the
strongly driven regime (FIG.6) the importance of the frequency chirping comes out. In particular,
nonetheless the value v‖res ±∆v‖NL remains very predictive, as long as the nonlinearly modified
resonance velocity is chosen as center of the EP redistribution due the EGAM.

The nonlinear frequency shift which is characteristic of the EGAM, can not be intrinsically
implemented in the BPS model. In fact, differences remain in the physics of the EGAM and
the BPS. This clearly emerge in FIG.7, where the distribution function of the BPS at saturation
(dashed-black line), mapped back in the v‖ space, is overplotted on the evolution of the EP profile
for nEP/ni = 0.176 and nEP/ni = 0.3. In particular, it is evident how the discrepancy due the
fixed character (at ∼ ωp) of the Langmuir resonance gives rise to a very different morphology of
the distribution function, although well predicting the effective nonlinear velocity spread. Also
the inclusion of additional modes with artificial ad hoc damping rates results in a drastically non-
comparable non-linear dynamics, underlining the intrinsic differences of the physical systems.

7 Conclusions and discussion

Geodesic acoustic modes (GAMs), i.e. finite frequency zonal (i.e. axisymmetric) flows with
mainly radial electric field polarization, are known to be important in tokamaks due to their
interaction with turbulence. GAMs can also be excited by energetic particles (EPs), taking the
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name of EGAMs. In the view of understanding and predicting the EP redistribution in tokamaks,
the linear and nonlinear dynamics of EGAMs should be properly theoretically understood.

In this paper, we have investigated the nonlineary dynamics of EGAMs with particular inter-
est in the EP redistribution in velocity space. As a tool of investigation of the nonlinear inverse
Landau damping, which is responsible of the EGAM saturation and EP redistribution, a com-
parison of the EGAM dynamics with the beam-plasma system (BPS) is done. Although the BPS
describes the interaction of EP with a different mode, i.e. the Langmuir wave in a 1D geometry,
nevertheless, analogies with the EGAM had been suggested in previous papers. These analogies
are investigated here and used to build a mapping of the two systems. The mapping is used to
understand and predict the EP redistribution of the EGAM.

The EGAM is investigated here with collisionless electrostatic simulations with the gyroki-
netic (GK) particle-in-cell code ORB5. Only the wave-particle nonlinearity is retained in the
simulations presented here, meaning that the markers for thermal ions follow unperturbed trajec-
tories in phase space. The GK model allows to study the EGAM dynamics retaining the crucial
physics of the resonances with thermal and fast ions. The BPS is investigated with the a 1D
code treating the thermal plasma as a cold dielectric medium and describing the dynamics of
the fast particles (fast electrons in the case of the BPS) as an N-body problem solved with an
Hamiltonian formulation.

The GK simulations of the EGAM show that, after a first linear growth, the EGAM enters a
first nonlinear phase where the EP distribution function suffers a modification due to the EGAM
field. A saturation of the EGAM field occurs, and then a deep nonlinear phase is entered, where
nonlinear oscillations of the fields are observed. In this paper, we are interested in the first
nonlinear phase only, up to the first saturation. The EP population is observed to redistribute,
with EP going from higher to lower values of the parallel component of the velocity, as the
EGAM grows in amplitude. The resonant velocity is also measured with ORB5 in the different
cases considered.

The mapping of the EGAM and the BPS is then described, and the comparison of the EP
redistribution in velocity space is shown. In particular, the main result is the prediction of the
width of the velocity space ∆uNL which is affected by the EGAM, around the resonance. The
implication of this result is evident, as reduced models are needed for predicting the nonlinear
dynamics of instabilities in tokamaks, instead of using numerically expansive GK simulations.
In fact, BPS simulations are numerically much cheaper, and therefore the mapping described
here offers a tool for predicting the EP redistribution in regimes where EGAMs experience wave-
particle nonlinear saturation.

We have also found a transition among two regimes: for weakly driven EGAMs, the resonant
velocity does not evolve in time during the first nonlinear phase, exactly like in the BPS problem;
on the other hand, above a certain threshold in drive, the resonant velocity slightly increases in
time, and therefore a difference of the EGAM and BPS is found. The increase of the resonant
velocity in the high-drive regime is consistent with the nonlinear frequency modification (i.e. the
frequency chirping) which is present for the EGAM, and is absent for the BPS considered here.
The difference can be cured by calculating the nonlinear width ∆uNL around the new value of
the resonant velocity. This proves that the one-to-one correspondence of the EP redistribution
around the resonance is completely described by the nonlinear inverse Landau damping which is
included in the model of the BPS. Therefore, we can state that the EP are redistributed around
the resonance by the EGAM for a purely 1D problem which is the same as the BPS, namely the
nonlinear inverse Landau damping. Having tried to include many modes in the BPS, we have
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observed that this can modify the EP redistribution, but leads to a overestimation of the EP
redistribution due to a lack of damping in the different modes.

In the view of the continuation of this work, several next steps can be done in the direction
of getting closer to more and more realistic scenarios. For example, the inclusion of wave-wave
coupling of the EGAM with itself is under investigation. Kinetic electron effects should also
be considered, as the electron resonances might affect the Landau damping. The inclusion of
turbulence is also in progress, as a mean of modifying the EGAM saturation level and EP redis-
tribution.
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