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Abstract (600 characters with space!) 

An empirical linear correlation of hardness and shear modulus was revealed for the 
spinel nitrides of the group 14 elements, γ-M3N4 where M=Si, Ge, Sn, which also holds for 
the hexagonal α- and β-phases of Si3N4. The correlation, completed here by a careful 
measurement of the bulk modulus of γ-Sn3N4, was used to predict the hardness of 
hypothetical dense phases of C3N4 which elastic moduli we calculated. Our calculation 
approach was supported by the agreement with the experimental data for γ-M3N4. The 
hardness of all proposed dense polymorphs of C3N4 are predicted to be below that of 
diamond. 
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I. INTRODUCTION 
In the 1990’s the excitement about materials harder than diamond was heated up after 

theoretical predictions of Liu and Cohen [1] that the hardness of the hypothetical carbon 
nitride β-C3N4 with the hexagonal structure, analogous to that of the well-known β-Si3N4 
(Greek letters indicate in this work particular types of crystal structures described below), 
may be comparable with that of diamond. The Vickers hardness of HV=100 GPa is adapted 
in the literature for the latter well known dense phase of carbon forming in the deep Earth 
at high pressures and temperatures [2]. The basis of this speculation was the assumption 
that hardness of a covalent solid can be reliably predicted from its bulk modulus B0 at 
atmospheric pressure. The B0 value of β-C3N4 was estimated from an empirical dependence 
of the bulk moduli of covalent solids on the interatomic bond length as described in Ref. 
[1]. Later on, Teter and Hemley [3] theoretically examined other hypothetical polymorphs 
of C3N4, among which the cubic c-C3N4 (derived from the Willemite-II structure of 
Zn2SiO4) was predicted to exhibit B0=496 GPa, which is significantly higher than that of 
diamond (B0 =442 GPa [4]), and to be stable at high pressures. The proposition that c-C3N4, 
if synthesized, could be harder than diamond heated up the search for dense forms of this 
hypothetical compound even further. For the next dense polymorphs such as α-C3N4 
(hexagonal crystal structure analogous to that of α-Si3N4) and pseudo-cubic C3N4 (derived 
from the zinc-blende structure) B0 above 400 GPa was predicted [3]. Similarly, further 
hypothetical polymorphs of C3N4 examined theoretically in multiple publications, such as 
γ-C3N4 having the cubic spinel structure and zb-C3N4 having the cubic zinc-blende structure 
showed bulk moduli comparable with that of diamond [5]. Theoretical studies on C3N4 
were accompanied by multiple attempts to produce a dense form of this compound, but 
none of the reports about a successful synthesis could be reproduced so far e.g.[6,7]. 
Stabilization of the claimed C3N4 products by hydrogen (usually present in the starting 
reactants) was considered only sporadically; e.g.[8,9]. With the research extension in this 
field, doubts about the reliability of B0 as a hardness predictor grew and empirical evidence 
was presented that the shear modulus G0 should be used instead [10]. The theoretical 
justification of this statement can be summarized as follows [11]: Hardness (or yield stress) 
is a value describing material resistance to plastic deformations which occur only when 
shear stress is applied. According to the Frenkel analysis, the strength of an ideal crystalline 
solid is proportional to its G0. The strength of a real crystal is significantly smaller than that 
of an ideal crystal and is controlled by movement and multiplication of lattice defects such 
as dislocations. The shear stress needed for activation of these processes is also 
proportional to G0. Even though a correlation of hardness and G0 is supported empirically, a 
significant scatter can be recognized if data for materials of different nature (e.g., ionic vs. 
covalent compounds) are compared. The attempts to establish empirical correlations for 
covalent compounds of one family (e.g. for the group 14 elements having diamond 
structure [12]) are rare because the number of such families, where G0 and H extend over a 
reasonable range, is strongly limited. Another source of significant uncertainties is the fact 
that experimental G0 and hardness of considered compounds are usually reported in distinct 
publications for samples of different origin with different or not described state of porosity, 
amount and nature of sintering additives etc. Up to very recently first-principles 
calculations provided rare and strongly deviating values of shear moduli of dense C3N4 
polymorphs [3,13,14]. Extended calculations of their single crystal elastic moduli Cij and 
then G0 were presented in the last years [15,16], but without careful validation of the 
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calculation methods via comparison with experimental data for existing related compounds 
such as α-, β- or γ-Si3N4. 

 In this work we unveil an empirical linear correlation of experimental values of G0 
and Hn (hardness measured using the nanoindentation testing) for dense nitrides of the 
group 14 elements (to which carbon belongs also) having spinel structure γ-M3N4 (where 
M = Si, Ge, and Sn). In particular, we made a selection of reliable experimental data on G0 
and Hn of the spinel nitrides and completed it by a thorough measurement of B0 of γ-Sn3N4 
permitting deriving of its G0 from the earlier nanoindentation data [17]. The family of 
spinel nitrides, discovered in 1999 in the course of the search for a superhard C3N4 [18-22], 
is today well examined and measurements of elastic moduli and hardness for the same 
samples are available in the literature with one exception we remedy here. Spinel-nitrides 
are one of a few compound families having at least three members with a hardness 
spreading over a broad range. Obviously, three is the minimal number of data pairs needed 
to confirm empirically a linear relation between two physical values, e.g. Hn and G0. 
Reliable data for G0 and nanohardness Hn were obtained for γ-Si3N4 and γ-Ge3N4 from 
measurements of equations of state (EOS) on compression, V(P), of the reduced elastic 
modulus Er and Hn in nanoindentation tests, and of sound velocities via Brillouin 
spectroscopy [17,23,24]. The values of Er and Hn were measured also for densified samples 
of γ-Sn3N4 [17] but the earlier experimental B0, needed to derive G0 from Er using the well 
established approach [25,26], is less reliable: In only one work, B0 of γ-Sn3N4 was obtained 
from V(P) measured to relatively low pressures of 26 GPa and potentially systematically  
biased due to use of a methanol-ethanol-water pressure transmitting medium becoming 
non-hydrostatic above 11 GPa [27]. This shortcoming is remedied here: V(P) of γ-Sn3N4 
was accurately measured to much higher pressures under quasihydrostatic loading, and the 
G0 value derived from the B0 one that we have obtained, combined with the earlier reported 
Er. The result permits us to confirm the reliability of a linear dependence of Hn on G0 for 
the three spinel nitrides. Furthermore, we have performed first-principles calculations of 
single crystal elastic moduli Cij, B0, and G0 for the existing γ-M3N4 in order to validate our 
calculation approach by comparison with the reliable experimental data. Then, Cij values of 
all proposed dense polymorphs of C3N4 were calculated and G0 values for the related 
isotropic polycrystalline bodies were derived. We used these values to estimate Hn of all 
proposed dense C3N4 polymorphs using the established here empirical correlation Hn(G0) 
for γ-M3N4 and, finally, to make a conclusion about the hardness of dense C3N4 materials. 

 

II. METHODS 
The sample of γ-Sn3N4 (γ indicates spinel structure described by the space group 

(S.G.) Fd3�m where 2/3 of cations are octahedrally coordinated and the remaining 1/3 is 
tetrahedrally coordinated by anions) used in this work was synthesized earlier [22]. It 
contained minor admixtures of SnO2 and SnO (Figure 1) which, however, did not bias our 
measurement of B0 and the first pressure derivative, B0´. This is because X-ray diffraction 
(XRD) provides the unit cell volume (equivalent to the specific volume of a completely 
densified material) for each of the compounds independently. The unit cell parameter of γ-
Sn3N4 at ambient conditions was measured using a standard diffractometer (Cu Kα1 
radiation). 
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The EOS of γ-Sn3N4 was measured on compression in a diamond anvil cell (DAC) 
with anvils having culets of 350 µm in diameter. A platelet of the powder sample of about 
50 μm in diameter and 10 µm in thickness (obtained by a preliminary compaction between 
the diamond anvils) was placed in the 120 µm hole in the pre-indented rhenium gasket of 
about 50 µm in thickness and embedded in condensed argon, which solidifies above 
1.2 GPa [28,29]. Use of the argon pressure medium provided quasi-hydrostatic pressure 
conditions up to 50 GPa because the uniaxial stress in solid argon does not exceed, similar 
to solid neon, ~1% of the pressure value [30]. The pressure was determined from the earlier 
reported V(P) of crystalline argon [29]. The unit cell volumes of both γ-Sn3N4 and argon 
were obtained from the angle-dispersive powder XRD patterns generated using a 
monochromatic X-ray synchrotron beam (wavelength 0.37380(4) Å) collimated to 20 µm 
(beamline ID27, ESRF, Grenoble, France). The two-dimensional XRD patterns were 
collected with an image-plate detector MAR345 and converted to 1D-diffractograms 
(Figure 1) using the Fit2D software [31]. 

First-principles calculations of the stress-strain properties of the spinel nitrides and of 
a variety of dense C3N4 polymorphs were performed using density-functional theory (DFT). 
We employed the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation 
(GGA) exchange-correlation functional [32], the improved Troullier-Martins norm-
conserving pseudopotentials for core electrons and numerical atomic orbital basis set for 
valence electrons within the Kohn-Sham formalism of DFT [33]. Periodicity was enforced 
with a real-space mesh cut-off set to 200 Ry. Geometry optimizations were completed 
when the magnitude of forces on each atom is less than 0.008 eV/Å. All calculations were 
performed using the SIESTA simulation package [34]. 

For calculations of the elastic stress tensors of cubic crystals, we introduced a 
uniaxial strain εxx from 0.5 % to 5 % in 0.5% increments. C11 and C12 were then calculated 
from the resulting stress tensor σxx. While introducing shear strain by shifting the lattice 
angle φ from -6o to +6o, a pure shear strain εxy was produced and C44 was calculated from 
the resulting stress tensor σxy. To derive shear moduli for isotropic polycrystalline samples 
of the spinel nitrides, γ-M3N4 where M=Si, Ge, Sn, from our calculated Cij, we used the 
Voigt-Reuss-Hill approach known to provide values (labeled as G0H) close to experiment. 
In the case of C3N4 polymorphs we calculated shear moduli using the Voigt approach 
(labeled as G0V) which gives the upper limit for G0 and, thus, provides the upper limit for 
Hn when a Hn(G0) systematics is applied. 

 

III. RESULTS AND DISCUSSION 
The cubic lattice parameter of γ-Sn3N4 at ambient conditions we measured to be 

a0=9.033(6) Å, in agreement with the value a0=9.037(3) Å reported in the original paper on 
its synthesis [22]. The latter value, measured with a higher precision, was used in our data 
treatment. XRD patterns of the sample compressed in a DAC up to 50 GPa showed ten or 
more diffraction peaks perfectly matching the spinel structure of -Sn3N4 (Figure 1) and up 
to five peaks of crystalline argon. From these patterns we determined the unit cell volume 
of -Sn3N4 as a function of pressure V(P) (Figure 2) which showed a smooth decrease with 
pressure. No signs of a phase transition could be recognized. The third-order Birch-
Murnaghan EOS was fitted to the experimental data points V(P)/V0 and B0 = 158(11) GPa 
and B´ = 5.4(1.1) were obtained (Table I). A fit with B0´ fixed at 4 resulted in a slightly 
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higher B0=174(3) GPa. The B0 values we obtained for γ-Sn3N4 are ~17% higher than the 
only earlier reported experimental B0=149 GPa (with fixed B0´=4) [27] but still below the 
earlier predicted ones [17,35,36] (Table I). The significant discrepancy with the previous 
measurement we explain by use of a nonhydrostatic pressure medium and the short 
pressure range. Our experimental B0=158 GPa significantly surpasses the earlier theoretical 
values calculated both using the LDA [35] and GGA [27,36] DFT approaches. In contrast, 
it perfectly agrees with our calculated B0=169 GPa. 

Applying our experimental B0 and the earlier reported Er=167(36) from the 
nanoindentation tests of a densified sample [17], we derived G0 of -Sn3N4 to be 67(20) 
GPa (if B0=158 GPa) or 65(19) GPa (if B0=174 GPa) (Table I). The given error margins are 
mostly due to the uncertainty in Er [17]. Surprisingly, a similar value of G0=64 GPa was 
derived in Ref. [17] using the same Er and a higher theoretical value of B0=186 GPa. This 
indicates a weak influence of the approach on the bulk modulus uncertainty in contrast to 
uncertainties or errors in Er [24]. Our experimental G0=67(20) GPa agrees, within the 
experimental uncertainty, with our theoretical G0=88 GPa derived from the calculated Cij 
(see Table S-I in Supplementary information) applying the Voigt-Reuss-Hill (VRH) 
approach (Table I). Because we are not aware of any other calculation of Cij or G0 of γ-
Sn3N4, a direct comparison with other theoretical methods is not possible. However, we 
could recognise that the elastic anisotropy of γ-Sn3N4 of A=2·C44/(C11-C12)=2.1 is very 
similar to A=1.9-2.0 we have derived from the earlier calculated Cij of γ-Ge3N4 and γ-Si3N4 
[37,38]. 

In order to further validate our theoretical approach, we calculated Cij moduli of γ-
Si3N4 and γ-Ge3N4, as well as their B0 and G0 using the VRH approach and compared with 
the existing reliable measurements (Table I). In the case of γ-Ge3N4 only one experimental 
B0=295(5) from V(P) was reported [19] and used in the unique nanoindentation work to 
derive G0=124 GPa applying Er=275 GPa [17,24]. This experimental B0 is remarkably 
higher than our theoretical B0=227 GPa (by ~25%) as well as the earlier one of B0=242 GPa 
calculated using the LDA approach [38] (Table I). In contrast, our calculated G0=168 GPa 
and the earlier LDA result [38] outperform (also by ~25%) the experimental G0=124 GPa 
[17,24]. On the other hand, applying our calculated B0 and G0 for γ-Ge3N4 we obtain a 
theoretical value of Er=308 GPa which is only ~10% above the measured one. This 
indicates a need of an independent measurement of B0 and G0 of γ-Ge3N4 and verification 
of a low porosity of samples used in the nanoindentation tests. It should be mentioned here 
that we did not consider for γ-Ge3N4, and below for γ-Si3N4, multiple first-principles 
calculations where only bulk moduli were reported because our work is focused on G0 
values needed to predict the hardness of γ-M3N4 and of hypothetical dense polymorphs of 
C3N4. 

Despite a large number of measurements of B0 for γ-Si3N4, only one very recent work 
reports both hardness and shear modulus (Tables I and II) for one and the same isotropic 
densified polycrystalline sample [23]. In this work both G0=248(1) GPa and B0=303(4) GPa 
were obtained using Brillouin light spectroscopy (BLS). This B0 is slightly higher than 
B0=290(5) GPa determined from the high-pressure EOS measurements [25]. In contrast, in 
the earlier nanoindentation tests Er was measured and G0p=148(16) derived for a sample 
with an unknown porosity [25]. Even though this G0p is significantly lower than that of the 
dense sample, it was also considered here as an example of a porous sample. This could be 
done because above we have recognized that G0 derived from Er depends only weakly on 
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the bulk modulus. B0 and G0 of γ-Si3N4 obtained from the BLS measurements [23] agree 
very well with our present first-principles calculations which give B0=285 GPa and 
G0H=237 GPa (Table I). This agreement supports further the reliability of our calculation 
approach thus permitting its extension to C3N4 polymorphs. Previous theoretical works 
where all Cij or the pairs B0 and G0 of γ-Si3N4 were calculated [37-39] show also a 
reasonable agreement with the most recent measurements [23] (Table I). However, these 
calculations were not validated for γ-Sn3N4 or γ-Ge3N4 and were not extended to dense 
C3N4 polymorphs. 

In order to predict the hardness of dense C3N4 phases proposed in the literature, we 
first verified the empirical linear relation between G0 (Table 1) and the hardness of the 
above considered dense spinel phases γ-M3N4 where M=Si, Ge, or Sn (Figure 3). In 
particular, we compared hardness values obtained in nanoindentation tests, Hn, (Table II) 
for the same samples for which elastic moduli, especially Er or G0, were measured 
simultaneously using the same technique [17,25] or BLS [23] (Figure 3). Moreover, we 
selected, if available, Hn values obtained for similar loads in order to exclude the biasing 
due to the indentation size effect e.g.[23]: If we consider only the Hn measured for γ-M3N4 
with small indentation loads of 3-5 mN (Table II) then the linear relation between G0 and 
Hn is described by the empirical equation Hn(G0)=0.240(26)·G0 (Figure 3). Taking into 
account of the Hn for a transparent γ-Si3N4 sample measured with a higher load of ~200 mN 
insignificantly changes the empirical relation (due to the indentation size effect) to 
Hn(G0)=0.212(8)·G0 (Figure 3). Interestingly, the result for one and the same sample of 
hexagonal α-Si3N4 (S.G. P31/c) reporting G0 = 144(7) GPa (derived from the measured 
Er = 289(7) GPa using the earlier reported B0=248(10) GPa [40]) and Hn =34.5(2.0) GPa, 
obtained for a high indentation load of 700 mN [41], is located between these two lines. A 
good agreement with our steeper Hn(G0) empirical equation  follows from the 
nanoindentation testing of a polycrystalline sample of β-Si3N4 (S.G. P63/m) where Hn 
=26(4) GPa was measured for the indentation load of 7.9 mN [42] and G0 =101(21) GPa 
could be derived from Er obtained for the same sample and the same load using the earlier 
reported B0 =259 GPa [43]. 
 Finally, we performed calculations of Cij of the five hypothetical dense carbon 
nitrides proposed in the literature [1,3,14]. In particular, we examined α-C3N4, β-C3N4 and 
γ-C3N4 having the same structures as the three well-known phases of Si3N4, namely, 
hexagonal low-pressure α- and β-phases (see above) and the γ-phase having the cubic 
spinel structure (S.G.  Fd3�m). We also considered two other cubic structures, namely the 
defect zink-blende zb-C3N4 (S.G. P4�3m) and the Willemite-II type c-C3N4 (S.G. I4�3d). The 
calculated Cij moduli of these five phases of C3N4 are given in Table S-I of the 
Supplementary Information, and compared with earlier predictions. From our Cij we 
calculated G0 moduli of the C3N4 polymorphs using the Voigt approach, G0V (Table I), and 
applied to them the empirical systematics Hn(G0) developed above for the spinel nitrides γ-
M3N4 (Figure 3).  The vertical bars in Figure 3 thus indicate our predicted upper limits for 
Hn for the considered here dense C3N4 phases (Table II). Furthermore, because Hn obtained 
for low loads in nanoindentation tests provide, in general, upper bounds for the 
standardized (micro)hardness values, such as HV, due to the indentation size effect, our 
empirical Hn values for the C3N4 phases are well above their (micro)hardness. The highest 
shear modulus of G0V = 386 GPa was calculated for zb-C3N4 (Table I). This value surpasses 
only insignificantly that of c-C3N4 calculated to be G0V = 380 GPa. From our empirical 
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Hn(G0) systematics (Figure 3), we predict Hn ≤ 93(10) GPa for zb-C3N4, and thus for any 
other C3N4 phases considered here. This nanoindentation hardness value is well below the 
Vickers hardness of 100 GPa [2] adopted in the literature for diamond which shear modulus 
was measured to be G0=536 GPa [44].  If we apply our systematics to the G0 value of 
diamond then the nanoindentation hardness of diamond should be Hn = 122(7) GPa, 
consistent with the concept of the indentation size effect. Therefore, we can conclude that 
all hypothetical dense C3N4 proposed in the literature will exhibit a hardness below that of 
diamond. 
 

IV. CONCLUSIONS 

We performed accurate measurements of B0 and B´ of -Sn3N4 via quasi-hydrostatic 
compression of a polycrystalline sample in a DAC up to 50 GPa. Combining earlier 
nanoindentation data for a densified sample with our B0 value we determined the shear 
modulus of -Sn3N4. Selecting and analyzing the existing reliable data for the hardness and 
shear moduli of all known spinel nitrides, γ-M3N4, we revealed a linear correlation of their 
nanohardness and shear moduli. We performed calculations of elastic moduli of the same 
compounds and found good agreement with the trustworthiest experimental data. The 
confirmed reliability of our calculation approach permitted its extension to the proposed in 
the literature dense polymorphs of hypothetical C3N4. Applying the developed above 
correlation of hardness and shear moduli of γ-M3N4 we predicted the hardness of several 
dense C3N4 phases and found that all of them are well below the hardness of diamond. 
Although the prediction of a superhard C3N4 was disproved here via combined 
experimental and computational approaches, full experimental verification of the formation 
of a dense polymorph of this compound remains an exciting task for the field of solid-state 
chemistry. 
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TABLE I. Parameters of the equation of state (B0, B0´) and G0 of γ-Sn3N4 measured here in 
comparison with the experimental data (Exp) for all existing -M3N4 (where M = Si, Ge, 
Sn) and calculated moduli (Calc) of γ-M3N4 and of the five dense polymorphs of C3N4 
obtained using either the Generalized Gradient Approximation (GGA), the Local Density 
Approximation (LDA), or the Molecular Simulation Force Field (MSFF) approach. Our 
results are highlighted by bold fonts. 
 

Material 
S.G. 

 B0 (GPa) B0´ G0 (GPa) Comment/Ref 

-Sn3N4 
Fd3�m 

Exp 
158(11) 
174(3) 

149(1.2) 

5.4(1.1) 
4 (fixed) 
4 (fixed) 

67(20) a 
65(19) a 
  

 
 
[27] 

Calc 

169 
187 
186 
204 

 
4.34 
4.53 
4.98 

88 b 
 

64 c 

 

GGA 
GGA [36]  
LDA [17] 
LDA [35] 

-Ge3N4 
Fd3�m 

Exp 295(5) 3.8(2) 124(17) [19] & [17,24]  

Calc 
227 

242 
 

168 b 
176 b 

GGA 
LDA [38] 

-Si3N4 
Fd3�m 

Exp 
290(5) 
303(4) 

4.9(6) 
 

148(16) d 
248(1) 

[25]  
[23] 

Calc 

285 
273 
284 
311 
305 
312 

 

237 
b 

252 b  
 

265 b 
258 b 
261 

GGA 
GGA [37] 
GGA [38] 
LDA [37] 
LDA [38] 
[39] 

α-C3N4 
P31/c 

Calc 
378 

388 
191 

 
359 e 

342 e  
300 e 

GGA 
GGA [16] 
MSFF [13] 

β-C3N4 

P63/m 
Calc 

411 
408 
252 
433 

 

303 e 
322 e 

268 e 

326 e 

GGA 
GGA [16] 
MSFF [13] 
LDA [14] 

-C3N4 

Fd3�m 
Calc 

433 
442 

 
351 e 

352 e 
GGA 
LDA [15] 

c-C3N4 
I4�3d 

Calc 

441 
441 
487 
496 

 

380 e 
400 e 

393 e 
319 e 

GGA 
GGA [16] 
LDA [15] 
LDA [3] 

 
zb-C3N4 
P4�3m 

(P4�2m) 

Calc 

395 
436 
422 

390 

 

386 e 
409 e 

397 e  

388 e 

GGA 
LDA [15] 
LDA [14] 

GGA [16] 
a derived using our B0 and Er measured for a densified sample in Ref. 
[17]; b shear modulus derived from theoretical Cij using the Voigt-Reuss-
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Hill- or related approximation, G0H [37,38]; c derived from experimental 
Er using the theoretical B0 reported in the same work; d derived using the 
Er measured for a porous sample; e shear modulus derived from 
theoretical Cij using the Voigt approximation, G0H. 
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TABLE II. Nanoindentation hardness (Hn) of the dense C3N4 phases predicted in the 
present work using the experimental data for -M3N4 (where M = Si, Ge, Sn). The earlier 
measured and predicted HV values of -M3N4 and of the dense C3N4 phases, respectively, 
are also shown for comparison. 
 

Material 
S.G. 

HV 
GPa 

Ref. 
Hn 
GPa 

Load 
mN 

Ref. 

-Sn3N4 
Fd3�m 

11(2) [17] 13(5) 3 [17] 

-Ge3N4 

Fd3�m 
28(5) [17] 31(6) 5 [17] 

-Si3N4 
Fd3�m 

35(2) 
34.9(7) 

[45] 
[23] 

36(5) a 
52(2) 

5 
200 

[25] 
[23] 

α-C3N4 
P31/c 

84 b 

[5] 

76-86 b 
3-
200 

This 
work 

β-C3N4 
P63/m 

85 b 64-73 b 
3-
200 

-C3N4 
Fd3�m 

59 b 74-84 b 
3-
200 

c-C3N4 
I4�3d 

91 b 81-91 b 
3-
200 

zb-C3N4 
P4�3m 

89 b 82-93 b 
3-
200 

 a porous sample, b predicted 
 
 



 

 
FIG. 1. Examples of powder diffraction patterns of γ
hydrostatic argon pressure medium
compressed in a DAC to hig
SnO present in the starting material
 

Examples of powder diffraction patterns of γ-Sn3N4 embedded in 
hydrostatic argon pressure medium, which is similarly soft as solid neon 

to high pressures. Asterisks indicate minor admixtures of SnO
present in the starting material [22]. 
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embedded in a quasi-
similarly soft as solid neon [30], and 

admixtures of SnO2 and 



12 

 
 

FIG. 2. Relative volume, V/V0, of γ-Sn3N4 as a function of pressure: Solid symbols 
represent the experimental data-points while the solid line is the least-squares fit of the third 
order Birch-Murnaghan EOS to the data. Insert: compression data of γ-Sn3N4 in terms of 

normalized pressure ])21(3[/ 2/5ffPF    and Eulerian strain 2/]1)/([ 32
0   /VVf . The 

solid and dotted lines represent the least-squares fits of the third- and second-order Birch-
Murnaghan EOS, respectively. 
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FIG. 3. Empirical relation between the nanohardness Hn and shear modulus G0 of γ-M3N4 
(where M = Si, Ge, Sn) where only experimental data-pairs obtained for one and the same 
sample were considered. Solid and open symbols indicate experimental Hn–G0 data 
measured for densified and porous samples, respectively (Tables I and II). Error bars for the 
experimental G0 of γ-Ge3N4 and γ-Si3N4 were calculated here using the literature data. The 
solid line indicates a linear fit to the data obtained for γ-M3N4 with low loads of 3-5 mN 
and the dashed one to all available data for γ-M3N4 (Table II). The Hn–G0 data for α-Si3N4 
and β-Si3N4 (blue solid triangle and rhombus, respectively) are shown for comparison. 
Vertical solid bars span the possible Hn values of dense C3N4 phases we predict applying 
our calculated G0 values and the empirical linear relation Hn(G0) for γ-M3N4. 
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